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Abstract. In this paper we describe a new error-correcting code (ECC)
inspired by the Naccache-Stern cryptosystem. While by far less efficient
than Turbo codes, the proposed ECC happens to be more efficient than
some established ECCs for certain sets of parameters.
The new ECC adds an appendix to the message. The appendix is the
modular product of small primes representing the message bits. The
receiver recomputes the product and detects transmission errors using
modular division and lattice reduction.

1 Introduction

Error-correcting codes (ECCs) are essential to ensure reliable communi-
cation. ECCs work by adding redundancy which enables detecting and
correcting mistakes in received data. This extra information is, of course,
costly and it is important to keep it to a minimum: there is a trade-off be-
tween how much data is added for error correction purposes (bandwidth),
and the number of errors that can be corrected (correction capacity).

Shannon showed [13] in 1948 that it is in theory possible to encode
messages with a minimal number of extra bits4. Two years later, Ham-
ming [7] proposed a construction inspired by parity codes, which provided
both error detection and error correction. Subsequent research saw the
emergence of more efficient codes, such as Reed-Muller [8, 10] and Reed-
Solomon [11]. The latest were generalized by Goppa [6]. These codes are
known as algebraic-geometric codes.

4 Shannon’s theorem states that the best achievable expansion rate is 1 − H2(pb),
where H2 is binary entropy and pb is the acceptable error rate.
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Convolutional codes were first presented in 1955 [4], while recursive
systematic convolutional codes [1] were introduced in 1991. Turbo codes
[1] were indeed revolutionary, given their closeness to the channel capacity
(“near Shannon limit”).

Results: This paper presents a new error-correcting code, as well as a form
of message size improvement based on the hybrid use of two ECCs one
of which is inspired by the Naccache-Stern (NS) cryptosystem [2, 9]. For
some codes and parameter choices, the resulting hybrid codes outperform
the two underlying ECCs.

The proposed ECC is unusual because it is based on number theory
rather than on binary operations.

2 Preliminaries

2.1 Notations

Let P = {p1 = 2, . . . } be the ordered set of prime numbers. Let γ ≥ 2 be
an encoding base. For any m ∈ N (the “message”), let {mi} be the digits
of m in base γ i.e.:

m =
k−1
∑

i=0

γimi mi ∈ [0, γ − 1], k = ⌈logγ m⌉

We denote by h(x) the Hamming weight of x, i.e. the sum of x’s digits in
base 2, and, by |y| the bit-length of y.

2.2 Error-Correcting Codes

Let M = {0, 1}k be the set of messages, C = {0, 1}n the set of encoded
messages. Let P be a parameter set.

Definition 1 (Error-Correcting Code). An error-correcting code is

a couple of algorithms:

– An algorithm µ, taking as input some message m ∈ M, as well as

some public parameters params ∈ P, and outputting c ∈ C.

– An algorithm µ−1, taking as input c̃ ∈ C as well as parameters params ∈
P, and outputting m ∈ M ∪ {⊥}.

The ⊥ symbol indicates that decoding failed.



Definition 2 (Correction Capacity). Let (µ, µ−1, M, C, P) be an error-

correcting code. There exists an integer t ≥ 0 and some parameters

params ∈ P such that, for all e ∈ {0, 1}n such that h(e) ≤ t,

µ−1 (µ (m, params) ⊕ e, params) = m, ∀m ∈ M

and for all e such that h(e) > t,

µ−1 (µ (m, params) ⊕ e, params) 6= m, ∀m ∈ M.

t is called the correction capacity of (µ, µ−1, M, C, P).

Definition 3. A code of message length k, of codeword length n and with

a correction capacity t is called an (n, k, t)-code. The ratio ρ = n
k

is called

the code’s expansion rate.

3 A New Error-Correcting Code

Consider in this section an existing (n, k, t)-code C = (µ, µ−1, M, C, P).
For instance C can be a Reed-Muller code. We describe how the new
(n′, k, t)-code C ′ = (ν, ν−1, M, C′, P ′) is constructed.

Parameter Generation: To correct t errors in a k-bit message, we generate
a prime p such that:

2 · p2t
k < p < 4 · p2t

k (1)

As we will later see, the size of p is obtained by bounding the worst case
in which all errors affect the end of the message. p is a part of P ′.

Encoding: Assume we wish to transmit a k-bit message m over a noisy
channel. Let γ = 2 so that mi denote the i-th bit of m, and define:

c(m) :=
k
∏

i=1

pmi

i mod p (2)

The integer generated by Equation (2) is encoded using C to yield
µ(c(m)). Finally, the encoded message ν(m) transmitted over the noisy
channel is defined as:

µ(m) := m‖µ(c(m)) (3)

Note that, if we were to use C directly, we would have encoded m (and
not c). The value c is, in most practical situations, much shorter than m.
As is explained in Section 3.1, c is smaller than m (except the cases
in which m is very small and which are not interesting in practice) and
thereby requires fewer extra bits for correction. For appropriate parameter
choices, this provides a more efficient encoding, as compared to C.



Decoding: Let α be the received5 message. Assume that at most t errors
occurred during transmission:

α = ν(m) ⊕ e = m′‖(µ(c(m)) ⊕ e′)

where the error vector e is such that h(e) = h(m′ ⊕ m) + h(e′) ≤ t.

Since c(m) is encoded with a t-error-capacity code, we can recover the
correct value of c(m) from µ(c(m)) ⊕ e′ and compute the quantity:

s =
c(m′)

c(m)
mod p (4)

Using Equation (2) s can be written as:

s =
a

b
mod p,















a =
∏

(m′

i
=1)∧(mi=0)

pi

b =
∏

(m′

i
=0)∧(mi=1)

pi

(5)

Note that since h(m′ ⊕ m) ≤ t, we have that a and b are strictly
smaller than (pk)t. Theorem 1 from [5] shows that given t the receiver
can recover a and b efficiently using a variant of Gauss’ algorithm [14].

Theorem 1. Let a, b ∈ Z such that −A ≤ a ≤ A and 0 < b ≤ B. Let p
be some prime integer such that 2AB < p. Let s = a · b−1 mod p. Then

given A, B, s and p, a and b can be recovered in polynomial time.

As 0 ≤ a ≤ A and 0 < b ≤ B where A = B = (pk)t − 1 and 2AB < p
from Equation (1), we can recover a and b from t in polynomial time.
Then, by testing the divisibility of a and b with respect to the small
primes pi, the receiver can recover m′ ⊕ m and eventually m.

A numerical example is given in Appendix A.

Bootstrapping: Note that instead of using an existing code as a sub-
contractor for protecting c(m), the sender may also recursively apply the
new scheme described above. To do so consider c(m) as a message, and
protect c = c(c(· · · c(c(m))), which is a rather small value, against acci-
dental alteration by replicating it 2t + 1 times. The receiver will use a
majority vote to detect the errors in c.

5
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3.1 Performance of the New Error-Correcting Code for γ = 2

Lemma 1. The bit-size of c(m) is:

log2 p ≃ 2 · t log2(k ln k). (6)

Proof. From Equation (1) and the Prime Number Theorem6. ⊓⊔

The total output length of the new error-correcting code is therefore
log2 p, plus the length k of the message m.

C ′ outperforms the initial error correcting code C if, for equal error
capacity t and message length k, it outputs a shorter encoding, which
happens if n′ < n, keeping in mind that both n and n′ depend on k.

Corollary 1. Assume that there exists a constant δ > 1 such that, for k
large enough, n(k) ≥ δk. Then for k large enough, n′(k) ≤ n(k).

Proof. Let k be the size of m and k′ be the size of c(m).
We have n′(k) = k + n(k′), therefore

n(k) − n′(k) = n(k) − (k + n(k′)) ≥ (δ − 1)k − n(k′).

Now,

(δ − 1)k − n(k′) ≥ 0 ⇔ (δ − 1)k ≥ n(k′).

But n(k′) ≥ δk′, hence

(δ − 1)k ≥ δk′ ⇒ k ≥
k′δ

(δ − 1)
.

Finally, from Lemma 1, k′ = O(ln ln k!), which guarantees that there
exists a value of k above which n′(k) ≤ n(k). ⊓⊔

In other terms, any correcting code whose encoded message size is
growing linearly with message size can benefit from the described con-
struction.

Expansion Rate: Let k be the length of m and consider the bit-size of the
corresponding codeword as in Equation (6). The expansion rate ρ is:

ρ =
|m‖µ(c(m))|

|m|
=

k + |µ(c(m))|

k
= 1 +

|µ(c(m))|

k
(7)

6 pk ≃ k ln k.
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Fig. 1. Illustration of Corollary 1. For large enough values of k, the new
ECC uses smaller codewords as compared to the underlying ECC.

Reed-Muller Codes We illustrate the idea with Reed-Muller codes.
Reed-Muller (R-M) codes are a family of linear codes. Let r ≥ 0 be an
integer, and N = log2 n, it can apply to messages of size

k =
r
∑

i=1

(

N

i

)

(8)

Such a code can correct up to t = 2N−r−1 − 1 errors. Some examples
of {n, k, t} triples are given in Table 1. For instance, a message of size 163
bits can be encoded as a 256-bit string, among which up to 7 errors can
be corrected.

n 16 64 128 256 512 2048 8192 32768 131072

k 11 42 99 163 382 1024 5812 9949 65536

t 1 3 3 7 7 31 31 255 255

Table 1. Examples of length n, dimension k, and error capacity t for
Reed-Muller code.

To illustrate the benefit of our approach, consider a 5812-bit message,
which we wish to protect against up to 31 errors.



A direct use of Reed-Muller would require n(5812) = 8192 bits as
seen in Table 1. Contrast this with our code, which only has to protect
c(m), that is 931 bits as shown by Equation (6), yielding a total size of
5812 + n(931) = 5812 + 2048 = 7860 bits.

Other parameters for the Reed-Muller primitive are illustrated in Ta-
ble 2.

n′ 638 7860 98304

k 382 5812 65536

c(m) 157 931 9931

RM(c(m)) 256 2048 32768

t 7 31 255

Table 2. (n, k, t)-codes generated from Reed-Muller by our construction.

Table 2 shows that for large message sizes and a small number of
errors, our error-correcting code slightly outperforms Reed-Muller code.

3.2 The case γ > 2

The difficulty in the case γ > 2 stems from the fact that a binary error
in a γ-base message will in essence scramble all digits preceding the error.
As an example,

12200210122020120100111202023+230 = 12200210221120001122201101103

Hence, unless γ = 2Γ for some Γ , a generalization makes sense only for
channels over which transmission uses γ symbols. In such cases, we have
the following: a k-bit message m is pre-encoded as a γ-base κ-symbol
message m′. Here κ = ⌈k/ log2 γ⌉. Equation (1) becomes:

2 · p2t(γ−1)
κ < p < 4 · p2t(γ−1)

κ

Comparison with the binary case is complicated by the fact that here t
refers to the number of any errors regardless their semiologic meaning. In
other words, an error transforming a 0 into a 2 counts exactly as an error
transforming 0 into a 1.

Example 1. As a typical example, for t = 7, κ = 106 and γ = 3, pκ =
15485863 and p is a 690-bit number.

For the sake of comparison, t = 7, k = 1584963 (corresponding to
κ = 106) and γ = 2, yield pk = 25325609 and a 346-bit p.



4 Improvement Using Smaller Primes

The construction described in the previous section can be improved by
choosing a smaller prime p, but comes at a price; namely decoding be-
comes only heuristic.

Parameter Generation: The idea consists in generating a prime p smaller
than before. Namely, we generate a p satisfying :

2u · pt
k < p < 2u+1 · pt

k (9)

for some small integer u ≥ 1.

Encoding and Decoding: Encoding remains as previously. The redundancy
c(m) being approximately half as small as the previous section’s one, we
have :

s =
a

b
mod p,















a =
∏

(m′

i
=1)∧(mi=0)

pi

b =
∏

(m′

i
=0)∧(mi=1)

pi

(10)

and since there are at most t errors, we must have :

a · b ≤ (pk)t (11)

We define a finite sequence {Ai, Bi} of integers such that Ai = 2u·i and
Bi = ⌊2p/Ai⌋. From Equations (9) and (11) there must be at least one
index i such that 0 ≤ a ≤ Ai and 0 < b ≤ Bi. Then using Theorem 1,
given Ai, Bi, p and s, the receiver can recover a and b, and eventually m.

The problem with that approach is that we lost the guarantee that
{a, b} is unique. Namely we may find another {a′, b′} satisfying Equa-
tion (10) for some other index i′. We expect this to happen with negligible
probability for large enough u, but this makes the modified code heuristic
(while perfectly implementable for all practical purposes).

4.1 Performance

Lemma 2. The bit-size of c(m) is:

log2 p ≃ u + t log2(k ln k). (12)

Proof. Using Equation (9) and the Prime Number Theorem. ⊓⊔



Thus, the smaller prime variant has a shorter c(m).
As u is a small integer (e.g. u = 50), it follows immediately from

Equation (1) that, for large n and t, the size of the new prime p will
be approximately half the size of the prime p generated in the preceding
section.

This brings down the minimum message size k above which our con-
struction provides an improvement over the bare underlying correcting
code.

Note: In the case of Reed-Muller codes, this variant provides no improve-
ment over the technique described in Section 3 for the following reasons:
(1) by design, Reed-Muller codewords are powers of 2; and (2) Equa-
tion (12) cannot yield a twofold reduction in p. Therefore we cannot hope
to reduce p enough to get a smaller codeword.

That doesn’t preclude other codes to show benefits, but the authors
did not look for such codes.

5 Prime Packing Encoding

It is interesting to see whether the optimization technique of [2] yields
more efficient ECCs. Recall that in [2], the pis are distributed amongst
κ packs. Information is encoded by picking one pi per pack. This has an
immediate impact on decoding: when an error occurs and a symbol σ is
replaced by a symbol σ′, both the numerator and the denominator of s
are affected by additional prime factors.

Let C = (µ, µ−1, M, C, P) be a t-error capacity code, such that it is
possible to efficiently recover c from µ(c) ⊕ e for any c and any e, where
h(e) ≤ t. Let γ ≥ 2 be a positive integer.

Before we proceed, we define κ := ⌈k/ log2 γ⌉ and

f := f(γ, κ, t) =
k
∏

i=k−t

pγi.

Parameter Generation: Let p be a prime number such that:

2 · f2 < p < 4 · f2 (13)

Let Ĉ = M × Zp and P̂ = (P ∪ P) × N. We now construct a variant of
the ECC presented in Section 3 from C and denote it

Ĉ =
(

ν, ν−1, M, Ĉ, P̂
)

.



Encoding: We define the “redundancy” of a k-bit message m ∈ M (rep-
resented as κ digits in base γ) by:

ĉ(m) :=
κ−1
∏

i=0

piγ+mi+1 mod p

A message m is encoded as follows:

ν(m) := m‖µ (ĉ (m))

Decoding: The received information α differs from ν(m) by a certain
number of bits. Again, we assume that the number of these differing bits
is at most t. Therefore α = ν(m) ⊕ e, where h(e) ≤ t. Write e = em‖eĉ

such that

α = ν(m) ⊕ e = m ⊕ em‖µ(ĉ(m)) ⊕ eĉ = m′‖µ(ĉ(m)) ⊕ eĉ.

Since h(e) = h(em) + h(eĉ) ≤ t, the receiver can recover efficiently
ĉ(m) from α. It is then possible to compute

s :=
ĉ(m′)

ĉ(m)
mod p =

κ−1
∏

i=0

piγ+m′

i
+1

κ−1
∏

i=0

piγ+mi+1

mod p.

s =
a

b
mod p,



















a =
∏

m′

i
6=mi

piγ+m′

i
+1

b =
∏

mi 6=m′

i

piγ+mi+1

(14)

As h(e) = h(em) + h(eĉ) ≤ t, we have that a and b are strictly smaller
than f(γ, κ)2t. As A = B = f(γ, κ)2t − 1, we observe from Equation (13)
that 2AB < p. We are now able to recover a, b, gcd(a, b) = 1 such that
s = a/b mod p using lattice reduction [14].

Testing the divisibility of a and b by p1, . . . , pκγ the receiver can re-
cover em = m′ ⊕ m, and from that get m = m′ ⊕ em. Note that by
construction only one prime amongst γ is used per “pack”: the receiver
can therefore skip on average γ/2 primes in the divisibility testing phase.



5.1 Performance

Rosser’s theorem [3,12] states that for n ≥ 6,

ln n + ln ln n − 1 <
pn

n
< ln n + ln ln n

i.e. pn < n(ln n + ln ln n). Hence a crude upper bound of p is

p < 4f(κ, γ, t)2

= 4





κ
∏

i=κ−t

pγi





2

≤ 4
κ
∏

i=κ−t

(iγ(ln iγ + ln ln(iγ)))2

≤ 4γ2t

(

κ!

(κ − t − 1)!

)2

(ln κγ + ln ln κγ)2t

Again, the total output length of the new error-correcting code is
n′ = k + |p|.

Plugging γ = 3, κ = 106 and t = 7 into Equation (13) we get a
410-bit p. This improves over Example 1 where p was 690 bits long.
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A Toy Example

Let m be the 10-bit message 1100100111. For t = 2, we let p be the
smallest prime number greater than 2 · 294, i.e. p = 707293. We generate
the redundancy:

c(m) = 21 · 31 · 50 · 70 · 111 · 130 · 170 · 191 · 231 · 291 mod 707293

⇒ c(m) = 836418 mod 707293 = 129125.

As we focus on the new error-correcting code we simply omit the Reed-
Muller component. The encoded message is

ν(m) = 11001001112‖12912510.

Let the received encoded message be α = 11001010112‖12912510. Thus,

c(m′) = 21 · 31 · 50 · 70 · 111 · 130 · 171 · 190 · 231 · 291 mod p

⇒ c(m′) = 748374 mod 707293 = 41081.

Dividing by c(m) we get

s =
c(m′)

c(m)
=

41081

129125
mod 707293 = 632842

Applying the rationalize and factor technique we obtain s =
17

19
mod

707293. It follows that m′ ⊕ m = 0000001100. Flipping the bits retrieved
by this calculation, we recover m.
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