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1 Department of Computer Science, University of Bristol
{dan.martin,elisabeth.oswald,martijn.stam}@bris.ac.uk

2 The Computer Labratory, University of Cambridge
marcin.wojcik@cl.cam.ac.uk

Abstract. We put forward the first practical message authentication code (MAC) which is provably secure
against continuous leakage under the Only Computation Leaks Information (OCLI) assumption. Within the
context of continuous leakage, we introduce a novel modular proof technique: while most previous schemes are
proven secure directly in the face of leakage, we reduce the (leakage) security of our scheme to its non-leakage
security. This modularity, while known in other contexts, has two advantages: it makes it clearer which parts
of the proof rely on which assumptions (i.e. whether a given assumption is needed for the leakage or the non-
leakage security) and it also means that, if the security of the non-leakage version is improved, the security
in the face of leakage is improved ‘for free’. We conclude the paper by discussing implementations; one on a
popular core for embedded systems (the ARM Cortex-M4) and one on a high end processor (Intel i7), and
investigate some performance and security aspects.
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1 Introduction

Side channel leakage (e.g. via timing, power or EM side channels) enables the extraction of secret data
out of cryptographic devices, as initially demonstrated by Kocher (et al.) in 1996 and 1999 [21, 22]. The
engineering community reacted quickly by developing a variety of countermeasures that are commonly
described as masking and hiding (see [24]). Such countermeasures intend to reduce the overall exploitable
leakage via techniques that are cheap to implement.

Initially with hesitance, but more lately with much enthusiasm, the theory community picked up on
the fact that schemes are needed which can tolerate some leakage. Complementary to the engineering ap-
proach, the aim is to design schemes which do not reduce leakage but cope with it, normally via updating
the keys. The most compelling property of this approach is that the security definitions intrinsically in-
corporate leakage and hence security proofs then hold even in the presence of leakage. The main drawback
of having theoretical backing of security seems to be that the resulting schemes are typically considerably
less efficient than other schemes. A prime example of such a scheme is the stream cipher by Dziembowski
and Pietrzak [8].

Despite the fact that almost all real word cryptographic protocols require some form of authentication,
there is a distinct gap in the literature when it comes to leakage resilient message authentication codes
(MACs). Hazay et al. [18] produce a MAC from minimal assumptions (existence of a one way function).
While only relying on minimal assumptions is an advantage from a theoretical perspective, the scheme
has a major drawback in that it only allows a bounded amount of leakage (this bound relates to the total
leakage of the device). This makes the scheme unsuitable for practice. In his Master’s thesis, Schipper [34]
discusses a MAC construction in yet another security model. However unfortunately this MAC is also
undesirable for practice as the number of AES calls used by verification grows logarithmically in the
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number of tag queries. Pereira et al. [32] create a leakage resilient MAC in the simulatable leakage model,
following on from the work of Standaert et al. [37]. However due to the use of components which are not
allowed to leak, and that the simulator given has been shown to be insecure by Longo et al. [23], it is not
clear what practical guarantees it will provide when implemented.

1.1 Our contribution

Inspired by the bilinear ElGamal cryptosystem by Kiltz and Pietrzak [19], we propose a MAC scheme that
is secure within the continuous leakage model, using the Only Computation Leaks Information assumption
(discussed in Sect. 2). To our knowledge this is the first MAC scheme to be given within this model, which
has become one of the more desirable models due to its closer link with practical side channel scenarios.

In Sect. 3 we give our basic MAC construction and prove it secure in the random oracle model without
leakage. Unlike previous work (where schemes have to be completely re-proven when considering leakage),
we can construct our proof when considering leakage by a reduction to the non-leaky version (see Sect. 4).
This is the first proof to achieve such a clean reduction, which has several advantages. Firstly it shows
more clearly how much the leakage is impacting on the security of a scheme. This also implies if the
security of the basic MAC construction is tightened, the security of the MAC construction with leakage is
tightened ‘for free’. This manifests itself (as seen in the theorem statement) by having the leakage security
bound in terms of the security without leakage. Secondly it becomes clearer which further assumptions
are required to prove security when assuming leakage: for example the basic MAC construction requires
a Random Oracle assumption, while the Generic Group Model is required when leakage is added.

In Sect. 5 we discuss an implementation of our leakage resilient MAC when instantiated over a suitable,
pairing supporting, elliptic curve using a well known library (MIRACL). We show that in practice (by
compiling our implementation on two very different platforms, an embedded ARM core and a high end
INTEL processor) we are reasonably efficient and the cost of providing provable leakage resilience, is not
nearly as high as often believed. By inspecting power traces, we demonstrate that there are no (unforeseen)
features that would weaken the implementation. In App. B we compare our MAC to the other leakage
resilient MACs, as well as other schemes (i.e. PRFs, Signatures) which can be converted into MACs. We
show that compared to the majority of other provably secure schemes we are considerably more efficient.
The only scheme which is comparable with regards to efficiency is a signature scheme [16].

1.2 Related Work

Kiltz and Pietrzak [19] combine two techniques that are commonly used within both communities to build
a key encapsulation mechanism on top of a key update scheme. The first technique is masking (or secret
sharing as it is known by the theoretical community), which involves splitting the key into two parts and
then working on each share separately. The second technique is frequent rekeying. Unlike other proposals
(e.g. [20] or [1]), which are stateful (and thus need to be synchronised) or ones which needs to transmit
a clue [26] to ‘synchronise’ parties,the proposal by Kiltz and Pietrzak [19] can leverage the algebraic
properties of the underlying system such that the resulting system requires no synchronisation. This is
achieved by changing the representation of the shares rather than changing the secret itself. Using the
same techniques, Galindo and Vivek [16], and Tang et al. [38] create leakage resilient signature schemes.
These constructions are proven secure in the continuous leakage model using the OCLI assumption [27](see
also Sect. 2).

Albeit not related to goal of creating a MAC, there have been several recent papers which design
leakage resilient schemes with the balance of provability and useability: schemes that come with some
provable guarantee against arbitrary leaks without incurring prohibitively high overhead. When relaxing
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security notions from completely adaptive inputs (i.e. adversaries may choose input messages but also
the side channel leakage adaptively) to non-adaptive security, simpler constructions for symmetric key
cryptography can be achieved than previously thought [10]. In a differently motivated publication (proving
existing schemes secure versus creating provably secure schemes), Balasch et al. [2] take a provably secure
method, inner product masking, trim it down to implement a masked AES with it, and show this leads
to a result which is comparable to other state of the art, yet not formally proven, masking approaches.

Dodis and Pietrzak [7] create a leakage resilient PRF where the leakage functions are chosen non-
adaptively before any queries to the PRF are made. Faust et al. [10] construct a simpler leakage resilient
PRF, which is acheived at the expense of having to make both the input to the PRF and the leakage non-
adaptive. All known PRFs in the continual leakage model have the restriction of being non-adaptive (in
the leakage), while MACs do not have this restriction. This shows a seperation between PRFs and MACs
which does not exist in the non-leakage model but PRFs will still serve as an interesting comparision.

2 Modelling Leakage

In this section we discuss what assumptions we make when modelling leakage. Clearly some restrictions
are required on the leakage, otherwise the adversary will be able to win because he can just ask for the
key. One of the first decisions to be made is how to define a bound for the leakage (i.e. how many bits
about a secret does the adversary get via some side channel). For instance, one could define there to be
an overall bound, i.e. the adversary gets at most a certain number of bits, irrespective of how often the
construction is actually called (this is called bounded leakage in the literature). Another option would be
to impose a per call bound. In this latter case, each call to the construction delivers at most a certain
number of bits, while the overall leakage remains unbounded. This type of model is called continuous
leakage model and fits best to real world leakage such as power or EM traces.

Whilst some previous works [8, 11] make an a priori assumption about the computational complexity
of the leakage function, we opted for a concrete security statement. This means that the adversarial
advantage is explicitly bounded in the complexity of the leakage function as expressed in the number of
queries to the generic group oracles (see Sect. 2.2).

Finally we need to restrict the scope of the leakage function because otherwise (given our choices of
assumptions above) no security would be possible (because of the infamous ‘future computation attack’
[19]). We discuss our choice of how to restrict the leakage function in the following.

2.1 Only Computation Leaks Information

Micali and Reyzin [27] introduced the Only Computation Leaks Information (OCLI) assumption. It states
that data leakage only occurs on data that is currently being computed on and that data at rest will not
leak. Whilst this assumption might not strictly hold in practice (it has been shown to be invalid for some
technologies an gate level [33]), it sufficiently captures the behaviour of many state of the art devices.

Application of the OCLI assumption requires splitting a large computation into smaller components
that each only operate on a subset of the data available, thus restricting the scope of what can be leaked
on. OCLI will be modelled in this paper by splitting a function F into two parts F

G#

and F G# . The part
of the sensitive/exploitable input S used by F

G#

will be denoted S

G#

while the parts of the sensitive input

used by F G# will be denoted S G# . Without OCLI, a leakage query could potentially leak on both shares
jointly, and thus reveal information about S. However due to OCLI, any leakage query can only ever leak
on S

G#

and S G# independently, but never jointly on both.
Concretely, in our model the adversary may adaptively (per function call) choose leakage functions

l

G#

, l G# which will leak up to λ bits (this is a security parameter) on F

G#

and F G# respectively. The adversary
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also gets the output l

G#

(S

G#

, x

G#

, r

G#

) and l G# (S G# , x G# , r G# ) where x

G#

, x G# is the input to the functions and

r

G#

, r G# is the randomness that they use.

Note that while the leakage functions l

G#

and l G# can be chosen adaptively from query to query, they do
have to be chosen at the same time for a single query. This restriction—that the leakage function l G# is not
allowed to depend on the leakage obtained by l

G#

—is quite common in the literature [16, 19], and reflects
the abilities of a real world adversary (they can’t change the measurement set-up mid measurement).

If this leakage process is iterated multiple times an index is used to specify which iteration we are on,

for example we use l

G#

i , l

G#

i , S

G#

i , S
G#

i , r

G#

i , r

G#

i .

2.2 Bilinear Generic Group Model

We briefly recall the definition of bilinear groups and of bilinear maps, where we adhere to asymmetric
pairings (see Galbraith et al. [13] for an overview). Let G1,G2, and G3 be cyclic groups all of prime
order p with generators g1, g2, and g3, respectively. A bilinear map is a function e : G1 × G2 → G3 with
the following properties; bilinearity states that ∀u ∈ G1, v ∈ G2, a, b ∈ Zp : e(ua, vb) = e(u, v)ab, while
non-degeneracy e(g1, g2) 6= 1, stops the construction of trivial maps. From this point onwards we define
the generator g3 of G3 to be e(g1, g2).

The generic group model [25, 29, 36] is well established to prove the security of protocols involving
elliptic curves. Its goal is to restrict the adversary in such a way that structure of the underlying group
cannot be exploited (beyond what follows from the group axioms). This is achieved by representing each
element within the group as a random string and providing oracles for the various group operations. As
a consequence, given only a representation of a group element, the only ability the adversary has is to
check equality (i.e. the adversary must use an oracle to perform any required group operations).

In the Generic Bilinear Group (GBG) model each of the three groups (or two when using a symmetric
pairing ) has its own randomised encoding. Each of these encodings will be represented by an injective
encoding function ξ1 : Zp → Ξ1, ξ2 : Zp → Ξ2, ξ3 : Zp → Ξ3 for G1,G2,G3 respectively, where Ξ1, Ξ2, Ξ3

are sets of bitstrings. The adversary has access to the following 4 oracles:

– O1(ξ1(a), ξ1(b)) = ξ1(a+ b mod p)

– O2(ξ2(a), ξ2(b)) = ξ2(a+ b mod p)

– O3(ξ3(a), ξ3(b)) = ξ3(a+ b mod p)

– Oe(ξ1(a), ξ2(b)) = ξ3(a · b mod p)

for all a, b ∈ Zp. Each of the 4 oracles will return ⊥ if either of the inputs is not a invalid encoding of an
underlying group element. O1,O2,O3 perform the group operations of G1,G2,G3 respectively, while Oe
performs the pairing operation. To work with these groups an adversary only needs to be given ξ1(1) and
ξ2(1) (corresponding to the generators of G1 and G2 respectively) plus access to the four oracles, from
which any group element can be computed.

Leaking on generic group elements only reveals information about their representation. In some proofs
(without leakage) that use the generic group model, the representation of group elements can be chosen
in such a way that even sampling a random group element is hard (for an adversary). This is typically
achieved by representing group elements as ‘long’ random strings. When leakage is included in proofs,
such a strategy would not make sense because it would imply that only ‘large’ amounts of leakage3 would
strengthen the adversary. We instantiate the generic group model using compact representations instead.

3 Typically one would need to leak significantly more than log p bits, where p would be the size of the group.
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experiment Expeuf−cma
M (A):

K
$←− KG()

S ← {}
(σ∗,m∗)← ATag(·),V erify(·,·)()
if m∗ ∈ S then

return 0
end if
Return V RFY (K,σ∗,m∗)

proc Tag(m):
S ← S ∪ {m}
σ ← TAG(K,m)
Return σ

proc V erify(σ,m):
b← V RFY (K,σ,m)
Return b

Fig. 1: EUF-CMA experiment

By setting Ξi = {0, 1}n where n = dlog pe we get the unique representations required. This gives the
adversary the ability to sample group elements efficiently and directly.

In contrast, Kiltz and Pietrzak [19] (and similarly, Galindo and Vivek [16]) use indirect sampling by
raising some generator to a random exponent. They allow leakage on both the random representations,
as well as their discrete logarithms (with respect to some generator), in order to model the adversary’s
ability to leak on the sampling computation itself. Our proof can be seen as more restrictive and our
proofs only hold for implementing the sampling directly. We remark that it is possible to sample random
elliptic curve points efficiently without performing an exponentiation with an unknown exponent. This is
discussed in more detail in Sect. 5.

3 A MAC scheme

We define a MAC as a tuple of algorithms M = (KG,TAG, V RFY ) such that:

K
$←− KG()

σ
$←− TAG(K,m)

b← V RFY (K,σ,m).

For correctness we require for all valid keys K that V RFY (K,TAG(K,m),m) = 1. We use the standard
definition of EUF-CMA security for the rest of this section, which is recapped below.

Definition 1 (Existential Unforgability Under Chosen Message Attack (EUF-CMA)). Let
M = (KG,TAG, V RFY ) be a Message Authentication Code. Then Fig. 1 defines the EUF-CMA security
game. The advantage of an adversary A winning the game is defined as Adveufcma

M (A) = Pr[Expeufcma
M (A) =

1].

We now define our basic MAC construction. Using a hash function H : {0, 1}∗ → G2 our basic MAC
scheme M = (KG,TAG, V RFY ) is defined in Fig. 2. It can be shown to provide EUF-CMA security
(Thm. 2). The scheme can be understood as follows; key generation consists of generating a random group
element of G1. Tag generation first hashes the message, then takes the resulting hash as input to a bilinear
map, using the secret key as other input. The MAC consists of a message, and its tag. Verification simply
reconstructs the tag T and checks the correctness.

Before we provide the proof of the MAC we introduce a new Bilinear Diffie–Hellman problem, which
we will use in the reduction to show the security of the MAC. This new DH problem will have its security
‘sandwiched’ between two other well known DH problems. We then introduce a variation of the problem,
which makes the proof reduction slightly tidier but will have no effect on the security of the scheme.
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proc KG():

K
$←− G1

Return K

proc TAG(K,m):
W ← H(m)
T ← e(K,W )
Return T

proc V RFY (K,T,m):
W ← H(m)
T ′ ← e(K,W )
Return T ′ = T

Fig. 2: Our bilinear MAC scheme M

3.1 A New Bilinear Diffie–Hellman Problem

In Definition 2 we introduce a bilinear problem, which we coin the target bilinear Diffie–Hellman (TBDH)
problem. In Theorem 1 we give a reduction to show if Co-Bilinear Diffie–Hellman (CBDH) is assumed
to be a hard problem,4 then so is the TBDH problem. Similarly, it can be shown that if the standard
computational Diffie–Hellman (CDH) Problem is easy in G3 then the TBDH Problem is easy.

Definition 2 (Target Bilinear Diffie–Hellman Problem). Given G1,G2,G3 with a bilinear map e
between them, we say the Target Bilinear Diffie–Hellman (TBDH) Problem is hard if given gx2 , g

y
3 it is

hard to compute gxy3 , where x, y are sampled uniformly at random from Zp. Given an adversary A we
define its advantage of winning this game as Advtbdh(A) = Pr [A = gxy3 : A ← A(g1, g2, g

x
2 , g

y
3)].

Before relating the TBDH problem to other Diffie–Hellman problems, we recall the CBDH Prob-
lem [39]. The CBDH problem states that given gx2 , g

y
2 , where x, y are sampled uniformly at random from

Zp, you must find gxy3 .

Theorem 1. Let A be an adversary against the TBDH Problem, then there exists an adversary B (with
approximately the same runtime as A) against the CBDH Problem, such that:

Advtbdh(A) ≤ Advcbdh(B) .

Proof. Let adversary A against TBDH be given, then adversary B that breaks CBDH is given in Fig. 3.
From this we can see that B will win whenever A does and thus we have Advtbdh(A) ≤ Advcbdh(B).

adversary B(g1, g2, g
x
2 , g

y
2 ):

gx3 ← e(g1, g
x
2 )

z ← A(g1, g2, g
x
2 , g

y
3 )

Return z

Fig. 3: Constructing a CBDH Adversary from a TBDH Adversary

We now introduce the TBDHwO problem which will be used in the proof of security for the MAC.
While it makes the reduction cleaner it does not weaken the security statement. The TBDHwO problem
is the same as the TBDH problem (given gx2 , g

y
3 return gxy3 ) with an additional oracle test(·) which given

an element checks if it is gxy3 .

Definition 3 (Target Bilinear Diffie-Hellman with Oracle Problem). We say the Target Bilinear
Diffie-Hellman with Oracle (TBDHwO) Problem is hard if given gx2 , g

y
3 it is hard to compute gxy3 , when

given access to the test(·) oracle that checks if the given element is gxy3 , where x, y are sampled uniformly at
random from Zq. Given an adversary A we define its advantage of winning this game as Advtbdhwo(A) =
Pr[A = gxy3 : A ← Atest(·)(g1, g2, g

x
2 , g

y
3)]

4 It is possible to modify our results to the usual notions of negligible advantages against probabilistic polynomial-time
adversaries.
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adversary B(H = gx2 ,F = gy3 ):
i← 0
j

$←− [qh]
(T,m)← AH(·),Tag(·),V RFY (·)()
Return T

simulator H(m):
i← i+ 1
if W [m] =⊥ then

if i = j then
W [m]← ×
Return H

else
W [m]

$←− Zq
end if

end if
Return hW [m]

simulator Tag(m):
if W [m] =⊥ then

W [m]
$←− Zq

else if W [m] = × then
ABORT

end if
T ← FW [m]

Return T

simulator V RFY (T,m):
if W [m] =⊥ then

W [m]
$←− Zq

else if W [m] = × then
Return test(T )

end if
Return (T = FW [m])

Fig. 4: Constructing a TBDHwO Adversary from a EUF-CMA Adversary

Lemma 1. Let A be an adversary against the TBDHwO Problem, then there exists an adversary B (with
approximately the same runtime as A) against the TBDH Problem, such that:

Advtbdhwo(A) ≤ (qt + 1)Advtbdh(B) .

The proof of Lemma 1 is a standard hybrid argument: since every time A wants a test query answered,
instead of asking the test oracle, B runs a copy of their algorithm and outputs the value they want testing
and based on whether this copy wins or not tells them what value the test function call will return. Since
this needs to be done for each test function the bound given holds.

Theorem 2. Let H : {0, 1}∗ → G2 be modelled as a random oracle and A be an EUF-CMA adversary
against M who makes qh queries to the hash function and qv verification queries, then there exists an
adversary B (of similar computational complexity) against the TBDH problem such that:

Adveufcma
M (A) ≤ (qh + 1)(qv + 1)Advtbdh(B).

Proof. The proof works by reducing the problem of forging the MAC to the problem of solving the TBDH
problem; let A be an adversary against the EUF-CMA security ofM, Fig. 4 shows the reduction on how
an adversary B can solve the TBDHwO problem using the adversary A.

Without loss of generality we assume that, if A creates a forgery T on m, it has queried H(m) (if it
has not we can simply create an equivalent adversary that performs the same operations but hashes H(m)
before outputting the forgery, at the cost of one extra hash query). From this we can see that when the
message forged on was the jth query to the RO, B has won the TBDH game. The reduction constructs
tags in such a way that it simulates having the key as gy1 . If the adversary subsequently forges on a point
whose hash is gx2 , the resulting tag will be the answer to the TBDH problem (gxy3 ).

The probability of the message being forged on being the jth RO call is (qh + 1)−1. The ABORT
does not affect this probability, since the only time B will abort is if A tries to tag on the value B wants
it to make a forgery on and hence a forgery on this value is no longer possible. Thus Adveufcma

M (A) ≤
(qh + 1)Advtbdhwo(B) and by Lemma 1 the theorem holds (where qt from Lemma 1 equals qv).
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4 A Leakage Resilient MAC

We start this section by introducing the definition of a key update mechanism. Kiltz and Pietrzak [19]
implicitly constructed and used a key update mechanism within their KEM. This key update mechanism
was then used again in the signature scheme by Galindo and Vivek [16] and the signature scheme by Tang
et al. [38]. After showing that our definition aligns with the KP key update mechanism, we define what
it means for a scheme to be compatible with a key update mechanism. We show this is the case for our
MAC given in the previous section and then go on to prove our MAC secure in the face of leakage.

4.1 Key Update Mechanism

We define a key update mechanism as a set of tuples KU = (Share,Recombine, U

G#

, U G# ) such that:

(S

G#

0 , S

G#

0 )
$←− Share(K)

(S

G#

i+1, ru)
$←− U

G#
(S
G#

i )

S G#

i+1
$←− U G# (S G#

i , ru)

Ki ← Recombine(S

G#

i , S

G#

i )

For correctness we require that Recombine(Share(K)) = K.

We define an equivalence class as follows; we say (S

G#

i , S

G#

i ) ≡ (S

G#

j , S

G#

j ) if Recombine(S

G#

i , S

G#

i ) =

Recombine(S

G#

j , S

G#

j ). Then the final requirement is that the algorithms U

G#

, U G# preserve the equiva-

lence class of the shares (and thus ∀i : Ki = K). Formally we require (S

G#

i , S
G#

i ) ≡ (S

G#

i+1, S

G#

i+1) where

(S

G#

i+1, Oi)
$←− U

G#

(S

G#
i ), S G#

i
$←− U G# (S G#

i , Oi).

The KP key update mechanism used within the KEM [19] can be seen to fit within this framework.
This is due to the fact that the key is initially split into two shares which multiply together to give back
the original key. The first share is updated by multiplying it by a random value, while the second share
is updated by multiplying it by the inverse of the random value. This forms our equivalence class and
thus when the two shares are multiplied together we will recover the orignal key, regardlesss of how many
times the shares have been updated. The KP key update mechanism will be used for the remainder of
this paper (and denoted KU).

Definition 4 (Key Update Splittable). We say that a tuple of functions (F

G#

, F G# ) is a split of F
conforming to key update mechanism KU if the following two properties hold. Firstly:

{F (K,x)}R = {F ∗(Share(K), x)}R∗

where F ∗ is defined in Fig. 5, the equivalence is over the randomness from sets R,R∗ used by F, F ∗

respectively. Secondly, that for all sharings (S

G#

0 , S

G#

0 ) the joint distribution on (S

G#

1 , S

G#

1 ) after F ∗ has been

called once is the same as if (S

G#

0 , S

G#

0 ) had been updated using (U

G#

, U G# ).

Claim. The MAC M given in Sec. 3 is Key Update Splittable conforming to the KP Key Update Mech-
anism KU .

Proof. M can be converted into M∗ which is given in Fig. 6.
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proc F ∗(S

G#

i , S

G#

i , x):

(S

G#

i+1, O)
$←− F

G#

(S

G#

i , x)

(S G#

i+1, y)
$←− F G# (S G#

i , O)
Return y

Fig. 5: The algorithm F ∗

proc KG():

K
$←− G1

S

G#

0
$←− G1

S G#

0 ← K · (S

G#

0 )−1

Return (S

G#

0 , S

G#

0 )

proc TAG

G#

(S

G#

i ,m):
W ← H(m)

t

G#

i ← e(S

G#

i ,W )

ri+1
$←− G1

s

G#

i+1 ← S

G#

i · ri+1

Return (S

G#

i+1, ri+1, t

G#

i ,W )

proc TAG G# (S G#
i , t
G#

i ,W, ri+1):

t G#

i ← e(S G#

i ,W )

S G#

i+1 ← S G#

i · r
−1
i+1

T ← t
G#

i · t G#

i

Return (S G#

i+1, T

proc V RFY (K,T,m):
W ← H(m,w)
T ′ ← e(K,W )
Return (T ′ = T )

Fig. 6: Leakage Resilient MAC M∗

Since we have that:

Tag∗(S

G#

i , S

G#

i ,m) = T

= t

G#

· t G#

= e(S

G#

i , H(m)) · e(S G#

i , H(m))

= e(S

G#

i · S G#

i , H(m))

= e(K,H(m))

= Tag(K,m).

Since the MAC uses the key update function to update the key, the distributions will be the same. Hence
M is Key Update Splittable.

There are three algorithms in our leakage resilient MAC: Key Generation, Tag and Verify. Our security
definition only allows leakage on Tag, and we now explain why this is necessary. The Key Generation must
not leak because it would leak on the original key. In practice, typical (security) devices would be shipped
with their keys preinstalled and only the update would be done on the device. This leaves us to consider
whether Tag (EUF-CMA-LT) or Verify (EUF-CMA-LV), or both (EUF-CMA-LTV) are allowed to leak.
This question has not been considered before in the continual leakage model in the case of symmetric
schemes, as all previous schemes in this model were public-key in which the question simply does not
arise.

Making Verify leakage resilient is problematic, because we are allowing adaptive leakage: assume the
adversary takes a random group element and a message and sends both to Verify. In our construction
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experiment Expeufcmalt
M (A):

K
$←− KG()

(S

G#

0 , S

G#

0 )
$←− SHARE(K)

S ← {}
(σ∗,m∗)← ATag(·),V erify(·,·)

if m∗ ∈ S then
return 0

end if
Return V RFY (K,σ∗,m∗)

proc Tag(m, l

G#

i , l

G#

i ):
S ← S ∪ {m}

(S

G#

i+1, Oi)
r

G#

i←−− TAG

G#

(S

G#

i ,m)

Λ

G#

i ← l

G#

i (S

G#

i , r

G#

i )

(S G#

i+1, σ)
r G#

i←−− TAG G# (S G#

i , Oi)

Λ G#

i ← l G#

i (S G#

i , r

G#

i , Oi)

Return (σ,Λ

G#

i , Λ

G#

i )

proc V erify(σ,m):
b← V RFY (K,σ,m)
Return b

Fig. 7: EUF-CMA-LT experiment

(which follows a typical design) Verify has to calculate the correct tag first, and then compare it against
the submitted tag. Hence the adversary can keep submitting the same message until he has completely
leaked the tag created for comparison. This tag can then be submitted as a forgery since it was never
requested from the Tag oracle. This attack will work against any MAC construction which requires a
reconstruction of the tag as part of Verify and is hence not specific to our MAC. We leave it as a question
for future research how to deal with a leakage resilient Verify theoretically. In practice, Verify will leak and
whilst we cannot formally include it in the security proof, we can assume that practical countermeasures
can be put in place.

Definition 5 (Existential Unforgability Under Chosen Message Attack with Tag Leakage

(EUF-CMA-LT)). Let M∗ = (KU , TAG

G#

, TAG G# , V RFY ) be a Message Authentication Code. Then
Fig. 7 defines the EUF-CMA-LT security game. The advantage of an adversary A winning the game is
defined as Adveufcmalt

M (A) = Pr[Expeufcmalt
M (A) = 1].

Theorem 3. The MAC M∗ is EUF-CMA-LT secure in the Generic Group Model. The advantage of a
q-query (to the generic group oracles) adversary who is allowed λ bits of leakage is given by:

Adveufcmalt
M∗ (A) ≤ 24·λ ·Adveufcma

M (B) +
q2

p
.

Proof. This proof is given in the Generic Group Model and shows that with the use of leakage the
adversary cannot get any elements that they could not get when no leakage was involved. After this has
been shown it is reasonably straightforward to argue that without learning any new elements from the
leakage, the leakage can increase the adversary’s advantage by at most the number of bits that is leaked
on for a single element. By showing that each element is only leaked at most four times, we get that
the advantage can only be increased by at most 24·λ over the advantage in the game where no leakage is
involved.

We will represent group elements with polynomials, which will be instantiated at the end of the
computation. The polynomials allow the game to keep track of which elements the adversary has asked
for in a straightforward manner and because they are instantiated at the end, the adversary’s decisions
clearly can not be dependant on the actual values of the elements. Instatiation of the polynomials at the
end is a common trick used within the litrature but means that if two (non equal) polynomials, when
instantiated, collide the simulation fails as a single group element now has multiple representations. Thus
we must also show that the chance of an adversary forcing this collision is also small.

Let K, {Ri}qTi=0, {Hi}qHi=1, {Ui}
2qO
i=1 , {Vi}

2qO
i=1 , {Wi}2qOi=1 be indeterminants where qH is the number of hash

queries, qT is the number of Tag calls and qO is the number of group oracle calls (let q = qH +qT +3 ·qO).
The indeterminants represent the following; K is the secret key, {Ri}qTi=0 are the randomness used to

10



update the key, {Hi}qHi=1 represent any hash function queries and {Ui}2qOi=1 , {Vi}
2qO
i=1 , {Wi}qOi=1 represent

any elements that are guessed in G1,G2,G3 respectively. The lists L1,L2,L3 are used to keep track of
polynomials and their representations in G1,G2,G3 respectively. They are initialised as follows:

L1 = {(1, ξ11} ∪ {(Ri, ξ1i+2)}
qT
i=0

L2 = {(1, ξ21)}
L3 = {(1, ξ31)}

All three lists are initially instantiated with the identity, note that it is not strictly necessary to instantiate
the identity in G3 since it can be calculated. We precompute the representations of the randomness
but since the adversary does not have access to this list of elements (and instantiation, defining the
element happens at the end) this does not change the game but makes it notationally simpler. All of the
representations in this step are chosen randomly with the requirement that they are unique.

The oracles used by the Generic Group model are given in Fig. 8 in App. A.
The Adversary A outputs m,T and is said to have won if:

1. F li = F lj for l ∈ {1, 2, 3} and i 6= j
2. K ·H∗ − T = 0 where H∗ is the indeterminant corresponding to the hash of m

The first case corresponds to the adversary being able to create two polynomials which evaluate to the
same value. The second case corresponds to the adversary being able to create a forgery on the MAC.

Since all polynomials in the original lists are degree one and the only operation that increases the
degree is the pairing operation which can only be called on elements in G1,G2, the maximal degree of
polynomial is two. This means that we can have degree two polynomials in G3 but not the other two
groups. Hence by the Swartz-Zippel lemma we have that the probaility of two (non-zero) polynomials

evaluate to the same value is 2
p . Since there are at most q polynomials we get that there are

(
q
2

)
≤ q2

2

pairs of polynomials that could collide, the probability of any two polynomials colliding is q2

p .
Without loss of generality, we will now only look at leakage in the target group G3 since any element

from G1,G2 calculated by the leakage can be transfered over to G3 using a pairing and any elements
known to the adversary can easily be recomputed within the leakage.

While we now only need to look at leakage in the target group since each leakage function has access
to different secret elements, the set of elements that can be calculated by each will be different and thus
must be considered individually. The adversary will win if he can repeatedly get a (new) Tag into the
leakage function to reveal it, or he can cause collisions within the leakage. If he can only create a forgery
once he will not be able to leak the complete tag and thus he is required to get in into multiple leakage
sets

Let L

G#

i be the set of elements that could be computed by the leakage function l

G#

i , then:

L

G#

i = {A · S

G#

i +B ·Ri+1 + C}

Where A,B ∈ Fp[{Hi}qHi=0, {Vi}
2qO
i=0 ] and C ∈ Fp[K{Hi}qHi=0, {Ui}

2qO
i=0 , {Vi}

2qO
i=0 , {Wi}qOi=0] and we use S

G#

i to

denote
∑i

j=0Ri.

Let L G#

i be the set of elements that could be computed by the leakage function l G#

i , then:

L G#

i = {A · S G#

i +B ·Ri+1 + C + d · S

G#

i ·Hi}
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Without loss of generality we will assume that ith tag call maps to Hi. Also we have that d ∈ Fp and S G#

i

denotes K −
∑i

j=0Ri.

The only Tags that can be contained in L

G#

i are tags of the form Hj ·K for j < i in which the adversary
has included the tag via F and thus there is no advantage in leaking upon Hj ·K. Ignoring this trivial
case, there are no linear combinations possible that will reveal an unknown tag or the key itself. Similarly

for L

G#

i the only tags that can be included are of the form Hj ·K for j ≤ i this is because he can again
ask to leak on tags he has already seen by embedding them in F but this time can also leak on Hi ·K but
this is also not of any use because the leakage on this tag will be received at the same time the adversary
is given the Tag and thus no extra information is gained.

From this point on we will only consider leakage on elements that contain an unknown component,
since if all components are completely known by the adversary it is not worth learning leakage on. All
that is left to show is that no element can be leakaged upon more than a bounded number of times (we
can show this to be 4 times):

– S

G#

i can be leaked on twice L

G#

i−1, L

G#

i

– S G#

i can be leaked on twice L G#

i−1, L

G#

i

– Ri+1 can be leaked on twice L

G#

i , L

G#

i

– S

G#

i ·Hi, the intermediate state, can be leaked on 4 times L

G#

i−1, L

G#

i , L

G#

i−1, L

G#

i

Since each element can only be leaked on at most four times, the adversary can only learn up to
4 · λ bits of information per secret. Thus we get the bound as stated in the theorem, since after collisions
the adversary’s advantage can be at most 24·λ times the advantage of playing the standard non-leakage
game.

5 Practical Aspects of our Scheme

For a practical implementation we selected the Barreto-Naehrig (BN) [3] family of pairing-friendly curves.
The family of BN curves are defined over a prime field Fp, with prime order and are given by the equation
E : y2 = x3+b, with b 6= 0 (we select b = 2). The common feature of this family is their embedding degree
of k = 12, which to some extent, dictates the security level achieved on the curve. For the implementation
purpose we focused on a security level equivalent to 128-bit and 192-bit AES (this security level is before
leakage is considered), for which BN curves are ideally suited.

The prime p is given by polynomial p(u) = 36u4 + 36u3 + 24u2 + 6u + 1. For efficiency we set
u = −(262 + 255 + 1) and u = −(2190 + 219 + 217 + 215 + 213 + 212 + 211 + 29 + 28 + 27 + 25 + 24 + 23 + 1)
for 128 and 192 bits security level respectively [31]. That determines the size of the operands in the
groups G1, G2 and G3, which are over Fp, Fp2 and Fp12 respectively. In case of the 128 bit security level,
operations are carried out on operands of length 254, 508 and 3048 bits, whereas for 192 bits security
level are carried out on operands of 766, 1532 and 9192 bits.

All algorithms of our schemes were implemented using the MIRACL software library [35], which is a
portable C/C++ library that supports a wide-rage of different platforms including embedded ones. The
advantage of the selected library is the extensive support for highly efficient pairing operations. In addition
we extended and adopted functionality provided by the library to our particular case, whenever required.
For the underlying pairing operations, MIRACL uses the well-known Miller algorithm [28]. Furthermore,
it also applies the Galbraith-Scott method [14], which allows computing a mapping between the groups
G2 and G3 efficiently. These mappings are further used to speed up arithmetic computations in G2 and G3

by applying Gallant-Lambert-Vanstone method [17] (which works when a suitable group homomorphism
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Table 1: Performance comparison of random point generation methods.
Device Cortex-M4 Intel i7

Operation Time (ms) Time (µs)

128-bits 192-bits 128-bits 192-bits

Random Sampler 36 588 96 1159

Try and Increment 34 569 76 1119

Random Scalar 173 2827 389 5186

SWEncoding 30 616 121 1217

is given). All mentioned optimisation strategies increase efficiency of pairing computations, thus speeding
up our proposed scheme and making it also suitable for more resource-constrained environments.

We implemented and measured execution times of the schemes on both an embedded platform and
a high-end device. For the former case, as a target platform, we selected a popular STM32F4Discovery
board, which houses 32-bit ARM Cortex-M4 CPU. For the latter case, we utilised the 64-bit Intel Core i7
CPU. The internal clock of the Cortex-M4 was set to available maximum, i.e., 168MHz, whereas the
Intel i7 ran with a 3GHz clock. We ran our benchmarks several times to derive median timings for
inclusion in this paper.

5.1 Generating random curve points

Generating random group elements securely is vital for key generation and key updates (which happen in
TAG). We found four options (see Fig. 9 for algorithmic descriptions) for this purpose, which we now dis-
cuss in turn. The first one, the Random Sampler procedure, randomly selects an x-coordinate and checks
if it is on the curve. In case of success, the procedure computes an associated y-coordinate, otherwise
randomly selects another x-coordinate. The second key generation procedure, Try and Increment is very
similar to the first one. It differs only in re-selection of x-coordinate in which the procedure increments
x-coordinate by 1 and repeats the assessment of whether a new x is on the curve. The third one, Ran-
dom Scalar selects a scalar at random and preforms a scalar multiplication using a fixed group generator.
The last procedure uses the encoding to BN curve [12], where a random element t ∈ Fp is transformed
into an element of the curve E(Fp), which was used by Galindo et al. [15]. Note that when using this
encoding one has to perform it twice in order to generate a point distributed uniformly at random [15].
Hence in practice the timings are effectively twice as long.

Performance For a fair comparison of timings, all procedures were implemented without blinding.
Applying blinding to the Random Sampler, Try and Increment and Random Scalar methods requires
one additional multiplication. A more involved blinding method for the BN encoding have been proposed
in [12]. Table 1 shows that Random Sampler and Try and Increment are by far the most efficient (recall
that the SWEncoding method needs to be performed twice for uniformly distributed points), and it is clear
that this advantage would also hold when blinding is included. This is good news as the Random Scalar
method is not only slow, but also known to be very vulnerable to power analysis attacks [6].

Attack vectors It has been shown practically that the Random Scalar method can completely leak the
entire secret randomness and hence strictly speaking, it cannot be used for schemes proved secure in the
continual leakage model. Security aspects of the SWEncoding scheme have been discussed by Galindo et
al. [15]. They conclude that the SWEncoding might leak via the Jacobi symbol. The security of the other
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Table 2: Performance comparison
(a) Bilinear MAC

Device Cortex-M4 Intel i7

Operation Time (ms) Time (µs)

128-bits 192-bits 128-bits 192-bits

TAG 2146 30317 7935 68692

V RFY 2146 30317 7958 68687

(b) LR MAC

Device Cortex-M4 Intel i7

Operation Time (ms) Time (µs)

128-bits 192-bits 128-bits 192-bits

KG∗ 72 1126 170 2128

TAG∗ 4059 57274 15473 130612

V RFY ∗ = V RFY 2146 30317 7958 68687

Share 34 566 94 1082

TAG

G#

2183 30883 7974 69650

TAG G# 1874 26382 7162 60841

Recombine 2 11 < 1 < 1

two methods with respect to the continual leakage model has not yet been investigated. Hence we will
now discuss the security considerations here.

The Try and Increment procedure will leak information about the number of increments via its overall
execution time (which will be visible from power or EM traces). It is not obvious how this information
could be utilised efficiently. However it will contribute to the amount of leakage per call for the λ security
bound.

The Random Sampler method chooses values for x independently of previous choices and hence does
not leak any additional information on the x from its high level functionality. The only part which may
reveal information about the point is the calculation of the Jacobi symbol.

Since for both the SWEncoding and the Random Sampler any leakage will be from the Jacobi Symbol
we now discuss the leakage that may be available during its computation. The Jacobi computation has
a conditional operation which swaps the numerator and denominator when certain conditions are met.
They are swapped (with a possible sign change) when the Jacobi symbol is not of a special form which
is easy to calculate (such as being a Legendre symbol or having either a one or two as one of the values),
this allows a modular reduction to then take places, further simplifying the remaining calculation. We
recorded power traces on the embedded platform, see Fig. 10 for the comparison for two different inputs
which have 99 and 96 conditional switches respectively. The traces can be seen to look (slightly) different
from each other, however even if it is possible to use this information to caclulate how many times the
conditional switch happens within the Jacobi Symbol it is not currently known how this information can
be used by an adversary. While it is not clear how much use this information is or how it can be exploited,
it is recommended to use blinding (with r2) to hide the point since if x3 + b is square, r2(x3 + b) will also
be square for all random r.

5.2 Performance of the overall scheme

Finally we give an overview of the performance of the high level functions of the MAC constructions (see
Fig. 2a and 2b). The basic MAC scheme had identical operations in the TAG and VRFY procedures (bar
the additional equality check in VRFY which is extremely fast), hence the resulting identical timings.

Switching then to the leakage resilient version, it is clear that the cost essentially doubles for the TAG
computation. Since we had to assume VRFY was not leaking (recall that our construction, like other
MAC constructions requires the reconstruction of TAG during VRFY, which is seemingly impossible to
do securely allowing adaptive adversaries in the continual leakage model), the timings for VRFY in the
leakage resilient scheme are the same as for the scheme without leakage.

14



Acknowledgements

Dan Martin and Elisabeth Oswald have been supported in part by EPSRC via grant EP/I005226/1.
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26. Medwed, M., Standaert, F.X., Großschädl, J., Regazzoni, F.: Fresh re-keying: Security against side-channel and fault
attacks for low-cost devices. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 10. LNCS, vol. 6055, pp. 279–296.
Springer, Berlin, Germany, Stellenbosch, South Africa (May 3–6, 2010)

27. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 278–296. Springer, Berlin, Germany, Cambridge, MA, USA (Feb 19–21, 2004)

28. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology 17(4), 235–261 (2004)
29. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55(2), 165–172

(1994)
30. Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm with partially known nonces. Journal of

Cryptology 15(3), 151–176 (2002)
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A Additional Figures and Tables

proc O1(ξ1, ξ2):
if ξ1 6∈ L1 then
F1 ← Guess1(ξ1)

end if
if ξ2 6∈ L1 then
F2 ← Guess1(ξ2)

end if
get F1 and F2 from L1

F3 ← F1 + F2

if F3 ∈ L1 then
get ξ3 from L1

else
ξ3 ← Sample1(F3)

end if
Return ξ3

proc Oe(ξ1, ξ2):
if ξ1 6∈ L1 then
F1 ← Guess1(ξ1)

end if
if ξ2 6∈ L2 then
F2 ← Guess2(ξ2)

end if
get F1 from L1

get F2 from L2

F3 ← F1 · F2

if F3 ∈ L3 then
get ξ3 from L3

else
ξ3 ← Sample3(F3)

end if
Return ξ3

proc Sample1(F ):

ξ
$←− Ξ1\L1

add (F, ξ) to L1

Return ξ

proc Guess1(ξ):

d
$←− Zp

add (d, ξ) to L1

Return d

Fig. 8: GGM group oracles used within the proof (O2,O3, Sample2, Sample3, Guess2, Guess3 are not
included due to their similarity to the oracles for G1.)

Random Sampler:
loop

x
$←− F∗p

if x ∈ E(Fp) then

i
$←− {0, 1}

y ← −1i ·
√
x2 + b

Return R = (x, y)
end if

end loop

Try and Increment:

x
$←− F∗p

loop
if x ∈ E(Fp) then

i
$←− {0, 1}

y ← −1i ·
√
x2 + b

Return R = (x, y)
else
x← x+ 1

end if
end loop

Random Scalar:
Let P be a generator of
E(Fp)
k

$←− F∗p
return R = [k]P

SWEncoding:

t
$←− F∗p

w ←
√
−3 · t/(1 + b+ t2)

x1 ← −1 +
√
−3/2− tw

x2 ← −1 + x1
x3 ← 1 + 1/w2

r1, r2, r3
$←− F∗p

α← χp(r
2
1 · (x31 + b))

β ← χp(r
2
2 · (x32 + b))

i← [(α−1) ·β mod 3]+1
R ← (xi, χp(r

2
3 · t) ·√

x3i + b)
Return R

Fig. 9: The algorithms for the four point samplers considered

B Comparison of our Scheme

In this section we focus on some practical considerations: how efficient is it in comparison to other leakage
resilient MAC constructions, and what would a practical implementation need to guarantee to meet our
leakage bound/assumptions?

Before giving a comparision we need to make some choices for parameters of the various schemes.
In case of schemes which have as underlying primitive a pseudo random function (PRF), we chose to
instantiate this PRF with AES-128. This is motivated by the fact that this reflects the current state of
the art. For our own scheme, and a somewhat comparable signature scheme, we use as instantiation of
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Table 3: Performance results of underlying operations.
Device Cortex-M4 Intel i7

Operation Time (ms) Time (µs)

128-bits 192-bits 128-bits 192-bits

Squaring in G1 < 1 < 1 < 1 < 1

Squaring in G2 < 1 < 1 ∼ 1 ∼ 2

Squaring in G3 ∼ 1 ∼ 1 ∼ 11 ∼ 12

Pairing 1864 26327 7151 60811

Hashing (21 Bytes) 280 3987 699 7622
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Fig. 10: Two example trace of the Jabobi symbol being calculated.
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the bilinear map a pairing defined over a suitable pairing friendly elliptic curve. In this case we choose as
group size parameter 2160, again with the motivation to reflect a state-of-the art security bound (i.e. 280

is regarded as minimum for bound which is implied by a group of double this size).

B.1 Security considerations

The leakage bound we have for our scheme is that we can tolerate up to approx. 50 bits of leakage
assuming a group size of about 2160 per invocation of the scheme. For a practical implementation it is
important to acknowledge that this will not include the initial sharing out of the key. Consequently in a
strict sense this would need to be done in a secure environment.

When considering what ‘50 bits of leakage’ means given our constructions, it helps to think about
the tagging and verification algorithms in a concrete instantiation: i.e. we are working with pairings that

are defined over some pairing friendly curve. Consequently, S
G#

i , S G#

i , ri and ri
−1 are elliptic curve points,

S

G#

i · ri and S G#

i · ri−1 are elliptic curve point additions, and e is a pairing. Now that we have a concrete
instantiation of our scheme, we can argue more concretely about implementation options. In order to
provide some resistance against simple side channel attacks such as SPA we would hence essentially need
to blind the EC points which correspond to secrets. A recent contribution [4] gives a good overview on
various side channel attacks on pairings from which one can again conclude that also the pairing operation
should best be implemented on blinded EC points.

The obvious question arising now might be what we have gained in practice, as we yet again need
to apply the basic techniques that would prevent attacks such as SPA and DPA? The answer is for any
non leakage resilient version, even partial leakage on the random values will probably allow lattice based
attacks such as [30]. The leakage resilient scheme however guarantees that in the presence of partial
leakage no such attack can succeed.

B.2 Comparison with other leakage-resilient schemes

In our comparison we essentially look at the number of elliptic curve or AES operations that tagging
and verification require. We also report on the tolerated leakage, the key size and the tag size. Table 4
provides an overview and the following text explains and discusses the provided numbers. As can be seen
from this table, our scheme is highly competitive when compared with other provably secure schemes.

The MAC by Pereira et al. [32] will not be discussed here since it requires acess to a leak free
blockcipher. It is not clear how to implement a blockcipher such that it does not leak any information,
and if it is possible to do so it is not apparent as to how many orders of magnitude slower that a normal
blockcipher it would be. For these reasons we have not included it within the comparison.

The only other leakage resilient MAC scheme in the literature, that isn’t built on top of another
leakage resilient scheme, is by Hazay et al. [18] to the best of our knowledge. The advantage of their
work is that it only relies on very minimal assumptions (the existence of one-way functions). However
the leakage bound is a total bound, i.e. it holds regardless of the number of times the tag and verify
algorithms are called. Assuming that we instantiate the PRF required for this scheme with AES-128 (i.e.
setting λ = s = 128 to use the notation in the paper), and using the equations they give in Theorem
5.6, it turns out that AES will be called 512 times per tag and verify query. While this already makes
the scheme computationally expensive, the larger problem is the overall key size: the key must be of size
approximately 218 bits, which is impractical for many applications. Even worse, under these parameters
the MAC can leak 512 bits over the lifetime of the system (i.e. not per MAC invocation). This also means
that with these choices AES and the elliptic curve schemes will give approximately the same level of
security.
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Due to the small number of leakage resilient MACs, we also provide a comparison against PRFs and
signatures because although there is not an immediate strategy to convert them into leakage resilient
MACs available, there is potential that one might use PRFs or signatures to instantiate a MAC with
some leakage resilient properties.

The PRF by Dodis and Pietrzak [7] requires that the leakage functions are fixed prior to the at-
tack and are not adaptively chosen. They define the PRF ΓF : Σ3k+n × Σm → Σ4k+2n created from
a wPRF F : Σk × Σn → Σ4k+2n. If we instantiate F with AES-128 with something like F (x) =
EncK(x||000)||EncK(x||001)||EncK(x||010)||EncK(x||011)||EncK(x||100)||EncK(x||101) and then take
the desired number of output bits, this gives us k = m = 128, n = 125 and ΓF : Σ509×Σ128 → Σ768. As
stated in the paper each time the PRF is called, the function F is called m+ 1 times and thus AES will
be called 774 times. Hence even if this can be converted into a MAC reasonably inexpensively, the PRF
itself is very expensive.

Schipper’s construction [34] requires the use of a EUF-CMA MAC and a leakage resilient PRF. Hence,
the timings will be very similar to the numbers from [7] and thus we do not include it explicitly in the
table.

The PRF by Faust et al. [10] requires that neither the leakage or the PRF inputs are queried adaptively
but are fixed prior to the start of the game. They construct a scheme ΓF,m : {0, 1}k+(m+1)l × {0, 1}m →
{0, 1}n which uses the wPRF F : {0, 1}k × {0, 1}l → {0, 1}2k and m + 1 public random values of length
l. If we again instantiated the wPRF with AES-128 to get F (x) = EncK(x||0)||EncK(x||1) meaning we
get m = k = 128, l = 127,n = 256 and ΓF,128 : {0, 1}16511 × {0, 1}128 → {0, 1}256. This will call AES 258
times per invocation, which while an improvement still seems prohibitive for a practical implementation.

The signature scheme by Faust et al. [9] uses 2l exponentiations, 4(l−1) multiplications, l−1 additions
and 2 hash function calls in the signing algorithm and tl exponentiations, tl multiplications and t hash
function calls in the verification algorithm, where l is related to the underlying l-representation problem [5]
(assumed to be hard) and t is the depth of the signature chain. The downside of this scheme is that even
if l = 2, while signing is efficient, verification takes longer depending how deep the signature chain is.
This could mean that verification quickly becomes too expensive for an embedded device to perform.

The signature scheme by Galindo and Vivek [16] is the only one comes close to our construction in
terms of performance, which is unsurprising given that it is also based on the same key update mechanism.
For signing, the algorithm uses 2 Elliptic Curve scalar multiplications, 5 Elliptic Curve additions and also
generates a random curve point (and its’ inverse), while verification uses 2 Elliptic Curve point additions,
1 Elliptic Curve scalar multiplication and 2 pairings. Since a pairing is currently only slightly more
expensive than an exponentiation, our tagging algorithm will be almost equivalent in timing to their
signing algorithm. Their verification is faster than ours, however, their keys are larger. Furthermore,
while there is no hash function explicit in their scheme, it is assumed that the message comes from Zp
and thus in practice to sign arbitrary messages, the message would have to be hashed onto Zp.
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Table 4: A comparison of possible EUF-CMA-LT schemes
Scheme Leakage Key Size Tag Size Tag Time Verification Time

Our scheme 1
2
(log p−2 log qu−n)

p group size
q queries
n security bound
(approx 50 bits)

2 EC points
(approx 320 bits)

1 EC point
1 random string
(approx 228 bits)

1 hash
1 random point (and
inverse) generated
3 EC additions
2 pairings

1 hash
1 random point
(and inverse) gen-
erated
3 EC additions
2 pairings

HLWW:[18] 512 bits total approx 218 bits approx 219 bits 512 AES calls 512 AES calls

DP:[7] log (ε−1)
6

for ε = AdvwprfF (A)
(approx 22 bits)

509 bits 762 bits 774 AES calls 774 AES calls

FPS:[10] log (ε−1)
4

for ε = AdvwprfF (A)
(approx 32 bits)

128 bits
16,383 public bits

256 bits 258 AES calls 258 AES calls

FKPR:[9] 2kl( 1
2
− 1

2l
− δ)

(approx 40 bits)
Varies Varies 2l exponentiations

4(l − 1) multiplica-
tions
l − 1 additions
2 hashes

Varies

GV:[16] << log p
2

p is group size
(approx 60 bits)

sk: 2 EC points
pk: 3 EC points
(approx 800 bits)

2 EC points
(approx 320 bits)

1 random point (and
inverse) generated
2 scalar multiplica-
tions
5 EC additions
1 hash

1 scalar multipli-
cation
2 EC additions
2 pairings
1 hash
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