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Abstract. Alignments provide a robust approach for conformance
checking, which has been largely applied in various contexts such as
auditing and performance analysis. Alignment-based conformance check-
ing techniques pinpoint the deviations causing nonconformity based on
a cost function. However, such a cost function is often manually defined
on the basis of human judgment and thus error-prone, leading to align-
ments that do not provide accurate explanations of nonconformity. This
paper proposes an approach to automatically define the cost function
based on information extracted from the past process executions. The
cost function only relies on objective factors and thus enables the con-
struction of probable alignments, i.e. alignments that provide probable
explanations of nonconformity. Our approach has been implemented in
ProM and evaluated using both synthetic and real-life data.
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1 Introduction

Modern organizations are centered on the processes needed to deliver products
and services in an efficient and effective manner. Organizations that operate at
a higher process maturity level use formal/semiformal models (e.g., UML, EPC,
BPMN and YAWL models) to document their processes. In some case these
models are used to configure process-aware information systems (e.g., WFM or
BPM systems). However, in most organizations process models are not used to
enforce a particular way of working. Instead, process models are used for discus-
sion, performance analysis (e.g., simulation), certification, process improvement,
etc. However, reality may deviate from such models. People tend to focus on
idealized process models that have little to do with reality. This illustrates the
importance of conformance checking [1,2,12].

This work is an extended and revised version of [8].
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Conformance checking aims to verify whether the observed behavior recorded
in an event log matches the intended behavior represented as a process model.
The notion of alignments [2] provides a robust approach to conformance check-
ing, which makes it possible to pinpoint the deviations causing nonconformity.
An alignment between a recorded process execution and a process model is a
pairwise matching between activities recorded in the log and activities allowed
by the model. Sometimes, activities as recorded in the event log (events) cannot
be matched to any of the activities allowed by the model (process activities).
For instance, an activity is executed when not allowed. In this case, we match
the event with a special null activity (hereafter, denoted as �), thus resulting
in a so-called move on log. Other times, an activity should have been executed
but is not observed in the event log. This results in a process activity that is
matched to a � event, thus resulting in a so-called move on model.

Alignments are powerful artifacts to detect nonconformity between the
observed behavior as recorded in the event log and the prescribed behavior as
represented by process models. In fact, when an alignment between a log trace
and process model contains at least one move on log or model, it means that
such a log trace does not conform to the model. As a matter of fact, moves on
log/model indicate where the execution is not conforming by pinpointing the
deviations that have caused this nonconformity.

In general, a large number of possible alignments exist between a process
model and a log trace, since there may exist manifold explanations why a trace
is not conforming. It is clear that one is interested in finding what really hap-
pened. Adriansyah et al. [4] have proposed an approach based on the principle
of the Occam’s razor: the simplest and most parsimonious explanation is prefer-
able. Therefore, one should not aim to find any alignment but, precisely, one of
the alignments with the least expensive deviations (one of the so-called optimal
alignments), according to some function assigning costs to deviations.

Existing alignment-based conformance checking techniques (e.g. [2,4])
require process analysts to manually define a cost function based on their back-
ground knowledge and beliefs. The definition of such a cost function is fully
based on human judgment and, thus, prone to imperfections. These imperfec-
tions ultimately lead to alignments that are optimal, according to the provided
cost function, but that do not provide an explanation of what really happened.

In this paper, we propose an alternative way to define a cost function, where
the human judgment is put aside and only objective factors are considered. The
cost function is automatically constructed by looking at the logging data and,
more specifically, at the past process executions that are compliant with the
process model. The intuition behind is that one should look at the past history
of process executions and learn from it what are the probable explanations of
nonconformity. In particular, probable explanations of nonconformity for a cer-
tain process execution can be obtained by analyzing the behavior observed for
such a process execution in each and every state and the behavior observed for
other confirming traces when they were in the same state. Our approach gives
a potentially different cost for each move on model and log (depending on the
current state), leading to the definition of a more sensitive cost function.
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The approach has been fully implemented as a software plug-in for the open-
source process-mining framework ProM. To assess the practical relevance of our
approach, we performed an evaluation using both synthetic and real event logs
and process models. In particular, we tested it on a real-life case study about the
management of road-traffic fines by an Italian town. The results show that our
approach significantly improves the accuracy in determining probable explana-
tions of nonconformity compared to existing techniques. Moreover, an analysis
of the computation time shows the practical feasibility of our approach.

The paper is organized as follows. Section 2 introduces preliminary concepts.
Section 3 provides the motivations for this work, discussing how the construction
of optimal alignments should be kept independent of the reason why such align-
ments are constructed. Section 4 presents our approach for constructing optimal
alignments. Section 5 presents experiment results, which are discussed in Sect. 6.
Finally, Sect. 7 discusses related work and concludes the paper providing direc-
tions for future work.

2 Preliminaries

This section introduces the notation and preliminaries for our work.

2.1 Labeled Petri Nets, Event Logs, and Alignments

Process models describe how processes should be carried out. Many languages
exist to model processes. Here, we use a simple formalism, which suffices for the
purpose of this work:

Definition 1 (Labeled Petri Net). A Labeled Petri net is a tuple (P, T, F,A,
�,mi,mf ) where

– P is a set of places;
– T is a set of transitions;
– F ⊆ (P ×T )∪ (T ×P ) is the flow relation between places and transitions (and

between transitions and places);
– A is the set of labels for transitions;
– � : T → A is a function that associates a label with every transition in T ;
– mi is the initial marking;
– mf is the final marking.

Hereafter, the simpler term Petri net is used to refer to Labeled Petri nets. The
label of a transition identifies the activity represented by such a transition. Mul-
tiple transitions can be associated with the same activity label; this means that
the same activity can be represented by multiple transitions. This is typically
done to make the model simpler. Some transitions can be invisible. Invisible
transitions do not correspond to actual activities but are necessary for routing
purposes and, as such, their execution is never recorded in event logs. Given
a Petri net N , InvN ⊆ A indicates the set of labels associated with invisible
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Fig. 1. A process model for managing road traffic fines. The green boxes represent
the transitions that are associated with process activities while the black boxes repre-
sent invisible transitions. The text below the transitions represents the label, which is
shortened with a single letter as indicated inside the transitions (Color figure online).

transitions. As a matter of fact, invisible transitions are also associated with
labels, though these labels do not represent activities. We assume that a label
associated with a visible transition cannot be also associated with invisible ones
and vice versa.

The state of a Petri net is represented by a marking, i.e. a multiset of tokens
on the places of the net. A Petri net has an initial marking mi and a final
marking mf . When a transition is executed (i.e., fired), a token is taken from each
of its input places and a token is added to each of its output places. A sequence of
transitions σM leading from the initial to the final marking is a complete process
trace. Given a Petri net N , ΓN indicates the set of all complete process traces
allowed by N .

Example 1. Figure 1 shows a normative process, expressed in terms of Petri net,
which encodes the Italian laws and procedures to manage road traffic fines [19].
A process execution starts by recording a traffic fine in the system and sending it
to Italian residents. Traffic fines might be paid before or after they are sent out by
police or received by the offenders. Offenders are allowed to pay the due amount
in partial payments. If the total amount of the fine is not paid in 180 days, a
penalty is added. Offenders may appeal against a fine to the prefecture and/or
judge. If an appeal is accepted, the fine management is closed. On the other
hand, if the fine is not paid by the offender (and no appeal has been accepted),
the process eventually terminates by handing over the case for credit collection.

Given a Petri net N = (P, T, F,A, �,mi,mf ), a log trace σL ∈ A∗ is a
sequence of events where each event records the firing of a transition. In partic-
ular, each event records the label of the transition that has fired. An event log
L ∈ B(A) is a multiset of log traces, where B(X) is used to represent the set of
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γ1 =
c s n t � � o �
c s n t l r o i3

γ2 =
c s n t o � �
c s n t � l i6

γ3 =
c s n t o �
c s n � � d

Fig. 2. Alignments of σ1 = 〈c, s, n, t, o〉 and the process model in Fig. 1

all multisets over X. Here we assume that no events exist for activities not in A;
in practice, this can happen: in such cases, such events are filtered out before
the event log is taken into consideration.

Not all log traces can be reproduced by a Petri net, i.e. not all log traces
perfectly fit the process description. If a log trace perfectly fits the net, each
“move” in the log trace, i.e. an event observed in the trace, can be mimicked by
a “move” in the model, i.e. a transition fired in the net. After all events in the log
trace are mimicked, the net reaches its final marking. In cases where deviations
occur, some moves in the log trace cannot be mimicked by the net or vice versa.
We explicitly denote “no move” by �.

Definition 2 (Legal move). Let N = (P, T, F,A, �,mi,mf ) be a Petri net. Let
SL = (A \ InvN ) ∪ {�} and SM = A ∪ {�}. A legal move is a pair (mL,mM ) ∈
(SL × SM ) \ (�,�) such that

– (mL,mM ) is a synchronous move if mL ∈ SL, mM ∈ SM and mL = mM ,
– (mL,mM ) is a move on log if mL ∈ SL and mM =�,
– (mL,mM ) is a move on model if mL =� and mM ∈ SM .

ΣN denotes the set of legal moves for a Petri net N .

In the remainder, we indicate that a sequence σ′ is a prefix of a sequence σ′′,
denoted with σ′ ∈ (σ′′), if there exists a sequence σ′′′ such that σ′′ = σ′ ⊕ σ′′′,
where ⊕ denotes the concatenation operator.

Definition 3 (Alignment). Let ΣN be the set of legal moves for a Petri net
N = (P, T, F,A, �,mi,mf ). An alignment of a log trace σL and N is a sequence
γ ∈ Σ∗

N such that, ignoring all occurrences of �, the projection on the first
element yields σL and the projection on the second element yields a sequence
〈a1, . . . , an〉 such that there exists a sequence σ′

P = 〈t1, . . . , tn〉 ∈ (σP ) for some
σP ∈ ΓN where, for each 1 ≤ i ≤ n, �(ti) = ai. If σ′

P ∈ ΓN , γ is called a
complete alignment of σL and N .

Figure 2 shows three possible complete alignments of a log trace σ1 = 〈c, s, n, t, o〉
and the net in Fig. 1. The top row of an alignment shows the sequence of events
in the log trace, and the bottom row shows the sequence of activities in the net
(both ignoring �). Hereafter, we denote |L the projection of an alignment over
the log trace and |P the projection over the net.

As shown in Fig. 2, there can be multiple possible alignments for a given log
trace and process model. The quality of an alignment is measured based on a
provided cost function K : Σ∗

N → R
+
0 , which assigns a cost to each alignment
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γ ∈ Σ∗
N . Typically, the cost of an alignment is defined as the sum of the costs

of the individual moves in the alignment. An optimal alignment of a log trace
and a process trace is one of the alignments with the lowest cost according to
the provided cost function.

As an example, consider a cost function that assigns to any alignment a cost
equal to the number of moves on log and model for visible transitions. If moves
on model for invisible transitions ik are ignored, γ1 has two moves on model, γ2
has one move on model and one move on log, and γ3 has one move on model
and two moves on log. Thus, according to the cost function, γ1 and γ2 are two
optimal alignments of σ1 and the process model in Fig. 1.

2.2 State Representation

At any point in time, a sequence of execution of activities leads to some state, and
this state depends on which activities have been performed and in which order.
Accordingly, any process execution can be mapped onto a state. As discussed
in [3], a state representation function takes care of this mapping:

Definition 4 (State Representation). Let A be a set of activity labels and
R the set of possible state representations of the sequences in A∗. A state rep-
resentation function abst : A∗ → R produces a state representation abst(σ) for
each process trace σ ∈ Γ.

Several state-representation functions can be defined. Each function leads to
a different abstraction, meaning that multiple different traces can be mapped
onto the same state, thus abstracting out certain trace’s characteristics. Next,
we provide some examples of state-representation functions:

Sequence abstraction. It is a trivial mapping where the abstraction preserves the
order of activities. Each trace is mapped onto a state that is the trace itself,
i.e. for each σ ∈ A∗, abst(σ) = σ.

Multi-set abstraction. The abstraction preserves the number of times each activ-
ity is executed. This means that, for each σ ∈ A∗, abst(σ) = M ∈ B(A) such
that, for each a ∈ A, M contains all instances of a in σ.

Set abstraction. The abstraction preserves whether each activity has been exe-
cuted or not. This means that, for each σ ∈ A∗, abst(σ) = M ⊆ A such that,
for each a ∈ A, M contains a if it ever occurs in σ.

Example 2. Table 1 shows the state representation of some process traces of
the net in Fig. 1 using different abstractions. For instance, trace 〈c, p, p, s, n〉
can be represented as the trace itself using the sequence abstraction, as state
{c(1), p(2), s(1), n(1)} using the multi-set abstraction (in parenthesis the number
of occurrences of activities in the trace), and as {c, p, s, n} using the set abstrac-
tion. Traces 〈c, p, s, n〉 and 〈c, p, p, s, n, p〉 are also mapped to state {c, p, s, n}
using the set abstraction.
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Table 1. Examples of state representation using different abstractions

Sequence # Multi-set # Set #

〈c, p〉 25 {c(1), p(1)} 25 {c, p} 25

〈c, s, n, p〉 15 {c(1), p(1), s(1), n(1)} 15

〈c, p, p, s, n〉 5 {c(1), p(2), s(1), n(1)} 5 {c, p, s, n} 45

〈c, p, p, s, n, p〉 25 {c(1), p(3), s(1), n(1)} 25

〈c, s, n, a, d〉 10 {c(1), s(1), n(1), a(1), d(1)} 10 {c, s, n, a, d} 10

〈c, s, n, p, a, d〉 10 {c(1), s(1), n(1), p(1), a(1), d(1)} 10 {c, s, n, p, a, d} 10

〈c, s, n, p, t, l〉 25 {c(1), s(1), n(1), p(1), t(1), l(1)} 30

{c, s, n, p, t, l} 60
〈c, s, p, n, t, l〉 5

〈c, p, s, n, p, t, l〉 5 {c(1), s(1), n(1), p(2), t(1), l(1)} 30〈c, s, p, n, p, t, l〉 25

〈c, s, n, p, t, l, r, o〉 50 {c(1), s(1), n(1), p(1), t(1), l(1), r(1), o(1)} 50 {c, s, n, p, t, l, r, o} 50

3 Constructing Optimal Alignments Is Purpose
Independent

As discussed in Sect. 2.1, the quality of an alignment is determined with respect
to a cost function. An optimal alignment provides the simplest and most par-
simonious explanation with respect to the used cost function. Therefore, the
choice of the cost function has a significant impact on the computation of opti-
mal alignments.

Typically, process analysts define a cost function based on the context of use
and the purpose of the analysis. For instance, Adriansyah et al. [7] study various
ratios between the cost of moves on model and moves on log, and analyze their
influence on the fitness of a trace with respect to a process model. The work
in [5,6] uses alignments to identify nonconforming user behavior and quantify
it with respect to a security perspective. In particular, the cost of deviations is
determined in terms of which activity was executed, which user executed the
activity along with its role, and which data have been accessed.

Existing alignment-based techniques make the implicit assumption that the
obtained optimal alignments represent the most plausible explanations of what
actually happened. However, they do not account for the fact that the use of
different cost functions can yield different optimal alignments, thus resulting in
inconsistent diagnostic information. The following example provides a concrete
illustration of this issue.

Example 3. Consider the fine management process presented in Fig. 1 and the log
trace σ2 = 〈c, s, a, d〉. Suppose an analyst has to analyze σ2 with respect to both
fitness, in order to verify to what extent log traces comply with the behavior
prescribed by the process model, and the information provided to citizens, in
order to minimize the number of complaints and legal disputes. To this end,
the analyst defines two cost functions, presented in Fig. 3a. Cost function c1
defines the cost of deviations in terms of fitness. In particular, we use the cost
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Moves Cost Functions
c1 c2

(p,�) 5 1
(�, p) 1 1
(a,�) 5 1
(�, a) 1 1
(s,�) 5 1
(�, s) 1 5
(n,�) 5 1
(�, n) 1 5

(a) Cost Functions

c s � a d
c s n a d

(b) Optimal alignment using c1

c s a d
c s � �

(c) Optimal alignment using c2

Fig. 3. Inconsistent explanations of nonconformity due to the use of different cost
functions.

function presented in [7] which defines a ratio between the cost of moves on
log and the cost of moves on model equal to 5:1 for all activities. On the other
hand, cost function c2 defines the cost of deviations in terms of user satisfaction.
Here, deviations concerning payment have low cost. On the other hand, the
missed delivery of the fine or notification has a high cost. The optimal alignments
obtained using cost functions c1 and c2 are given in Fig. 3b and c respectively.

Based on the example above, an interesting question comes up: which align-
ments should the analyst take as a plausible explanation of what happened? The
alignments in Fig. 3b and c are supposed to be both plausible explanations, but
with respect to different criteria. Our claim is that, although alignments provide
a robust approach to conformance checking, it is necessary to rethink how cost
functions are defined and, in general, how alignment-based techniques should be
applied in practice.

This paper starts from the belief that the construction of an optimal align-
ment is independent from the purpose of the analysis. An optimal alignment
should provide probable explanations of nonconformity, independently of why
we are interested to know that. Therefore, first, an alignment providing prob-
able explanations of what actually happened has to be constructed (hereafter
we refer to such an alignment as probable alignment). Later, this alignment is
analyzed according to the purpose of the analysis.

This separation of concerns can be achieved by employing two cost functions:
a first cost function to find probable alignments and a second cost function to
quantify the severity of the deviations of the computed alignments, which is
customized according to the purpose of use. In the remainder of this paper, we
discuss how to construct a cost function which provides probable explanations of
what actually happened. In particular, this paper is concerned with construct-
ing probable alignments; the discussion on the second purpose-dependent cost
function is out of the scope of this paper.
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4 History-Based Construction of Probable Alignments

This section presents our approach to construct alignments that give probable
explanations of deviations based on objective facts, i.e. the historical logging
data, rather than on subjective cost functions manually defined by process ana-
lysts. To construct an optimal alignment between a process model and an event
log, we use the A-star algorithm [13], analogously to what proposed in [4].

Section 4.1 discusses how the cost of an alignment is computed, and Sect. 4.2
briefly reports on the use of A-star to compute probable alignments.

4.1 Definition of Cost Functions

The computation of probable alignments relies on a cost function that accounts
for the probability of an activity to be executed in a certain state. The definition
of such a cost function requires an analysis of the past history as recorded in the
event log to compute the probability of an activity to immediately occur or to
never eventually occur when the process execution is in a certain state.

The A-star algorithm [13] finds an optimal path from a source node to target
node where optimal is defined in terms of minimal cost. In our context, moves
that are associated to activities whose execution is more probable in a given state
should have a low cost, whereas moves that are associated to activities whose
execution is unlikely in a given state should have a high cost. Therefore, prob-
abilities cannot be straightforwardly used as costs of moves. For this purpose,
we need to introduce a class of functions F ⊆ [0, 1] → R

+ to map probabilities
to costs of moves. Based on the restriction imposed by the A-star algorithm on
the choice of the cost function, a function f ∈ F if and only if f(0) = ∞ and f
is monotonously decreasing between 0 and 1 (with f(1) > 0). Hereafter, these
functions are called cost profile. Intuitively, a cost profile function is used to
compute the cost of a legal move based on the probability that a given activity
occurs when the process execution is in a given state. Below, we provide some
examples of cost profile function:

f(p) = 1
p f(p) = 1√

p f(p) = 1 + log
(

1
p

)
(1)

The choice of the cost profile function has a significant impact on the compu-
tation of alignments (see Sect. 6). For instance, the first cost profile in Eq. 1
favorites alignments with more frequent traces, whereas the last cost profile
is more sensitive to the number of deviations in the computed alignments. In
Sect. 5, we evaluate these sample cost profiles with different combinations of
event logs and process models. The purpose is to verify whether a cost profile
universally works better than the others.

Similarly to what proposed in [4], the cost of an alignment move depends
on the move type and the activity involved in the move. However, differently
from [4], it also depends on the position in which the move is inserted:
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Definition 5 (Cost of an alignment move). Let ΣN be the set of legal moves
for a Petri net N . Let γ ∈ Σ∗

N be a sequence of legal moves for N and f ∈ F
a cost profile. The cost of appending a legal move (mL,mM ) ∈ ΣN to γ with
state-representation function abst is:

κabst((mL,mM ), γ) =⎧
⎪⎪⎨
⎪⎪⎩

0 mL = mM

0 mL =� and mM ∈ InvN

f
(
Pabst(mM occurs after γ |P )

)
mL =� and mM �∈ InvN

f
(
Pabst(mL never eventually occurs after γ |P )

)
mM =�

(2)

Readers can observe that the cost of a move on log (mL,�) is not simply based
on the probability of not executing activity mL immediately after γ |P ; rather,
it is based on the probability of never having activity mM at the any moment
in the future for that execution. This is motivated by the fact that a move
on log (mL,�) indicates that mL is not expected to ever occur in the future.
Conversely, if it was expected, a number of moves in model would be introduced
until the process model, modeled as a Petri net, reaches a marking that allows
mL to occur (and, thus, a move in both can be appended).

For a reliable computation of probabilities, we only use the subset of traces
Lfit of the original event log L that fit the process model. We believe that,
in many process analyses, it is not unrealistic to assume that several traces are
compliant. For instance, this is the case for the real-life process about road-traffic
fine management discussed in Sect. 5.2.

One may argue that some paths in the process model can be more prone
to compliance errors compared to other paths. Thus, eliminating all non-fitting
traces from the log would lead to underestimate the probability of executing
activities in such paths. We argue that the reasons for nonconformity should be
carefully investigated. For instance, frequent cases of nonconformity on a certain
path may indicate that the process model does not reflect the reality [15,24].
Ideally, an analyst should revise the process model and then use the new model
to identify the set of fitting traces. This problem, however, is orthogonal to the
current work and can be addressed using techniques for process repairing [14]. In
this work, we assume that the process model is complete and accurately defines
the business process. On the other hand, if the process model correctly reflects
the reality, it is not obvious that non-fitting traces should be used to compute the
cost function. Indeed, the resulting cost function would be biased by behavior
that should not be permitted. Moreover, using error correction methods may lead
to the problem of overfitting the training set [16]. Based on these considerations,
we only use fitting traces as historical logging data.

The following two definitions describe how to compute the probabilities
required by Definition 5.

Definition 6 (Probability that an activity occurs). Let L be an event
log and Lfit ⊆ L the subset of traces that comply with a given process model
represented by a Petri net N = (P, T, F,A, �,mi,mf ). The probability that an
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activity a ∈ A occurs after executing σ with state-representation function abst is
the ratio between number of traces in Lfit in which activity a is executed after
reaching state abst(σ) and the total number of traces in Lfit that reach state
abst(σ):

Pabst(a occurs after σ) = |{σ′∈Lfit : ∃σ′′∈(σ′). abst(σ′′)=abst(σ)∧σ′′⊕〈a〉∈(σ′)}|
|{σ′∈Lfit : ∃σ′′∈(σ′). abst(σ′′)=abst(σ)}| (3)

Definition 7 (Probability that an activity never eventually occurs).
Let L be an event log and Lfit ⊆ L the subset of traces that comply with a
given process model represented by a Petri net N = (P, T, F,A, �,mi,mf ). The
probability that an activity a ∈ A will never eventually occur in a process execu-
tion after executing σ ∈ A∗ with state-representation function abst is the ratio
between the number of traces in Lfit in which a is never eventually executed
after reaching state abst(σ) and the total number of traces in Lfit that reach
state abst(σ):

Pabst(a never eventually occurs after σ) =
|{σ′∈Lfit : ∃σ′′∈(σ′). abst(σ′′)=abst(σ)∧∀σ′′′ σ′′⊕σ′′′⊕〈a′〉∈(σ′)∧a′ �=a}|

|{σ′∈Lfit : ∃σ′′∈(σ′). abst(σ′′)=abst(σ)}|
(4)

Intuitively, Pabst(a occurs after σ) and Pabst(a never eventually occurs after σ)
are conditional probabilities. Given two events A and B, the conditional proba-
bility of A given B is defined as the quotient of the probability of the conjunction
of events A and B, and the probability of B:

P (A|B) =
P (A ∩ B)

P (B)
(5)

It is easy to verify that Eq. 3 coincides with Eq. 5 where A represents that activity
a is executed, B that trace σ is executed, and A ∩ B that σ ⊕ 〈a〉 is executed.
Similar observations hold for Eq. 4.

The cost of an alignment is the sum of the cost of all moves in the alignment,
which are computed as described in Definition 5:

Definition 8 (Cost of an alignment). Let ΣN be the set of legal moves for
a Petri net N . The cost of alignment γ ∈ Σ∗

N with state-representation function
abst is computed as follows:

Kabst(γ ⊕ (mL,mM )) =
{

κabst((mL,mM ), 〈〉) γ = 〈〉
κabst((mL,mM ), γ) + Kabst(γ) otherwise (6)

Hereafter, the term probable alignment is used to denote any of the optimal
alignments (i.e., alignments with the lowest cost) according to the cost function
given in Definition 8.

4.2 The Use of the A-Star Algorithm to Construct Alignments

The A-star algorithm [13] aims to find a path in a graph V from a given source
node v0 to any node v ∈ V in a target set. Every node v of graph V is associated
with a cost determined by an evaluation function f(v) = g(v) + h(v), where
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– g : V → R
+
0 is a function that returns the cost of the smallest path from v0

to v;
– h : V → R

+
0 is a heuristic function that estimates the cost of the path from v

to its preferred target node.

Function h is said to be admissible if it returns a value that underestimates
the distance of a path from a node v′ to its preferred target node v′′, i.e. g(v′)+
h(v′) ≤ g(v′′). If h is admissible, A-star finds a path that is guaranteed to have
the overall lowest cost.

The A-star algorithm keeps a priority queue of nodes to be visited: higher
priority is given to nodes with lower costs. The algorithm works iteratively: at
each step, the node v with lowest cost is taken from the priority queue. If v
belongs to the target set, the algorithm ends returning node v. Otherwise, v is
expanded: every successor v′ is added to the priority queue with a cost f(v′).

We employ A-star to find any of the optimal alignments between a log trace
σL ∈ L and a Petri net N . In order to be able to apply A-star, an opportune
search space needs to be defined. Every node γ of the search space V is associated
to a different alignment that is a prefix of some complete alignment of σL and N .
Since a different alignment is also associated to every search-space node and vice
versa, we use the alignment to refer to the associated state. The source node is
an empty alignment γ0 = 〈〉 and the set of target nodes includes every complete
alignment of σL and N .

Let us denote the length of a sequence σ with ‖σ‖. Given a node/alignment
γ ∈ V , the search-space successors of γ include all alignments γ′ ∈ V obtained
from γ by concatenating exactly one move. Given an alignment γ ∈ V , the cost
of the path from the initial node to node γ ∈ V is:

g(γ) = ‖γ |L ‖ + K(γ).

where K(γ) is the cost of alignment γ according to Definition 8. It is easy
to check that, given two complete alignments γ′

C and γ′′
C , K(γ′

C) < K(γ′′
C) iff

g(γ′
C) < g(γ′′

C) and K(γ′
C) = K(γ′′

C) iff g(γ′
C) = g(γ′′

C). Therefore, an optimal
solution returned by A-star coincides with an optimal alignment.

The time complexity of A-star depends on the heuristic used to find an opti-
mal solution. In this work, we consider term ‖σL‖ in h to define an admissible
heuristic; this term does not affect the optimality of solutions. Given an align-
ment γ ∈ V , we employ the heuristics:

h(γ) = ‖σL‖ − ‖γ |L ‖.

For alignment γ, the number of steps to add in order to reach a complete align-
ment is lower bounded by the number of execution steps of trace σL that have
not been included yet in the alignment, i.e. ‖σL‖ − ‖γ |L ‖. Since the additional
cost to traverse a single node is at least 1, the cost to reach a target node is at
least h(γ), corresponding to the case where the part of the log trace that still
needs to be included in the alignment perfectly fits.
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γ′ =
c s n

c s n︸ ︷︷ ︸
γ

⊕

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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)
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)
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)
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)
= ∞

. . .

Fig. 4. Construction of the alignment of log trace σ3 = 〈c, s, n, l, o〉 and the net in
Fig. 1. Cost of moves are computed with sequence state-representation function, cost
profile f(p) = 1 + log (1/p), and Lfit in Table 1.

Example 4. Consider a log trace σ3 = 〈c, s, n, l, o〉 and the net N in Fig. 1.
An analyst wants to determine probable explanations of nonconformity by con-
structing probable alignments of σ3 and N , based on historical logging data.
In particular, Lfit consists of the traces in Table 1 (the first column shows the
traces, and the second the number of occurrences of a trace in the history).
Assume that the A-star algorithm has constructed an optimal alignment γ of
trace 〈c, s, n〉 ∈ (σ3) and N (left part of Fig. 4). The next event in the log trace
(i.e., l) cannot be replayed in the net. Therefore, the algorithm should determine
which move is the most likely to have occurred. Different moves are possible; for
instance, a move on log for l, a move on model for p, a move on model for t,
etc. The algorithm computes the cost for these moves using Eq. 5 (right part of
Fig. 4). As move on model (�, p) is the move with the least cost (and no other
alignments have lower cost), alignment γ′ = γ ⊕ (�, p) is selected for the next
iteration. It is worth noting that activity d never occurs after 〈c, s, n〉 in Lfit;
consequently, the cost of move (�, d) is equal to ∞.

5 Implementation and Experiments

We have implemented our approach for history-based construction of alignments
as a plug-in of the nightly-build version of the ProM framework (http://www.
promtools.org/prom6/nightly/).1 The plug-in takes as input a process model and
two event logs. It computes probable alignments for each trace in the first event
log with respect to the process model based on the frequency of the traces in the
second event log (historical logging data). The output of the plug-in is a set of
alignments and can be used by other plug-ins for further analysis. A screenshot
of the plugin is shown in Fig. 5. In particular, the figure shows the result of
aligning a few sample event traces with the net in Fig. 1.

To assess the practical feasibility and accuracy of the approach, we performed
a number of experiments using both synthetic and real-life logs. In the experi-
ments with synthetic logs, we assumed that the execution of an activity depends
on the activities that were performed in the past. In the experiments with real-
life logs, we tested if this assumption holds in real applications. Accordingly, the
1 The plug-in is available in package History-Based Conformance Checking.

http://www.promtools.org/prom6/nightly/
http://www.promtools.org/prom6/nightly/
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Fig. 5. Screenshot of the implemented approach in ProM, showing the probable align-
ment constructed between log traces and the process model in Fig. 1.

real-life logs were used as historical logging data. To evaluate the approach, we
artificially added noise to the traces used for the experiments. This was nec-
essary to assess the ability of the approach to reconstruct the original traces.
The experiments were performed using a machine with 3.4 GHz Intel Core i7
processor and 16 GB of memory.

5.1 Synthetic Data

For the experiments with synthetic data, we used the process for handling credit
requests in [19]. Based on this model, we generated 10000 traces consisting of
69504 events using the CPN Tools (http://cpntools.org). To assess the accuracy
of the approach, we manipulated 20 % of these traces by introducing different
percentages of noise. In particular, given a trace, we added and removed a num-
ber of activities to/from the trace equal to the same percentage of the trace
length. The other traces were used as historical logging data. We computed
probable alignments of the manipulated traces and process model, and evalu-
ated the ability of the approach to reconstruct the original traces. To this end,
we measured the percentage of correct alignments (i.e., the cases where a pro-
jection of an alignment over the process coincides with the original trace) and
compute the overall Levenshtein distance [17] between the original traces and
the projection of the computed alignments over the process. The Levenshtein
distance is a string metric that measures the distance between two sequences,
i.e. the minimal number of changes required to transform one sequence into the

http://cpntools.org
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Table 2. Results of experiments on synthetic data. CA indicates the percentage of
correct alignments, and LD indicates the overall Levenshtein distance between the
original traces and the projection of the alignments over the process. For comparison
with existing approaches, the standard cost function as defined in [4] was used. The
best results for each amount of noise are highlighted in bold.

other. In our setting, it provides an indication of how much the projection of the
computed alignments over the process is close to the original traces.

We tested our approach with different amounts of noise (i.e., 10 %, 20 %, 30 %
and 40 % of the trace length), with different cost profiles (i.e., 1/p, 1/√

p, and 1 +
log(1/p)), and with different state-representation functions (i.e., sequence, multi-
set, and set). Moreover, we compared our approach with existing alignment-
based conformance checking techniques. In particular, we used the standard
cost function introduced in [4]. We repeated each experiment five times. Table 2
shows the results where every entry reports the average over the five runs.

The results show that cost profiles 1/√
p and 1 + log(1/p) in combination with

sequence and multi-set abstractions are able to better identify what really hap-
pened, i.e. they align the manipulated traces with the corresponding original
traces in more cases (CA). In all cases, cost profile 1 + log(1/p) with sequence
state-representation function provides more accurate diagnostics (LD): even if
log traces are not aligned to the original traces, the projection over the process
of alignments constructed using this cost profile and abstraction are closer to the
original traces. Compared to the cost function used in [4], our approach com-
puted the correct alignment for 4.4 % more traces when cost profile 1 + log(1/p)
and sequence state-representation function are used. In particular, our approach
correctly reconstructed the original trace for 18.4 % of the traces that were not
correctly reconstructed using the cost function used in [4]. Moreover, an analysis
of LD shows that, on average, the traces reconstructed using our approach have
0.37 deviations (compared to the original traces), while the traces reconstructed
using the cost function used in [4] have 0.45 deviation. This corresponds to an
improvement of LD of about 15.2 %.

5.2 Real-Life Logs

To evaluate the applicability of our approach to real-life scenarios, we used an
event log obtained from a fine management system of the Italian police [19].2

The process model in form of Petri net is presented in Fig. 1. We extracted a log
2 The event log is also available for download: http://dx.doi.org/10.4121/uuid:

270fd440-1057-4fb9-89a9-b699b47990f5.

http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
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Table 3. Results of experiments on real-life data. Notation analogous to Table 2.

consisting of 142408 traces and 527549 events, where all traces are conforming to
the net. To these traces, we applied the same methodology used for the exper-
iments reported in Sect. 5.1. We repeated the experiments five times. Table 3
shows the results where every entry reports the average over the five runs.

The results confirm that cost profiles 1/√
p and 1+log(1/p) in combination with

sequence and multi-set state-representation functions provide the more accurate
diagnostics (both CA and LD). Moreover, the results show that our approach
(regardless of the used cost profile and state-representation function) performs
better than the cost function in [4] on real-life logs. In particular, using sequence
state-representation function and cost profile 1 + log(1/p), our approaches com-
puted the correct alignment for 1.8 % more traces than what the cost function in
[4] did. Although this may not be seen as a significant improvement, it is worth
noting that the cost function in [4] already reconstructs most of the traces (98 %
and 97 % of the traces for 10 % and 20 % noise respectively). Nonetheless, our
approach correctly reconstructed the original trace for 19.3 % of the traces that
were not correctly reconstructed using the cost function used in [4]. Moreover,
our approach improves LD by 21.1 % compared to the cost function used in [4].
Such an improvement shows that when the original trace is not reconstructed
correctly, our approach returns an explanation that is significantly closer to what
actually happened.

5.3 Complexity Analysis

In the previous sections, we have analyzed the accuracy of our approach for
the computation of probable alignments. In this section, we aim to perform a
complexity analysis. In the worst case, the problem is clearly exponential in
the length of the log traces and the number of process activities. However, in
this paper, we advocate the use of the A-star algorithm since it can drastically
reduce the execution time in the average case. To illustrate this, we report on
the computation time for the loan process and the fine-management process for
different amounts of noise.

Figure 6 shows the distribution of the computation time for the traces used in
the experiments. In particular, Fig. 6a shows that, in the experiments of Sect. 5.1
(loan process), the construction of alignments required less than 1 ms for most
of the traces. On the other hand, the construction of probable alignments for
the fine management process required less than 0.3 ms for most of the traces
(Fig. 6b). Table 4 reports the mean and standard deviation of computation time
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(a) Loan process

(b) Fine management process

Fig. 6. Distribution of the computation time required to construct probable alignments
for different amounts of noise. The computation time is grouped into 1 ms intervals in
Fig. 6a and 0.3 ms intervals in Fig. 6b. The y-axis values are shown in a logarithmic
scale.

Table 4. Mean and standard deviation of computation time required to construct
probable alignments for different amounts of noise.

(a) Loan process

Noise Mean Standard Deviation

10% 0.255 0.635

20% 0.421 0.935

30% 0.999 3.280

40% 3.014 14.146

(b) Fine management process

Noise Mean Standard Deviation

10% 0.102 0.042

20% 0.111

30% 0.110

40% 0.139

0.047

0.091

0.232

required to construct probable alignments for different levels of noise. The results
show that, in both experiments, the time needed to construct probable align-
ments increases with increasing amounts of noise.

Based on the results presented in this section, we can conclude that, for both
synthetic and real-life processes, our approach can construct probable alignments
for a trace in the order of magnitude of milliseconds, which shows its practical
feasibility.
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Fig. 7. Process model including two paths formed by a (sub)sequence of 50 activities
and 1 activity respectively. The first path is executed in 99 % of the cases; the second
in 1 % of the cases. γ1 and γ2 are two possible alignments of trace σ = 〈x, y〉 and the
process model.

6 Discussion

The A-star algorithm requires a cost function to penalize nonconformity. In our
experiments, we have considered a number of cost profiles to compute the cost
of moves on log/model based on the probability of a given activity to occur in
historical logging data. The selection of the cost profile has a significant impact
on the results as they penalize deviations differently. For instance, cost profile
1/p penalizes less probable moves much more than 1 + log(1/p). To illustrate
this, consider a trace σ = 〈x, y〉 and the process model in Fig. 7a. Two possible
alignments, namely γ1 and γ2, are conceivable (Fig. 7b). γ1 contains a large
number of deviations compared to γ2 (50 moves on log vs. 1 move on log). The
use of cost profile 1/p yields γ1 as the optimal alignment, while the use of cost
profile 1 + log(1/p) yields γ2 as the optimal alignment. Tables 2 and 3 show that
cost profile 1 + log(1/p) usually provides more accurate results. Cost profile 1/p

penalizes less probable moves excessively, and thus tends to construct alignments
with more frequent traces in the historical logging data even if those alignments
contain a significantly larger number of deviations. Our experiments suggest
that the construction of probable alignments requires a trade-off between the
frequency of the traces in historical logging data and the number of deviations
in alignments, which is better captured by cost profile 1 + log(1/p).

Different state-representation functions can be used to characterize the
state of a process execution. In this work, we have considered three state-
representation functions: sequence, multi-set, and set. The experiments show that
in general the sequence abstraction produces more accurate results compared to
the other abstractions. The set abstraction provides the least accurate results,
especially when applied to the process for handling credit requests (Table 2).
The main reason is that this abstraction is not able to accurately characterize
the state of the process, especially in presence of loops: after each loop iteration
the process execution yields the same state. Therefore, the cost function con-
structed using the set abstraction is not able to account for the fact that the
probability of executing certain activities can increase after every loop iteration,
thus leading to alignments in which loops are not captured properly.

The experiments show that our technique tends to build alignments that pro-
vide better explanations of deviations. It is easy to see that, when nonconformity
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is injected in fitting traces and alignments are subsequently built, the resulting
alignments yield perfect explanations if the respective process projections coin-
cide with the respective fitting traces before the injections of nonconformity.
Tables 2 and 3 show that, basing the construction of the cost function on the
analysis of historical logging data, our technique tends to build alignments whose
process projection is closer to the original fitting traces and, hence, the expla-
nations of deviations are closer to the correct ones.

7 Related Work and Conclusions

In process mining, a number of approaches have been proposed to check confor-
mance of process models and the actual behavior recorded in event logs. Some
approaches [10,11,18,21,22] check conformance by verifying whether traces sat-
isfies rules encoding properties expected from the process. Petković et al. [23]
verify whether a log trace is a valid trace of the transition system generated by
the process model. Rozinat et al. [24] propose a token-based approach for check-
ing conformance of an event log and a Petri net. The number of missing and
added tokens after replaying traces is used to measure the conformance between
the log and the net. Banescu et al. [9] extend the work in [24] to identify and
classify deviations by analyzing the configuration of missing and added tokens
using deviation patterns. The genetic mining algorithm in [20] uses a similar
replay technique to measure the quality of process models with respect to given
executions. However, these approaches only give a Boolean answers diagnosing
whether traces conform to a process model or not. When they are able to provide
diagnostic information, such information is often imprecise. For instance, token-
based approaches may allow behavior that is not allowed by the model due to
the used heuristics and thus may provide incorrect diagnostic information.

Recently, the construction of alignments has been proposed as a robust app-
roach for checking the conformance of event logs with a given process model [4].
Alignments have proven to be powerful artifacts to perform conformance check-
ing. By constructing alignments, analysts can be provided with richer and more
accurate diagnostic information. In fact, alignments are also used as the main
enablers for a number of techniques for process analytics, auditing, and process
improvement, such as for performance analysis [2], privacy compliance [5,6] and
process-model repairing [14].

To our knowledge, the main problem of existing techniques for constructing
optimal alignments is related to the fact that process analysts need to provide
a function which associates a cost to every possible deviation. These cost func-
tions are only based on human judgment and, hence, prone to imperfections.
If alignment-based techniques are fed with imprecise cost functions, they cre-
ate imperfect alignments, which ultimately leads to unlikely or, even, incorrect
diagnostics.

In this paper, we have proposed a different approach where the cost function
is automatically computed based on real facts: historical logging data recorded in
event logs. In particular, the cost function is computed based on the probability
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of activities to be executed or not in a certain state (representing which activities
have been executed and their order). Experiments have shown that, indeed, our
approach can provide more accurate explanations of nonconformity of process
executions, if compared with existing techniques.

We acknowledge that the evaluation is far from being completed. We aim
to perform more extensive experiments to verify whether certain cost-profile
functions provide more probable alignments than others or, at least, to give
some guidelines to determine in which settings a given cost-profile function is
preferable.

In this paper, we only considered the control flow, i.e. the name of the activ-
ities and their ordering, to construct the cost function and, hence, to compute
probable alignments. However, the choice in a process execution is often driven
by other aspects. For instance, when instances are running late, the execution of
certain fast activities are more probable; or, if a certain process attribute takes
on a given value, certain activities are more likely to be executed. We expect that
our approach can be significantly improved if other business process perspectives
(e.g., data, time and resources) are taken into account.
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