Skip to main content

Consistent Re-Calibration in Yield Curve Modeling: An Example

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 622))

Abstract

Popular yield curve models include affine term structure models. These models are usually based on a fixed set of parameters which is calibrated to the actual financial market conditions. Under changing market conditions also parametrization changes. We discuss how parameters need to be updated with changing market conditions so that the re-calibration meets the premise of being free of arbitrage. We demonstrate this (consistent) re-calibration on the example of the Hull–White extended discrete-time Vasiček model, but this concept applies to a wide range of related term structure models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53(2), 385–407 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Deguillaume, N., Rebonato, R., Pogudin, A.: The nature of the dependence of the magnitude of rate moves on the rates levels: a universal relationship. Quant. Financ. 13(3), 351–367 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Harms, P., Stefanovits, D., Teichmann, J., Wüthrich, M.V.: Consistent Recalibration of Yield Curve Models (2015). arXiv:1502.02926

  4. Harms, P., Stefanovits, D., Teichmann, J., Wüthrich, M.V.: Consistent Re-calibration of the Discrete Time Multifactor Vasiček Model. Working paper (2015)

    Google Scholar 

  5. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claim valuation. Econometrica 60(1), 77–105 (1992)

    Article  MATH  Google Scholar 

  6. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  Google Scholar 

  7. Hull, J., White, A.: Branching out. Risk 7, 34–37 (1994)

    Google Scholar 

  8. Jordan, T.J.: SARON—an innovation for the financial markets. In: Launch event for Swiss Reference Rates, Zurich, 25 August 2009

    Google Scholar 

  9. Richter, A., Teichmann, J.: Discrete Time Term Structure Theory and Consistent Recalibration Models (2014). arXiv:1409.1830

  10. Vasiček, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5(2), 177–188 (1977)

    Article  Google Scholar 

  11. Wüthrich, M.V., Merz, M.: Financial Modeling. Actuarial Valuation and Solvency in Insurance, Springer, Heidelberg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario V. Wüthrich .

Editor information

Editors and Affiliations

Appendix: proofs

Appendix: proofs

Proof

(Theorem 1 ) The theorem is proved by induction.

(i) Initialization \(t=k+1\). We initialize by calculating the first term \(b_{t}^{(k)}=b_{k+1}^{(k)}\) of \(\mathbf {b}^{(k)}\). We have \(A^{(k)}(k+1,k+2)=0\). This implies, see (5),

$$\begin{aligned} A^{(k)}(k,k+2)=-b_{k+1}^{(k)} B(k+1,k+2) +\frac{\sigma ^2}{2} B(k+1,k+2)^2. \end{aligned}$$

From (8) we have

$$\begin{aligned} A^{(k)}(k,k+2)=r_kB(k,k+2)- 2\varDelta y^{\mathrm{mkt}}(k,k+2). \end{aligned}$$

Merging the last two identities and using \(r_k=y^{\mathrm{mkt}}(k, k+1)\) provides

$$\begin{aligned}& b_{k+1}^{(k)} B(k+1,k+2) \\&\quad \,\,\,=\frac{\sigma ^2}{2} B(k+1,k+2)^2- y^{\mathrm{mkt}}(k, k+1)B(k,k+2)+ 2\varDelta y^{\mathrm{mkt}}(k,k+2)\\&\quad \,\,\,=z_1(\beta ,\sigma ,\mathbf {y}^{\mathrm{mkt}}_{k}). \end{aligned}$$

This is exactly the first component of the identity

$$\begin{aligned} \mathsf{C}(\beta ) \mathbf {b}^{(k)}=\mathbf {z}(\beta , \sigma , \mathbf {y}_k^\mathrm{mkt}). \end{aligned}$$
(38)

(ii) Induction step \(t \rightarrow t+1 < M\). Assume we have calibrated \(b^{(k)}_{k+1}, \ldots , b^{(k)}_t\) and these correspond to the first \(t-k\) components of (38). The aim is to determine \(b^{(k)}_{t+1}\). We have \(A^{(k)}(t+1,t+2)=0\) and iteration implies

$$\begin{aligned} A^{(k)}(k,t+2)=-\sum _{j=k+1}^{t+1} b_{j}^{(k)} B(j,t+2)+\sum _{j=k+1}^{t+1}\frac{\sigma ^2}{2} B(j,t+2)^2. \end{aligned}$$

From (8) we obtain

$$\begin{aligned} A^{(k)}(k,t+2)=r_kB(k,t+2)- (t+2-k)\varDelta y^{\mathrm{mkt}}(k,t+2). \end{aligned}$$

Merging the last two identities and using \(r_k=y^{\mathrm{mkt}}(k, k+1)\) provides

$$\begin{aligned}&\sum _{j=k+1}^{t+1} b_{j}^{(k)} B(j,t+2)\\&\qquad = \sum _{j=k+1}^{t+1}\frac{\sigma ^2}{2} B(j,t+2)^2 -y^{\mathrm{mkt}}(k, k+1)B(k,t+2)\\&\qquad \quad + \,(t+2-k)\varDelta y^{\mathrm{mkt}}(k,t+2)\\&\qquad =z_{t+1-k}(\beta ,\sigma ,\mathbf {y}^{\mathrm{mkt}}_{k}). \end{aligned}$$

Observe that this exactly corresponds to the \((t+1-k)\)th component of (38). This proves the claim. \(\square \)

Proof

(Theorem 2 ) Using (12) and (10) for \(t=k+1\) we have

$$\begin{aligned}& \left( m-(k+1)\right) \varDelta ~ Y(k+1,m)\\&\quad \,\,= -A^{(k)}(k+1,m)+ \left( b^{(k)}_{k+1} + \beta _k r_{k} + \sigma _k \varepsilon _{k+1}^*\right) B^{(k)}(k+1,m).\nonumber \end{aligned}$$

We add and subtract \(-A^{(k)}(k,m)+r_k B^{(k)}(k,m)\),

$$\begin{aligned} (m-(k+1))\varDelta ~ Y(k+1,m)= & {} -~A^{(k)}(k,m)+r_k B^{(k)}(k,m)\\&+~A^{(k)}(k,m) -A^{(k)}(k+1,m)-r_k B^{(k)}(k,m)\\&+ ~\left( b^{(k)}_{k+1} + \beta _k r_{k} + \sigma _k \varepsilon _{k+1}^*\right) B^{(k)}(k+1,m). \end{aligned}$$

We have the following two identities, the second simply follows from the definition of \(A^{(k)}(k,m)\),

$$\begin{aligned} -A^{(k)}(k,m)+r_k B^{(k)}(k,m)= & {} (m-k)\varDelta ~ Y(k, m),\\ A^{(k)}(k,m) -A^{(k)}(k+1,m)= & {} -b_{k+1}^{(k)} B^{(k)}(k+1,m)+\frac{\sigma ^2_k}{2} B^{(k)}(k+1,m)^2. \end{aligned}$$

Therefore, the right-hand side of the previous equality can be rewritten and provides

$$\begin{aligned} (m-(k+1))\varDelta ~ Y(k+1,m)= & {} (m-k)\varDelta ~Y(k,m) +\frac{\sigma ^2_k}{2} B^{(k)}(k+1,m)^2\\&+~ \sigma _k B^{(k)}(k+1,m)\varepsilon _{k+1}^*\\&-~r_k \left( B^{(k)}(k,m)- \beta _kB^{(k)}(k+1,m)\right) . \end{aligned}$$

Observe that the bracket on the third line is equal to \(\varDelta \) and that \(r_k=Y(k,k+1)\). This proves the claim. \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wüthrich, M.V. (2016). Consistent Re-Calibration in Yield Curve Modeling: An Example. In: Huynh, VN., Kreinovich, V., Sriboonchitta, S. (eds) Causal Inference in Econometrics. Studies in Computational Intelligence, vol 622. Springer, Cham. https://doi.org/10.1007/978-3-319-27284-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27284-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27283-2

  • Online ISBN: 978-3-319-27284-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics