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Abstract. Graph Partitioning is a key challenge problem with appli-
cation in many scientific and technological fields. The problem is very
well studied with a rich literature and is known to be NP-hard. Several
heuristic solutions, which follow diverse approaches, have been proposed,
they are based on different initial assumptions that make them difficult
to compare. An analytical comparison was performed based on an Imple-
mentation Challenge [3], however being a multi-objective problem (two
opposing goals are for instance load balancing and edge-cut size), the
results are difficult to compare and it is hard to foresee what can be
the impact of one solution, instead of another, in a real scenario. In this
paper we analyze the problem in a real context: the development of a
distributed agent-based simulation model on a network field (which for
instance can model social interactions).

We present an extensive evaluation of the most efficient and effec-
tive solutions for the balanced k-way partitioning problem. We evaluate
several strategies both analytically and on real distributed simulation
settings (D-MASON). Results show that, a good partitioning strategy
strongly influences the performances of the distributed simulation envi-
ronment. Moreover, we show that there is a strong correlation between
the edge-cut size and the real performances. Analyzing the results in
details we were also able to discover the parameters that need to be
optimized for best performances on networks in ABMs.

Keywords: Agent-Based Simulation Models -+ Graph partitioning -
D-MASON - Parallel computing - Distributed systems - High performance
computing

1 Introduction

Networks are everywhere. Complex interactions between different entities play
a sensible role in modeling the behavior of both society and natural world. Such
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networks — which comprises World Wide Web, metabolic networks, neural net-
works, communication and collaboration networks, and social networks — are
the subject of a growing number of research efforts. Indeed, many interesting
phenomena are structured as networks (i.e., sets of entities joined in pairs by
lines representing relations or interactions).

The study of networked phenomena has experienced a particular surge of
interest due to the increasing availability of massive data about the static topol-
ogy of real networks as well as the dynamic behavior generated by the inter-
actions among network entities. The analysis of real networks topologies has
revealed several interesting structural features, like the small-world phenomena
as well as the power-law degree distribution [10], which appear in several real
network and can be extremely helpful for the design of artificial networks. On
the other hand, understanding the dynamic behavior generated by complex net-
work systems is extremely hard. Networks are often characterized by a dynamic
feedback effect which is hard to predict analytically.

More generally, complex systems require innovative study methodologies. In
this regard, in recent years, the two branches of the classical sciences, theoretical
and experimental, have merged in the computational sciences where scientists
design mathematical models and perform computational simulations of complex
phenomena on real systems which are too complex to be studied analytically
on theoretical grounds as well as too risky/expensive to be tested experimen-
tally [23]. In particular, Agent-Based simulation Models (ABMs) have spread in
many fields, from social sciences to the life sciences, from economics to artifi-
cial intelligence. Successes of the computational sciences have led to an increased
demand for computation-intensive software implementations, in order to improve
the performance of ABMs in terms of both size (number of agents) and qual-
ity (complexity of interactions). Such an amount of computing power can only
be achieved by parallel computing (indeed, serial-processing speed is reaching
a physical limit [22]). However, exploiting parallel systems is not an easy task;
many parallel applications fail to leverage on the hardware parallelism and expe-
rience scalability limits.

The computer science community has responded to the need for tools and plat-
forms that can help the development and testing of new models in each specific
field by providing tools, libraries and frameworks that speed up and make eas-
ier the task of developing and running parallel ABMs for complex phenomena.
For instance, D-MASON [5,6,26,28] is a parallel version of the MASON [4,16,17]
library for running ABMs on distributed systems. D-MASON adopts a framework-
level parallelization mechanism approach, which allows the harnessing of compu-
tational power of a parallel environment and, at the same time, hides the details
of the architecture so that users, even with limited knowledge of parallel computer
programming, can easily develop and run simulation models.

MASON like several other ABMs systems provides one or more fields to rep-
resent the space where the agents lie and interact with the other agents. A field
is a specific data structure relating various objects (agents) or values together.
With more details, MASON provides a number of built-in fields, such as 2D/3D
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geometric discrete and continuous spaces plus a network field typically used to
model social interactions. Currently, D-MASON allows modellers to parallelize
simulation based on geometric fields. It adopts a space partitioning approach [9]
which allowed the balancing of workload among the resources involved for the
computation with a limited amount of communication overhead.

The space partitioning approach described above is devoted to decomposing
ABMs based on geometric fields. On the other hand, when agents lie and/or
interact on a network [1] — where the network can represent social, geographical
or even a semantic space — a different approach is needed. The problem is to
(dynamically) partition the network into a fixed set of sub-networks in such a way
that: (i) the components have roughly the same size and (ii) both the number
of connections and the communication volume between vertices belonging to
different components are minimized.

1.1 Our Results

In this paper we provide an extensive evaluation of the most efficient and effec-
tive solutions for the problem defined above, which is well known in literature
as the graph partitioning problem. We will evaluate several algorithms both
analytically and on a real distributed simulation settings. Results shows that a
good partitioning strategy strongly influences the performances of the distrib-
uted simulation environment. Analyzing the results in detail we were also able
to discover the parameters that need to be optimized for the best performances
on networks in ABMs.

2 The Graph Partitioning Problem

Finding good network partitions is a well-studied problem in graph theory [2]. Sev-
eral are the problems that motivate the study of this problem. They range from
computer science problems like integrated circuit design, VLSI circuits, domain
decomposition for parallel computing, image segmentation, data mining [13,15],
etc. to other problems raised by physicists, biologists, and applied mathemati-
cians, with applications to social and biological networks (community structure
detection, structuring cellular networks and matrix decomposition [12,18]).

The most common formulation of the balanced graph partitioning problem
is the following;:

BALANCED k-WAY PARTITIONING (G, k,€).

Instance: A graph G = (V, E), an integer k¥ > 1 (number of components) and
a rational € (imbalance factor).

Problem: Compute a partition IT of V into k pairwise disjoint subsets (compo-
nents) Vi, Va, ..., Vj of size at most (1 + ¢€)[|V|/k], while minimizing the size of
the edge-cut >, . |Ey;], where Ej; = {{u,v} € E:ueVi,veV;} CE.

This problem has been extensively studied (see [3] for a comprehensive pre-
sentation) and is known to be NP-hard [11].
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Being a hard problem, exact solutions are found in reasonable time only for
small graphs. However the applications of this problem require to partition much
larger graphs and so several heuristic solutions have been proposed.

The graph partitioning problem was faced using several approaches. Two ver-
sion of this problem have been considered: the former takes into account the coor-
dinate information in the space of the vertices (this is common in graphs describing
a physical domain) while, in the latter problem, vertices are coordinate free. In this
paper we discuss the coordinate free problem which better fits ABMs’ domain.

The graph partitioning coordinate free problem requires combinatorial heuris-
tics to partition them. For instance, considering the simplest version of the par-
titioning problem (2-way partitioning), that is find a bisection of the graph
G = (V, E) that minimize the size of the cut. A really simple solution of the
problem uses the breadth first search (BFS) visit of the graph to generate a
subgraph T' = (V, E' C E) of G also called a BFS tree. Given the subgraph T, is
possible to find a cut to generate two disjoint subnetwork N7 and N» such that
(i) Ny UNy =V and (ii) |N1| = |Na|. The fact that T" has been built using the
BF'S ensures that the size of the edge-cut is bounded.

This solution, which works well for planar graphs, is not efficient for complex
graph. An additional approach is the Kernighan-Lin (KL) algorithm [15] that,
starting with two sets N7 and No (describing a partition of V'), greedily improves
the quality of the partitioning by iteratively swapping vertices among the two
sets. This solution converges to the global optimum if the initial partition is fairly
good. Other approaches are the Spectral partitioning [21] and the Multilevel
Approach [14]. We will focus on the most promising techniques that either use
a multilevel approach or a distributed algorithm that exploits a local search
approach.

METIS is a graph multilevel k-way partitioning suite developed in the Karypis
lab of University of Minnesota. Shortly, METIS comprises three phases: during
the coarsening phase the vertices are collapsed in order to decrease the size of
the initial graph G. Consequently, starting from G = G| a sequence of graphs
Go, Gy, ..., Gy is generated. Then a k-way partitioning is performed on the small-
est graph Gy. Then, during the uncoarsening phase the partitioning is refined,
using a variant of the KL algorithm, and is projected to larger graphs on the
sequence.

KaHIP (Karlsruhe High Quality Partitioning) is a suite of graph partition-
ing algorithms. The suite comprises two main algorithms KaFFPa (Karlsruhe
Fast Flow Partitioner) [20], which is a multilevel graph partitioning algorithm,
and KaFFPoF (KaFFPa Evolutionary) that uses an evolutionary algorithm app-
roach. In this paper we analyze KaFFPa. KaFFPa, like METIS, uses the multilevel
graph partitioning approach but it uses a different strategy for the uncoarsening
phase of the algorithm which exploits a local search method instead of the KL
approach.

Ja-be-Ja [19] exploits a distributed computing approach. It uses a local search
technique (simulated annealing), to find a good partitions of the graph minimiz-
ing the edge-cut size. The energy of the system is measured by counting the
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number of edges that have endpoints in different components. Ja-be-Ja starts
with a random balanced partitioning and then it iteratively applies the local
search heuristic to obtain a configuration having a lower energy state (edge-cut
size). The size of the initial components is preserved since Ja-be-Ja allows only
the swapping of vertices among two components.

3 Experiment Setting

We report on simulation experiments that compare five k-way partitioning algo-
rithms on several networks, taken from [27]. The data sets we considered include
networks having different structural features (see Tablel). For each network,
partitions into k = 2,4, 8, 16,32 and 64 components have been considered.

We compare the analytical results obtained (i.e., size of the edge-cut, number
of communication channels required and imbalance) by each algorithm with the
real performances (overall simulation time) in an ABM scenario.

Table 1. Networks.

Name # of nodes | # of edges | Avg deg. | Max deg. | Triangles | Clust. Coeff. | Modul.
uk 4824 6837 2.83 3 1 0 0.7934
data 2851 15093 10.59 17 24442 0.485719 0.7596
4elt 15606 45878 5.88 10 30269 0.40765 0.6274
cti 16840 48232 5.73 6 362 0.004895 0.9063
t60k 60005 89440 2.98 3 0 0 0.5419
wing 62032 121544 3.92 4 6685 0.055595 0.5403
finan512 74752 261120 6.99 54 211456 0.503401 0.6469
fe_ocean | 143437 409593 5.71 6 0 0 0.5947
powergrid 4941 6594 2.67 19 651 0.1065 0.6105

Simulation Environment. To evaluate real performances we developed a toy
distributed SIR, (Susceptible, Infected, and Removed) simulation, where, for each
simulation step, each agent (a vertex of the network) has to communicate with
its neighbors. The SIR simulation has been developed on top of D-MASON,
exploiting the novel communication strategy which realizes a Publish/Subscribe
paradigm through a layer based on the MPI standard [7,8]. Simulations have
been performed on cluster of eight computer nodes, each equipped as follows:

— Hardware:
e CPUs: 2 x Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz (#core 16,
#threads 32)
e RAM: 256 GB
e Network: adapters Intel Corporation 1350 Gigabit
— Software:
e Ubuntu 12.04.4 LTS (GNU/Linux 3.11.0-15-generic x86_64)
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e Java JDK 1.6.25
e OpenMPI 1.7.4 (feature version of Feb 5, 2014).

Simulation results, on k-way partitioning, have been obtained using k logical
processors (one logical processor per component). We notice that, when the simu-
lation is distributed, the communication between agents in the same component
is much faster than the communication between agents belonging to different
components. On the other hand, balancing is important because the simulation
is synchronized and evolves with the speed of the slowest component.

The Competing Algorithms. We have analyzed five algorithms, briefly dis-
cussed in Sect. 2:

— Multilevel approach:

e METIS: (cf. Sect.2);

e METIS Relaxed: this version of the METIS algorithm uses a relaxed
version of the balancing constraint (i.e., a larger value of the parameter
€), in order to improve on other parameters (like the edge-cut size);

e KaFFPa: (cf. Sect.2);

— Distributed Computing Approach:

e Ja-be-Ja: (cf. Sect.2). Unfortunately, we were not able to find a real
implementation of the algorithm. We used an implementation available
on the public Ja-be-Ja GitHub repository [24]. This implementation is
not truly distributed but is simulated through the use of the Java library
GraphChi [25], that enables modellers to simulate a distributed compu-
tation on multi-cores machines. Clearly the computational efficiency of
this implementation is limited and, for this reason, we could only run 100
iterations of the algorithm for each test setting. We assume that the poor
results of the algorithm (cf. Sect. 4) are, at least, partially due to the small
number of iteration used in our tests. In order to better evaluate the real
performances of the algorithm, a real distributed implementation of the
Ja-be-Ja algorithm is needed.

— Random: This algorithm assigns each vertex to a random component. It
always provides an optimal balancing. We use this algorithm as baseline in
our comparisons.

Performance Metrics. Let G = (V, E) the analyzed network and let II =
(V1,Va,..., Vi) the partition provided by a given algorithm, we evaluate algo-
rithms’ performances using the following metrics:

— Edge-cut size (W), the total number of edges having their incident vertices in
different components;

— Number of communication channels (E), two components U; and Us requires
a communication channel when Jv; € U;, ve € Us such that (vi,ve) € E.
In other words, we are counting the number of edges in the supergraph Sg
obtained by clustering the nodes of each component in a single node. We notice
that this unconventional metric is motivated by our specific distributed ABMs
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scenario. In our simulation environment, a communication channel, between
two components U; and Us, is established when at least two vertices (agents)
u; € U; and us € Uy share an edge. Thereafter, the same communication
channel is used for every communication between U; and Us, consequently,
these additional communications have less impact on system performances;

— Imbalance (I), the minimum value of € such that each component has size at
most (1+ ¢)[|V|/k].

Moreover, we evaluate the real performances of each strategy by measuring the
overall simulation time (T) to perform 10 simulation steps on the distributed
SIR simulation.

Summarizing our experiments compares the performances (both analytically
and on a real setting) of 5 k-way partitioning algorithms (A € {METIS, METIS
Relaxed, KaFFPa, Ja-be-Ja and Random}) with k& € {2,4,8,16,32,64} on 9
networks (N € {uk, data, 4elt, cti, t60k, wing, finan512, fe_ocean, powergrid}).
Overall we performed 5 x 6 x 9 = 270 tests.

4 Results

4.1 Analytical Results

Figures 1, 2 and 3 depict the analytical results. For each plot the networks appear
along the X-axis, while the values of the measured parameter appear along the
Y-axis. We present the results only for k € {4,64} because of space limitations;
results for the other values of k exhibit similar behaviors.

Analyzing the results from Figs. 1 and 2 we notice that the performances of
the multilevel approach algorithms are comparable both in terms of edge-cut
size and number of communication channels. Ja-be-Ja performances are a bit
worse (this is probably due to the small number of iteration used in our tests as
observed in Sect. 3) but always better than the random strategy.

Results on imbalance are fluctuating (see Fig. 3). In general all the algorithms
provide a quite balanced partition. Apart from the random strategy that by
construction provides the optimal solution, no strategy dominates the others.

4.2 Real Setting Results

Figure 4 reports on the results obtained in the real simulation setting. The results
are consistent with the analytical ones, in terms of both edge-cut size and num-
ber of communication channels, although the gaps are amplified. The results
thus confirm that the choice of partitioning strategy has a significant impact on
performance in a real scenario.

In order to better understand how the metrics evolves according to k, Figure 5
depicts four plots which describes, for each algorithm, the growth of the Edge-cut
size (top-left), the Imbalance (top-right), the number of communication channels
(bottom-left) and the Simulation time on the f_ocean network as function of the
parameter k (X-axis).
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Fig. 1. Edge-cut size (W) comparison:(left) k = 4, (right) kK = 64. Y-axes appear in
log scale.
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Fig. 2. Number of communication channels (E) comparison:(left) k = 4, (right) k = 64.
Y-axes appear in log scale.
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Fig. 3. Imbalance (I) comparison: (left) k = 4, (right) k = 64.

4.3 Correlation Between Analytical and Real Setting Results

Analyzing the results from Figs. 1—4, we observe that the performances of the
distributed simulations are influenced by the analytical metrics. In order to bet-
ter evaluate the correlation between the overall simulation times and the perfor-
mances of the algorithm (measured considering the edge-cut size, the number of
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Fig. 4. Simulation time (T) comparison:(left) k = 4, (right) k = 64. Y-axes appear in
log scale.
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Fig.5. Edge-cut size (top-left), Imbalance (top-right), Number of communication
channels (bottom-left) and Simulation Time(bottom-right) on the f_ocean network,
k€ {2,4,8,16,32,64}.

communication channels and the imbalance), we measured the correlation using
a statistical metric: the Pearson product-moment Correlation Coefficient (PCC).
PCC is one of the measures of correlation which quantifies the strength as well
as direction of the relationship between two variables. The correlation coefficient
ranges from —1 (strong negative correlation) to 1 (strong positive correlation).
A value of 0 implies that there is no correlation between the variables. We com-
puted the correlation PCC between simulation time (T) and the three analytical
metrics (W, E and I), with all the considered value of the parameter k.
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In particular, we considered four variables that are parametrized by the
class N of Networks (N € {uk, data, 4elt, cti, t60k, wing, finan512, fe_ocean,
powergrid}), the considered algorithm (A € {METIS, METIS Relaxed, KaFFPa,
Ja-be-Ja and Random}), and the parameter k € {2, 4,8, 16,32, 64}. The variable
T(N, A, k) denotes the Simulation time; the variable W (N, A, k) denotes Edge-
cut size; E(N, A, k) denotes the Number of communication channels; finally the
variable I(N, A, k) denotes the Maximum Imbalance. Table 2 presents the cor-
relation values obtained.

We observed that:

— there is a strong positive correlation between simulation time and edge-cut
size (the PCC always over 0.92);

— there is a weak/moderate positive correlation between simulation time and
the number of communication channels! (the PCC ranges between 0.22 and
0.4). Moreover this correlation seems to be increasing in k;

— there is a weak negative correlation between simulation time and imbalance
(the PCC ranges between —0.22 and —0.32).

This final result is counterintuitive: theoretically, the greater the imbalance, the
larger the simulation time should be and this should lead to a positive correlation.
The key observation is that a small amount of imbalance has a limited impact on
the simulation time but can be extremely helpful for reducing both the edge-cut
size and the number of communication channels, which seems to have a sensible
payoff in terms of real performances.

Table 2. Correlation between analytical and real setting results.

k

2 4 8 16 32 64

r(T, W) 0.9256 0.9392 | 0.9431 | 0.9424 |0.9473 | 0.9474
r(T, E) |N.A. 0.2265 |0.3094 0.3349 |0.3509 |0.3922

r(T, I) |—0.2244|—-0.2750 | —0.2903 | —0.3188 | —0.2971 | —0.3025

5 Conclusion

We considered the problem of partitioning a network into k£ balanced compo-
nents such that the number of edges that cross the boundaries of components
is minimized. We evaluated, both analytically and on a real distributed ABM
scenario, the performances of 5 heuristic approaches, which, to the best of our
knowledge, are the current state-of-the-art on the problem. Experimental results
show that the choice of the partitioning strategy strongly influence the perfor-
mance a real distributed environment. Moreover analytical results (the edge-cut

! The correlation between T'(N, A,2) and E(N, A,2) cannot be computed, since for
k = 2 all the partitioning strategy require exactly 1 communication channel and so
E(N, A,2) has standard deviation equal to 0.
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size in particular) correlate with the overall simulation time in a real setting.
On the other hand, according to our results, the quality of the balance among
components does not relate to the real performances on the field. Likely, this
result is due to the fact that we analyzed of very small imbalance range. As
a future work, we plan to investigate heuristics which allow identifying more
efficient partitionings, at the expense of a minor balance.
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