
Quantifying the Performance Impact of Graph
Structure on Neighbour Iteration

Strategies for PageRank

Merijn Verstraaten(B), Ana Lucia Varbanescu, and Cees de Laat

University of Amsterdam, Amsterdam, The Netherlands
{m.e.verstraaten,a.l.varbanescu,delaat}@uva.nl

Abstract. Increases in graph size and analytics complexity have
brought graph processing at the forefront of HPC. However, the HPC
shift towards manycore accelerators (e.g., GPUs) is not favourable: tra-
ditional graph processing is hardly suitable for regular parallelism. Previ-
ous work has focused on parallel algorithms for specific graph operations,
often using assumptions about the structure of the input graph. How-
ever, there has been very little systematic investigation of how strongly
a graph’s structure impacts the efficiency of graph operations.

With this article we make propose a step to quantify this impact,
focusing on a typical operation: neighbour iteration. We design and
implement four strategies for neighbour iteration and introduce a simple
model to reason about the expected impact of a graph’s structure on the
performance of each strategy. We then use the PageRank algorithm to
validate our model. We show that performance is significantly affected
by the ability to effectively load-balance the work performed by these
strategies across the GPU’s cores.

1 Introduction

Due to its flexibility and wide applicability, graph processing is an important part
of data science. With the prevalence of “big data”, scaling increasingly complex
analytics computations to increasingly large datasets is one of the fundamental
problems in graph processing.

At the same time, hardware platforms are becoming increasingly parallel and
heterogeneous, in an attempt to cope with these rapidly increasing workloads.
Distributed systems and accelerator-based architectures (e.g., based on Graphi-
cal Processing Units — GPUs, or Xeon Phi) are frequently cited as solutions for
handling large compute workloads, even for graph processing [1,13].

However, both partitioning the data and efficient execution of graph oper-
ations on parallel and distributed systems remain hard problems. The hetero-
geneity of the available platforms makes matters worse, because different types
of platforms require different approaches to perform in their “comfort” zone.

To simplify working with graphs and to hide the complexity of the underlying
platform, many different graph processing systems have been developed [5,7–
9,12,17]. Most of these systems provide a clear separation between a simple-to-
use front-end, where users are invited to write applications using, most often,
c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 528–540, 2015.
DOI: 10.1007/978-3-319-27308-2 43



Quantifying the Performance Impact of Graph Structure 529

high-level operations, and a highly-optimized back-end, where these operations
are translated to execute efficiently on a given platform (i.e., a combination of
hardware and software).

Examples of high-level graph operations common in many algorithms (and
thus implemented in graph processing systems) are: (a) iteration over all ver-
tices (e.g., in graph statistics); (b) iteration over all edges (e.g., in traversals);
(c) iteration over all neighbours of a vertex (e.g., in pagerank); and (d) iter-
ation over all common neighbours of two vertices (e.g., in label propagation).
Efficient mapping of such high-level graph operations to lower-level platform-
specific primitives is crucial for the overall performance of the application and,
consequently, for the adoption of a graph processing system.

In this work, we focus on the performance of graph operations on GPUs, seen
as representative massively parallel HPC architectures. In this context, we make
the following observations:

1. Speeding up graph processing by using GPUs requires efficient exploitation
of the fine-grained parallelism of graph problems [6,14].

2. The efficiency in using the massive hardware parallelism (hundreds of cores)
is highly-dependent on the data locality and the regularity of both operations
and data access patterns [16,18].

3. The data locality and the regularity of operations and data access patterns
are highly-dependent on both the in-memory representation of the data and
the structure of the underlying graph.

4. Most high-level graph operations support different implementations, with sig-
nificantly different memory representation and access patterns [3].

In summary, given a high-level graph processing operation, there are multiple
ways we can choose to implement it. Which implementation is the most efficient
on a given platform is highly dependent on the structure of the graph being
processed [18]. While it is common knowledge that this is the case, there has not
yet been a systematic study to quantify how big this effect is and to what extent
it correlates with the structure of the input graph. This information has a clear
impact on the performance of graph processing backends, as it would allow the
system to adapt the implementation to best suit the input data.

However, to enable such adaptation, we must correlate (classes of) graphs
with the performance behavior of different primitives on different platforms. To
do so, we must: (1) identify possible implementations for the targeted primitive
operations, (2) quantify the performance differences per (platform, dataset) pair,
and (3) cluster the datasets with similar performance behavior in classes that
can be easily characterized.

In this paper we show an example of how this process can be conducted,
focusing on the quantification of the observed performance differences for a real
application. Specifically, we present four different implementations of neighbour
iteration on a GPU and use these to implement the PageRank [15] algorithm.

We measure how the performance of our implementations varies as a result
of changing the input graph. Our experimental results demonstrate that the
optimal implementation does not just depend on the dataset, but also on the



530 M. Verstraaten et al.

dataset’s in-memory representation. We also observe similarities between graphs
of similar provenance (e.g., road networks show a different performance ranking
than web-graphs), but better clustering is necessary to automate this process.

Our contribution in this paper is three-fold: (1) we design and implement
four strategies to deal with neighbours iteration as a primitive graph operation,
(2) we demonstrate how all these strategies can be used for PageRank, and
(3) we quantify the impact these strategies have on the overall performance of
PageRank when running on GPUs.

2 Background

In this section we provide a brief introduction on the PageRank algorithm, as
well as a short description of the main characteristics of GPUs, the hardware
platform we use for this work.

2.1 PageRank

PageRank is an algorithm that calculates rankings of vertices by estimating how
important they are. Importance is quantified by the number of edges incoming
from other vertices.

A generic PageRank operation works as follows. Given a graph G = (V,E)
the PageRank for a vertex v ∈ V can be calculated as:

PR(v) =
1 − d

|V | + d
∑

w∈N(v)

PR(w)
ρ(w)

(1)

Here d is the damping factor, ρ(w) is the outgoing degree of vertex w, and
N(v) denotes the neighbourhood of vertex v, that is:

w ∈ N(v) ⇐⇒ (w, v) ∈ E

This formula is usually implemented iteratively using two steps. In the first
step we compute the incoming pagerank from the previous iteration. In the sec-
ond step, we normalize this new pagerank using the damping factor. These oper-
ations are repeated until the difference between iterations falls below a certain
threshold or the maximum number of iterations is reached.

2.2 The GPU Architecture

GPUs (Graphical Processing Units) are the most popular accelerators in High
Performance Computing (HPC). GPUs are massively parallel processing units,
where hundreds of cores, grouped in streaming multiprocessors (SMs), can exe-
cute thousands of software threads in parallel. Software threads are grouped into
thread blocks, which are scheduled on the SMs. Threads inside the same block
can easily communicate and synchronize; communication and synchronization



Quantifying the Performance Impact of Graph Structure 531

for threads in different blocks (or for all threads on the platform) are signifi-
cantly more expensive.

GPUs have a hierarchical memory model with limited, dedicated shared
memory per SM and a relatively large global memory. Shared memory is only
accessible by threads in the same block, while global memory is accessible to all
threads. Typical sizes for global memory are between 1 and 12 GB.

For highly parallel workloads, GPUs outperform sequential units by orders
of magnitude. But in cases where not enough parallelism is exposed, or in cases
where there are too many dependencies between threads, or where threads
diverge, the GPU performance drops significantly. Given the typical charac-
teristics of graph processing applications — low computation-to-communication
ratio, poor locality, and irregular, data-driven memory access patterns [2], the
efficient use of GPUs for graph processing is not trivial. More importantly, the
dataset structure and its characteristics can play a much more important role in
the overall performance than in the case of the more flexible multi-core CPUs.

3 Design and Implementation

In this section we present the design and implementation of four different versions
of PageRank, and discuss a simple model for estimating their performance.

3.1 Four PageRank Versions

In the iterative implementation of Eq. 1, we (1) sum the incoming pageranks for
every vertex, and then (2) update the pagerank for that vertex.

To compute PageRank in parallel, a choice needs to be made on how the
application is parallelized. For a massively parallel platform like the GPU, the
amount of exposed parallelism should be as large as possible, so there are two
simple strategies to choose from: one vertex per thread (i.e., vertex-centric par-
allelism), or one edge per thread (i.e., edge-centric parallelism).

Next, for the computation itself, the vertex-centric parallelisation requires a
second choice, data can be either pushed or pulled from or to a vertex’ neigh-
bours. Thus, vertex-centric approaches can be further divided into push and
pull. With push, the thread computes the outgoing pagerank of its vertex and
sums that value to all the vertex’ neighbours. With pull, the thread computes
the outgoing rank of the vertex’ neighbours and sums them to itself.

Algorithms 1, 2 and 3 show pseudocode implementations of the push, pull
and edge-based implementations, respectively. For push and pull these kernels
are executed once per vertex, for edge-based the kernel is executed once per edge.
A pseudocode implementation of the rank consolidation kernel can be found in
Algorithm 4.

We use the following representations. The edge based kernel uses one
edge array (origin + destination vertices) and an offset array to compute
degrees, resulting in 2 · |E| + |V | ints space usage. The push and pull based
kernels use Compressed Sparse Row (CSR) and reversed CSR, respectively,



532 M. Verstraaten et al.

using |E| + |V | ints of space. The pull kernel uses an additional off-
set array to compute neighbour degrees, using an extra |V | ints of space.

Algorithm 1. Push Vertex-based Update

function VertexPush(v)
if v.degree �= 0 then

outgoingRank ← v.pagerank
v.degree

end if
for nbr ∈ v.neighbours do

nbr.newRank.atomicAdd(outgoingRank)
end for

end function

Algorithm 2. Pull Vertex-based Update

function VertexPull(v)
newRank = 0
for nbr ∈ v.neighbours do

newRank += nbr.pagerank
nbr.degree

end for
v.newRank ← newRank

end function

Algorithm 3. Edge-based Update

function EdgeBased(edge)
origin ← edge.origin
dest ← edge.destination

outgoingRank ← origin.pagerank
origin.degree

dest.newRank.atomicAdd(outgoingRank)
end function

Algorithm 4. Consolidate kernel

function ConsolidateRank(v)

newRank ← 1−damping
graphSize +

(damping · v.newRank)
diff ← abs(newRank − v.pagerank)
globalDiff.atomicAdd(diff)
v.pagerank ← newRank
v.newRank ← 0

end function

Looking at the kernel for pull vertex-based computation, we observe that
it is performing more work than strictly necessary. Computing the incom-
ing rank from every neighbour means that vertices that share neighbours
unnecessarily replicate work of dividing the rank. We could simply move
this division into the consolidation kernel, performing this computation once
per vertex. This requires us to use a different consolidation kernel for the
last iteration to obtain the correct results, but this is not particularly diffi-
cult. Pseudocode for the modified pull kernel (entitled NoDiv) can be seen
in Algorithm 5 and the corresponding consolidation kernel in Algorithm 6.

Algorithm 5. NoDiv: Pull Vertex-Based

function VertexPullNoDiv(v)
newRank ← 0
for nbr ∈ v.neighbors do

newRank += nbr.pagerank
end for
v.newRank ← newRank

end function

Algorithm 6. NoDiv: Consolidate kernel

function ConsolidateRankNoDiv(v)

newRank ← 1−damping
graphSize +

(damping · v.newRank)
diff ← abs(newRank − v.pagerank)
globalDiff.atomicAdd(diff)
v.pagerank ← newRank

v.degree

v.newRank ← 0
end function

3.2 Estimating Performance

The above kernels show that the computational workload of pagerank is neg-
ligible. Like for many other graph algorithms, most of the workload comes
from reading and writing memory. To achieve our goal of correlating algorithm



Quantifying the Performance Impact of Graph Structure 533

performance with input data, we need a performance model for our primitives.
Our performance model only considers global memory accesses and global atomic
operations to reason about the relative work complexity of the different kernels.

For all models, let Tread be the cost of a random global read, Twrite the cost
of a random global write, and Tatom the cost of a global atomic add operation.
For now, we ignore the variability of atomic operation contention and cache
effects, in an attempt to only rank the different versions of the algorithm, and
not predict accurate execution times.

We see in Algorithm 1 that every thread performs 3 reads (2 to compute the
degree and 1 to read its pagerank), followed by d atomic addition operations,
where d is the degree of that vertex. The number of operations performed by
push thus boil down to:

Tpush =
∑

v∈V

(3 ∗ Tread + dv ∗ Tatom) = 3 ∗ |V | ∗ Tread + |E| ∗ Tatom

In Algorithm 2 we see that the pull kernel performs 3 reads for each neighbour
of its vertex, and then performs a non-atomic write to store the new result. The
total operations performed by pull thus boil down to:

Tpull =
∑

v∈V

(3 ∗ dv ∗ Tread + Twrite) = 3 ∗ |E| ∗ Tread + |V | ∗ Twrite

The kernel in Algorithm 3 uses on thread per edge, and each thread performs
3 reads, 2 to compute the degree and 1 to read the pagerank, it then performs
an atomic addition to store the result, resulting in:

Tedge =
∑

e∈E

(3 ∗ Tread + Tatom) = 3 ∗ |E| ∗ Tread + |E| ∗ Tatom

The pagerank consolidation kernel is the same for each of the above kernels,
performing 2 reads, one for the new incoming rank value and one for the old
pagerank value, followed by an atomic addition and 2 writes to store the new
pagerank and reset the incoming rank:

Tcon =
∑

v ∈ V (Tread+2∗Twrite+Tatom) = 2∗|V |∗Tread+2∗|V |∗Twrite+|V |∗Tatom

The performance model for the optimised pull-based kernel (i.e., NoDiv,
Algorithm 5) is:

TNoDiv =
∑

v ∈ V (dv ∗ Tred + Twrite) = |E| ∗ Tread + |V | ∗ Twrite

The corresponding consolidation needs a slight update, according to Algo-
rithm 6:

TconNoDiv =
∑

v ∈ V (4 ∗ Tread + 2 ∗ Twrite + Tatom)

= 4 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite + |V | ∗ Tatom

Summarizing, these are the performance models for a single pagerank itera-
tion, running sequentially:



534 M. Verstraaten et al.

Tpush = 5 ∗ |V | ∗ Tread + 2 ∗ |V | ∗ Twrite + (|V | + |E|) ∗ Tatom

Tpull = (3 ∗ |E| + 2 ∗ |V |) ∗ Tread + 3 ∗ |V | ∗ Twrite + |V | ∗ Tatom

TNoDiv = (|E| + 4 ∗ |V |) ∗ Tread + 3 ∗ |V | ∗ Twrite + |V | ∗ Tatom

Tedge = (3 ∗ |E| + 2 ∗ |V |) ∗ Tread + 2 ∗ |V | ∗ Twrite + (|V | + |E|) ∗ Tatom

In most graphs, even sparse ones, we can expect |E| to be at least as big as |V |
and usually significantly bigger. Given this assumption we can see that the edge-
based implementation performs both the most reads and atomic additions. The
pull-based implementation performs strictly less work than the edge-based one,
as it reduces the number of reads by 3∗(|E|−|V |). The pull-based implementation
reduces the number of atomic operations required by increasing the number of
write operations. The optimised NoDiv version further reduces the number of
reads done by 2 ∗ (|E| − |V |).

3.3 Parallel Performance

A naive reading of the performance models would conclude that the edge-based
version is always slower and the only implementation worth considering are push
and pull. However, in practice the comparison is not as straightforward. When
running in parallel, on the GPU, the performance depends on the number of
threads, chosen architecture (number of SMs), and scheduling. GPUs schedule
threads in groups, usually called warps, and every thread in the warp executes
the same instruction.

Divergent loops within a warp result in idle cores while executing that warp;
the performance of the entire warp is thus limited to the slowest thread. This
means that processing vertices of differing degrees within the same warp leads
to efficiency loss due diverging loops in the push and pull kernels. The edge-
based version does not suffer from divergence and all of the GPU cores are
always utilised. Therefore, the choice between push/pull updates and edge-based
updates is a trade-off between performing extra work for better workload bal-
ance.

The question we need to answer is: At what point does the intra-warp work-
load imbalance start to outweigh the extra work performed by the additional
operations performed by the edge based implementation? In this work, we answer
this question empirically, and demonstrate that the degree distribution plays an
important role in this decision.

4 Experimental Evaluation

With the simple performance models introduced in the previous section, we
expect that push and pull perform best on graphs that have a (near) constant
degree, as this results in very good/perfect workload balance between all threads
within a warp. Correspondingly, we expect both to perform worse for graphs that
have large variation in degree.

In this section we empirically validate this hypothesis and measure the trade-
off between the extra work done by the edge based version against the impact



Quantifying the Performance Impact of Graph Structure 535

of workload imbalance for the push and pull versions. To do so, we ran all four
versions of PageRank (see Sect. 3) on multiple datasets, both real world datasets
from SNAP [11] and artifically generated graphs.

4.1 Experimental Setup

For running PageRank, we used a damping factor of 0.85. We ran the algorithm
for 30 iterations to avoid convergence differences. The results presented here con-
sist of the time the PageRank computation took, averaged over 30 runs, exclud-
ing data transfers to and from the GPU. We performed these measurements on
an NVIDIA K20 (an HPC-oriented GPU card, with lower memory bandwidth,
but larger global memory). We used version 5.5 of the CUDA toolkit.

In addition to the variations described in Sect. 3 we also implemented alter-
nate versions of the push and pull kernels, based on the work of Hong, et al.;
which showed a technique for achieving smoother load-balancing for vertex-
centric programming on the GPU, leading to speed-ups up to 16x for certain
graphs. [10]

For the edge-based implementation, we implemented both a struct-of-arrays
and array-of-structs implementation of our edge data structure. Array-of-structs
is a common optimisation technique on the CPU, but it is not clear whether the
same technique is an optimisation on the GPU, and we aimed to determine this
empirically.

To summarise we have 8 versions: edge-based using array-of-structs, edge-
based using struct-of-arrays, push, pull, optimised pull, plus warp-optimised ver-
sions of the latter three. For the warp versions we have tried warp sizes 1, 2, 4, 8,
16, 32, and 64 with chunk sizes ranging from 1 to 10 times the warp size. All these
versions are available online at https://github.com/merijn/GPU-benchmarks.

We have selected 19 datasets from several different classes of graphs from the
SNAP [11] repository. These include citation, collaboration, social, computer,
and road networks. The characteristics of the datasets are presented in Table 1.

4.2 Results

In Fig. 1, we show the normalised results of our experiments, meaning that the
worst performing implementation of PageRank for each graph is plotted as 1,
and all the others are fractions of the worst performing variant (i.e., lower is
better, and the lower the bar, the higher the performance gap). For readability
reasons we filtered out all the warp implementations of push and pull that did
not perform faster than any other implementation.

Our initial hypothesis of push and pull performing best on graphs with con-
stant degree is confirmed by the performance measured on our artificial graphs
with fixed degrees. Both push and the optimised pull win on all but one of these.
We also see them performing well on the road networks. This is not surprising,
because the road networks have fairly little variation in terms of the degree of
nodes (the highest degree is 6). On the other hand, star presents a worst-case sce-
nario for push and pull, having a completely imbalanced workload. As confirmed
by the large performance gap in the results for that graph.

https://github.com/merijn/GPU-benchmarks


536 M. Verstraaten et al.

Table 1. Our 7 synthetic graphs, followed by the 12 real world graphs from SNAP.

No Graph |V | |E| Description

1 chain 1000000 1,000,000 2,000,000 Bidirectional chain

2 star 1000000 1,000,000 2,000,000 Star

3 degree4 1000 999,999 4,000,000 Two dimensional mesh

4 degree6 100 999,999 6,000,000 Three dimensional mesh

5 degree 5 16 1,048,575 10,485,760 Constant out-degree 10

6 degree 10 4 1,048,575 20,971,520 Constant out-degree 20

7 degree 20 2 1,048,575 41,943,040 Constant out-degree 40

8 as-Skitter 1,696,415 22,190,596 Internet topology graph

9 cit-Patents 3,774,768 16,518,948 Citation network among US Patents

10 email-EuAll 265,214 420,045 Email from a EU research institution

11 Facebook 4,039 176,468 Social circles from Facebook

12 Gplus 107,614 13,673,453 Social circles from Google+

13 roadNet-CA 1,965,206 5,533,214 Road network CA

14 roadNet-TX 1,379,917 3,843,320 Road network TX

15 soc-LiveJournal1 4,847,571 68,993,773 LiveJournal online social network

16 Twitter 81,306 1,768,149 Social circles from Twitter

17 web-BerkStan 685,230 7,600,595 Web graph of Berkeley and Stanford

18 web-Google 875,713 5,105,039 Web graph from Google

19 wiki-Talk 2,394,385 5,021,410 Wikipedia talk comm. network

We note that even under ideal circumstances for push and pull, the edge-
based implementation is not far behind in terms of performance, despite per-
forming substantially more work than push and pull.

We also observe that there is very little difference between the two edge-
based implementation. Surprisingly, these results show that the array-of-structs
optimisation used to exploit cache locality on the CPU has no significant impact
on the algorithm’s performance on the GPU. In fact, it appears to be marginally
slower on all graphs.

Another, perhaps surprising, result is that the warp versions of push and
pull inspired by [10] almost never win in terms of performance. The trade-off
made by the warp-optimisation is that it tries to smooth the load-balancing
by performing more work than the pure vertex-centric code. As a result it is
somewhere between edge-based and the push or pull based version. As a result
it load-balances less well than edge-based, but has more overhead than push/pull
for the ideal constant degree graphs. As such, its performance appears to combine
the worst of both worlds.

4.3 Sorted Graphs

Vertices within a warp having different degrees result in workload-imbalance
for the push and pull algorithms. Sorting the vertices within a graph by their



Quantifying the Performance Impact of Graph Structure 537

Fig. 1. Normalized performance of the PageRank implementations for our 19 graphs
running on NVIDIA K20. The worst performing implementation is used for normal-
ization - i.e., lower is better, and the lower the value, the higher the gap to the worst
performing version (Color figure online).

degree would ensure that all vertices are neighboured by vertices of similar degree
in the Compressed Sparse Row (CSR) representation, reducing the workload
imbalance.

What we found is that sorting the vertices changes the caching and contention
patterns change. The result is that in about half the cases sorting the graph
vertices had no impact on the performance. In the half where it did have an
impact, the results vary. For example, in Fig. 2a we see that the sorted graphs
result in a substantially slower push and pull performance. On the other hand,
in Fig. 2b we note an improvement for these same implementations.

Overall, our results demonstrate that different implementations of basic
graph operations do depend on the structure of the input graph, as seen by the
significant fluctuations in the performance of three out of four implementations
on different graphs. Additionally, they illustrate that effective load-balancing is
the most important feature to obtain good performance from the GPU.

Our experiments with sorting demonstrate that fixing the load-balancing for
push and pull is not as straightforward as simply sorting the vertices within a
graph by their degree. This due to changes in caching and contention patterns.
With the exception of the cit-Patents results shown in Figure 2b, the sorting did
not impact which algorithm was the best performing for a specific graph.



538 M. Verstraaten et al.

(a) twitter combined (b) cit-Patents

Fig. 2. Impact of sorting vertices by degree on PageRank performance (Color figure
online).

What remains to be seen is whether this apparent superiority of edge-based
neighbour iteration is an artifact of the PageRank algorithm we used for evalu-
ation, or whether this holds across different algorithms.

5 Related Work

Multiple studies already demonstrate the impact of different implementations of
the same graph processing algorithm on GPUs [3,10,13]. In most cases, however,
such research focuses on different design, implementation, and tuning options
which can be applied to favour the (hardware) platform, without paying atten-
tion to the datasets. In this work, we focus on the performance impact that
graphs have on the efficiency of these optimizations, determining whether an
unfriendly graph can render a given optimization useless.

Another line of research focuses on applications designed for a specific class
of algorithms — e.g., efficient traversing of road networks [4] — where the prop-
erties of the graphs are taken into account when constructing the algorithm.
However, this approach lacks generality, as such algorithms will simply not work
for other classes of graphs. We instead aim to rank generic graph-processing
solutions by their performance on different types of graphs.

Finally, several studies have observed the impact of graphs on the perfor-
mance achieved by various graph processing systems [5,7–9,12,17,18], yet most
of them have analyzed this dependency at the level of the full algorithm, not
at the level of its basic operations. In our work, we focus on a systematic, fine-
grained analysis, performed at the level of basic graph operations. We believe
this bottom-up approach is key to providing a performance-aware design for new
graph processing systems.



Quantifying the Performance Impact of Graph Structure 539

6 Conclusion

With the increased diversity of hardware architectures, different algorithms and
implementations are being developed for regular graph operations. In this paper,
we have studied four different strategies to implement neighbour iteration, and
demonstrated their usability in PageRank. Further, focusing on the performance
of PageRank on 19 different datasets, we demonstrated that different strategies
have different performance behavior on different datasets.

In the near future, we will work to validate and improve our performance
models. We plan to expand our experiments to other algorithms to investigate
whether the apparent superiority of edge-based neighbour iteration is an artifact
of PageRank, or an intrinsic property of neighbour iteration. Additionally we
plan to expand this work to other graph processing primitives, such as common
neighbour iteration, as found in triangle counting/listing.

References

1. Graph500. http://graph500.org
2. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.W.: Challenges in parallel

graph processing. Parallel Process. Lett. 17, 5–20 (2007)
3. Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs

on GPUs. In: 2012 IEEE International Symposium on Workload Characterization
(IISWC), pp. 141–151. IEEE (2012)

4. Delling, D., Kobitzsch, M., Werneck, R.F.: Customizing driving directions with
GPUs. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014 Parallel
Processing. LNCS, vol. 8632, pp. 728–739. Springer, Heidelberg (2014)

5. Elser, B., Montresor, A.: An evaluation study of bigdata frameworks for graph
processing. In: Big Data (2013)

6. Gharaibeh, A., Costa, L.B., Santos-Neto, E., Ripeanu, M.: On graphs, GPUs, and
blind dating: a workload to processor matchmaking quest. In: IPDPS, pp. 851–862
(2013)

7. Guo, Y., Biczak, M., Varbanescu, A.L., Iosup, A., Martella, C., Willke, T.L.: How
Well do graph-processing platforms perform? an empirical performance evaluation
and analysis. In: IPDPS (2014)

8. Guo, Y., Varbanescu, A.L., Iosup, A., Epema, D.: An empirical performance eval-
uation of GPU-enabled graph-processing systems. In: CCGrid 2015 (2015)

9. Han, M., Daudjee, K., Ammar, K., Ozsu, M.T., Wang, X., Jin, T.: An experimental
comparison of pregel-like graph processing systems. Proc. VLDB Endowment 7,
1047–1058 (2014)

10. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algo-
rithms at maximum warp. In: ACM SIGPLAN Notices. vol. 46, pp. 267–276. ACM
(2011)

11. Leskovec, J.: Stanford Network Analysis Platform (SNAP). Stanford University
(2006)

12. Lu, Y., Cheng, J., Yan, D., Wu, H.: Large-scale distributed graph computing sys-
tems: an experimental evaluation. Proc. VLDB Endowment 8, 281–292 (2014)

13. Merrill, D., Garland, M., Grimshaw, A.S.: Scalable GPU graph traversal. In:
PPOPP 2012, New Orleans, LA, USA. pp. 117–128, February 2012

http://graph500.org


540 M. Verstraaten et al.

14. Nasre, R., Burtscher, M., Pingali, K.: Data-driven versus topology-driven irregular
computations on gpus. In: 2013 IEEE 27th International Symposium on Parallel
& Distributed Processing (IPDPS), pp. 463–474. IEEE (2013)

15. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical report 1999–66, Stanford InfoLab, previous
number = SIDL-WP-1999-0120, November 1999. http://ilpubs.stanford.edu:8090/
422/

16. Penders, A.: Accelerating graph analysis with heterogeneous systems. Master’s
thesis, PDS, EWI, TUDelft, December 2012

17. Satish, N., Sundaram, N., Patwary, M.A., Seo, J., Park, J., Hassaan, M.A., Sen-
gupta, S., Yin, Z., Dubey, P.: Navigating the maze of graph analytics frameworks
using massive graph datasets. In: SIGMOD (2014)

18. Varbanescu, A.L., Verstraaten, M., Penders, A., Sips, H., de Laat, C.: Can porta-
bility improve performance? an empirical study of parallel graph analytics. In:
ICPE 2015 (2015)

http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/

	Quantifying the Performance Impact of Graph Structure on Neighbour Iteration Strategies for PageRank
	1 Introduction
	2 Background
	2.1 PageRank
	2.2 The GPU Architecture

	3 Design and Implementation
	3.1 Four PageRank Versions
	3.2 Estimating Performance
	3.3 Parallel Performance

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 Sorted Graphs

	5 Related Work
	6 Conclusion
	References


