
Accelerating Minimum Spanning Forest
Computations on Multicore Platforms

Guojing Cong(B), Ilie Tanase, and Yinglong Xia

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
{gcong,tanase,yxia}@us.ibm.com

Abstract. We propose new approaches for accelerating minimum span-
ning forest algorithms on shared-memory platforms. Our approaches
improve cache performance and reduce synchronization overhead of the
base algorithms. On our target platform these optimizations achieve
up to an order of magnitude speedup over the best prior parallel Borůvka
implementation.

Keywords: Minimum spanning forest · Locality · Synchronization

1 Introduction

Minimum spanning forest (MSF) and its special case minimum spanning
tree (MST) are fundamental graph problems with practical applications (e.g.,
[3,10,17,18]). For MSF and MST, there exist a randomized time-work optimal
algorithm and a deterministic logarithmic time algorithm on EREW PRAM
[11,21], and a communication-optimal algorithm on BSP [1]. These theoreti-
cally fast algorithms have large constants in the asymptotic notation, and it is
challenging to implement them for high performance. Moreover, these algorithms
are not optimized for memory subsystem performance that is critical for modern
architectures.

Recent experimental studies for MSF and related problems focus primarily
on reducing the algorithmic overhead (e.g., see [4,6,20]). Implementations with
more branches but fewer operations are shown to have performance advantages
for the spanning tree (SF) and connected components (CC) problems (e.g., see
[20]). Some breadth-first search (BFS) implementations optimize for the topol-
ogy of specific inputs (e.g., low-diameter graphs) [5,7]. Agarwal et al. employ
a bit-map data structure and optimize the locking mechanism for parallel BFS
[2]. Hong et al. optimize the queues used in BFS [15] for bandwidth utiliza-
tion. In general, these algorithms still exhibit random memory access behavior
that results in poor memory subsystem performance. Some MSF implementa-
tions employ fine-grain synchronization with the number of locks scaling linearly
with the input size. These implementations perform well on inputs of moderate
sizes [12]. For large inputs they can exacerbate poor cache performance as their
accesses are also random.

c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 541–552, 2015.
DOI: 10.1007/978-3-319-27308-2 44

542 G. Cong et al.

We consider improving locality and reducing synchronization to accelerate
existing MSF implementations. Different from prior efforts that reduce the num-
ber of operations, the approaches we propose execute more instructions but with
better locality. We propose three approaches that range from simple to sophisti-
cated with different degrees of performance gain. The first approach implements
graph contraction by updating the input data structure to improve locality. The
second approach partitions the input edges and processes them in groups. The
algorithm exhibits increasingly better locality as each group is processed. The
third approach applies PRAM simulation on parallel memory accesses to remove
locks and improve locality. Our optimization achieves up to an order of magni-
tude speedups over the base MSF implementation on our target platform.

We experiment with the most challenging types of graphs in terms of locality,
that is, random graphs and scale-free graphs [14]. The input graph is represented
as G = (V,E), with |V | = n and |E| = m. We create a random graph with n
vertices and m edges by randomly adding m unique edges to the vertex set. Scale-
free graphs are generated using the R-MAT model [9] with a= 0.45, b = 0.15,
c = 0.15, d = 0.25. To complement these small diameter synthetic graphs, we
also include six real-world networks from computer vision and social media. We
defer their introduction to Sect. 6.

The rest of the paper is organized as follows. Section 2 introduces the base
MSF algorithm that we optimize and our target platform. Section 3 presents the
approach that compacts the input through edge updates. Section 4 introduces the
meta algorithm that processes the edges in groups. Section 5 presents PRAM sim-
ulation that reduces synchronization and improves locality. Section 6 combines
two meta approaches, and compares the performance of various implementations
on both synthetic and real-world inputs. In Sect. 7 we give our conclusion and
future work.

2 Base MSF Algorithm and Target Platform

For a weighted graph G = (V,E), Borůvka start with n isolated vertices and
m processors. Each processor inspects an edge (u, v) ∈ E, and if (u, v) has the
minimum weight among all edges incident to u or v, (u, v) is labeled as an edge
in the MSF. An edge (u, v) in the MSF causes grafting of one endpoint u to the
other endpoint v or vice versa. Grafting creates k ≥ 1 connected components
in the graph, and each of the k components is then shortcut to a single super-
vertex. One pass of graft and shortcut constitutes a Borůvka iteration. Grafting
and shortcutting continue on the reduced graph G′ = (V ′, E′) with V ′ being the
set of super-vertices and E′ being the set of edges among super-vertices until no
grafting is possible.

Several implementations based on Borůvka are evaluated on symmetric mul-
tiprocessors by Bader and Cong [4]. Bor-AL employs parallel sort in graft, while
Bor-FAL introduces a data structure that significantly reduces the cost of com-
pacting the input. A hybrid algorithm is also proposed for MST that marries
Borůvka with Prim. We choose a variant of Borůvka that uses locks [12] as

Accelerating Minimum Spanning Forest Computations 543

our base MSF algorithm. It does not rely on other subroutines such as sort,
and it uses roughly half of the memory consumed by Bor-AL and Bor-FAL. Its
Borůvka iteration is shown in Algorithm1. Due to limited space, for an edge
(u, v), only grafting for vertex u is presented. In the algorithm, I[i] and Min[i],
1 ≤ i ≤ n, represent the MSF edge (if any) incident to i and its weight, respec-
tively. D[i] is the supervertex that vertex i belongs to. At completion F contains
the MSF edges found so far. Algorithm2 shows the Borůvka algorithm.

Algorithm 1. Borůvka-iter(E, D)
1: F ← ∅
2: for 1 ≤ i ≤ n in parallel do
3: Min[i] ← ∞
4: end for

{graft}
5: for each e = (u, v) ∈ E in parallel do
6: lock(D[u])
7: if D[u] �= D[v] and Min[D[u]] > w(e)

then
8: Min[D[u]] ← w(e)
9: D[D[u]] ← D[v]

10: I[D[u]] ← {e}
11: end if
12: unlock(D[u])
13: end for
14: for 1 ≤ i ≤ n in parallel do
15: F ← F ∪ I[i]
16: end for

{ shortcut }
17: for 1 ≤ i ≤ n in parallel do
18: while D[i] �= D[D[i]] do
19: D[i] ← D[D[i]]
20: end while
21: end for
22: return F

Algorithm 2. Borůvka (E, D)
1: F ← ∅
2: for 1 ≤ i ≤ n in parallel do
3: D[i] ← i, I[i] ← ∅
4: end for
5: repeat
6: F ← F ∪ Borůvka-iter(E, D)
7: until no grafting possible
8: return F

Algorithm 3. Borůvka-updt (E, D)
1: F ← ∅
2: for 1 ≤ i ≤ n in parallel do
3: D[i] ← i, I[i] ← ∅
4: end for
5: repeat
6: F ← F ∪ Borůvka-iter(E, D)
7: for each (u, v) ∈ E in parallel do
8: (u, v) ← (D[u], D[v])
9: end for

10: until no grafting possible
11: return F

Our target platform is an IBM P755 with four Power7 chips. Each chip has
8 cores running at 3.61GHz, with each core capable of four-way simultaneous
multithreading. There are 12 execution units per core shared by the 4 hardware
threads. Each core has 32KB L1, 256KB L2, and 4MB L3 caches.

Our experiments show that for large random graphs and scalefree graphs
between 73 % and 81 % of machine cycles are wasted on cache misses for
Borůvka, and only less than 1 % of time is spent on shortcut. Improving locality
for graft can potentially reduce the execution times of Borůvka.

3 Update Edges for Locality

Accesses to D, min and I at lines 6–12 in Algorithm 1 are irregular. If (u, v)
is the minimum-weight edge between the two components represented by D[u]

544 G. Cong et al.

 10

 100

 1000

 10000

 1 2 4 8 16 32 64 128

tim
e

(s
ec

on
ds

)

threads

Random graph (100M vertices, 400M edges)

Bor-lock
Bor-updt

Stages
Simu

AL
Stages+Simu

Fig. 1. Random graph

 10

 100

 1000

 10000

 1 2 4 8 16 32 64 128

tim
e

(s
ec

on
ds

)

threads

Scalefree graph (100M vertices, 1B edges)

Boruvka
updt

stages
simu

stgspsimu

Fig. 2. Scalefree graph

and D[v], the algorithm creates a union of the two by grafting one component
to the other. While memory accesses to D[u]s, D[v]s and etc. determined by
edges (u,v) ∈ E are random, the D values evolve in a pattern that can be
exploited for improving locality. In Borůvka, each iteration reduces the number
of unique D values (at least by half for the largest connected component in the
graph). Instead of retrieving the current components using u and v as indices,
we introduce an update step after each Borůvka iteration that replaces each
edge (u, v) with (D[u],D[v]). The revised algorithm Borůvka-updt is shown in
Algorithm 3. The update step is done at lines 7–9.

The update step in Borůvka-updt increases the total number of operations
and memory accesses in comparison to Borůvka (Algorithm 2). Indeed 2m extra
memory accesses to D are issued at line 8 in each iteration. However, update
makes accesses at lines 6–12 in Algorithm 1 increasingly more regular after each
iteration. Indeed, the accesses at line 8 of Algorithm 3 themselves become more
regular. This is because as the algorithm progresses, it becomes increasingly
more likely for the two endpoints of an edge to touch on the same component
(super-vertex).

We evaluate the performance improvement of Borůvka-updt over Borůvka
on P755. The results with a random graph of 100 million (M) vertices and 400M
edges and a scalefree graph of 100M vertices, 1 billion (B) edges are shown in
Figs. 1 and 2, respectively. Speedups between 1.21 and 1.48 are achieved for the
random graph, and speedups between 1.19 and 1.48 are achieved for the scalefree
graph. The observed improvement is clearly due to better cache performance
although more instructions are executed in Borůvka-updt .

4 Stages

Borůvka-updt is quite simple with modest performance gain. We propose a more
sophisticated meta algorithm, Stages, that further improves cache performance.

Stages first partitions the edges in E into groups, E1, E2, · · · , Eg, with |Ei| >
n/2 (1 ≤ i ≤ g − 1) except possibly for Eg. Then Borůvka is applied to the
subgraph induced by E1. All resulting connected components are contracted to

Accelerating Minimum Spanning Forest Computations 545

super-vertices, and the endpoints of each edge in E2 are updated. Again Borůvka
is applied to the subgraph induced by E2. Stages continues until all edge groups
are processed. When Stages terminates, an MSF for graph G is computed.

Let wmin(Ei) and wmax(Ei) be the minimum weight and maximum weight
of edges in Ei, respectively. Algorithm 4 gives the formal description of Stages.

Algorithm 4. Stages(E, D)

1: F ← ∅
2: for 1 ≤ i ≤ n do
3: D[i] ← i
4: end for
5: Partition E into g groups E1, E2, · · · ,

Eg with wmin(Ei) ≥ wmax(Ei−1), 2 ≤
i ≤ g

6: for 1 ≤ i ≤ g do

7: F ← F ∪ Borůvka (Ei, D)
8: if i < g then
9: for (u, v) ∈ Ei+1 in parallel do

10: (u, v) ← (D[u], D[v])
11: end for
12: end if
13: end for
14: return F

We prove that Stages indeed computes a minimum spanning forest of G. We
first show that F is a spanning forest.

Lemma 1. The edges found by Stages form a spanning forest.

Proof. Algorithm 4 repeatedly invokes Borůvka on the groups of edges. For each
group, shortcut is done on D so that all vertices in the same connected com-
ponent so far will have the same D value. When Stages terminates, for each
vertex u ∈ V , D[u] represents the final connected component u belongs to. So
F is a spanning graph of G. In a Borůvka iteration, a vertex (or super-vertex)
is grafted at most once by an edge, thus F is a forest.

Theorem 1. Stages computes a minimum spanning forest.

Proof. We assume without loss of generality that no two edges in G have the
same weight. Denote the set of edges found by Borůvka and Stages FB and FS ,
respectively. For any edge e ∈ FB , we show e ∈ FS . In the beginning, the D
values for the two endpoints of e are different. Suppose e is processed in group
Ej , 1 ≤ j ≤ g. After E1, · · · , Ej−1 are processed, the D values for the two
endpoints can not be the same. Otherwise there exists a path in FS connecting
the two endpoints, and the weights of the edges on the path are all smaller than
w(e). Thus e �∈ FB by the cycle property, a contradiction. As Stages invokes
Borůvka with Ej , it computes a minimum spanning forest of a graph with e
as one of its edges. The D values of the two endpoints of e must converge. The
convergence must be caused by e, otherwise by the Borůvka algorithm, again
there exists a path in Ej connecting the two endpoints of e with the weights of
the edges less than w(e), thus another contradiction. So FB ⊆ FS . By lemma 1,
|FB | = |FS |, so FB = FS .

546 G. Cong et al.

For large inputs the conflicts among processors competing for the same locks
are rare. With p processors Borůvka takes O

(
m+n

p log2 n
)

time. Let the number

of edges in Ei be q ·n, 1/2 < q ≤ m/n, Stages takes O
(

m
pqn (qn + n) log2 n + m

p

)

time. Borůvka and Stages have the same asymptotic complexity when qn =
Θ(m). Stages degenerates into Borůvka when qn = m. In general Stages has
more operations than Borůvka.

Let us consider the impact of processing the edges in groups on locality.
After E1 is processed and the MSF is computed for the induced graph, some con-
nected components are formed and then contracted into super-vertices. Updating
the endpoints of edges in E2 with their super-vertices increases the probability
that either the two endpoints of an edge are within one component or multiple
edges are incident to the same components. Thus we expect E2 be processed
much faster than E1. The components subsume even more vertices after E2 is
processed, and are again contracted into super-vertices. As Stages progresses,
more and more accesses to D, Min and I become regular (cache hits). The way
the graph contracts is dependent on the input topology and weight distribu-
tion. Assuming all edges incident to a vertex (or super-vertex) have the same
probability of being in the MSF, according to a theorem (see Theorem 2) of
evolution random graph theory, a fairly large number of vertices will contract
to a single super-vertex. As a result, Stages is expected to have better locality
than Borůvka for many graphs.

Theorem 2. Under the Erdös-Rényi model there is a unique giant component
of order f(c)n in the graph when m ∼ cn with c > 1/2. Function f(c) = 1 −
1
2c

∑∞
k=1

kk−1

k! (2ce−2c)k approaches 1 as c increases [19].

A routine similar to sample sort is used in our implementation to distribute
E into g buckets. Note that a full sort is not necessary for our purpose. Due to
limited space we do not present the details of the partitioning algorithm.

Figures 3 and 4 show the performance improvement of Stages over Borůvka
on a random graph with 100M vertices, 400M edges and a scalefree graph with

 4

 4.5

 5

 5.5

 6

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

stages

Fig. 3. Random graph

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

stages

Fig. 4. Scalefree graph

Accelerating Minimum Spanning Forest Computations 547

100M vertices, 1B edges. The speedups achieved are between 4.5 to 5.5 for the
random graph and between 10.2 to 11.5 for the scalefree graph.

5 PRAM Simulation

Locks in Borůvka (Algorithm 2) not only incur conflicts among processors but
also exacerbate poor cache performance for large inputs as accesses to them are
also random.

To reduce synchronization overhead, we adopt a PRAM simulation technique
for simulating CRCW PRAM algorithms on EREW PRAM [13,23]. We cast
Borůvka to the priority CRCW model where a priority function (min, in our
case) resolves the conflict of concurrent writes. That is, when current writes to
the same location occur, the one with the smallest value wins, and all others
abort. The algorithm is then simulated on EREW PRAM. When implemented
on multicore machines, all grafting actions on a vertex are grouped together and
executed by one single processor.

ER implements concurrent reads, shown in Algorithm 5. Algorithm 5 imple-
ments indirect parallel accesses of D through R, that is, C[i] ← D[R[i]], 1 ≤ i ≤
m̄, |R| = m̄, |D| = n̄. Lines 1–8 partition R and D into blocks (one per each
processor), and group the access requests in R according to the target processor
that owns the D block being accessed. At lines 9–13, each processor serves access
requests to its block so that at any time there is only one processor accessing
any element of D. At lines 14–19 each processor sends its retrieved D values to
the requesting processors, and at lines 20–24 the D values are matched to the
requests. In the algorithm, ⊕ is a concatenation operator.

Algorithm 5. ER (C, D, R, n̄, m̄, p)

1: divide R and D into p blocks of size
s = m̄/p and w = n̄/p, respectively

2: for 1 ≤ k ≤ p in parallel do
3: sort Rk and store original location

of jth element in Pk[j], 1 ≤ j ≤ s
4: partition Rk into p blocks Rj

k, 1 ≤
j ≤ p, such that ∀r ∈ Rj

k,
r
s

= j
5: end for
6: for 1 ≤ j ≤ p in parallel do
7: R′

j ← ⊕p
k=1R

j
k

8: end for
9: for 1 ≤ k ≤ p in parallel do

10: for 1 ≤ j ≤ |R′
k| do

11: Sk[j] ← Dk[R
′
k[j]]

12: end for

13: end for
14: for 1 ≤ k ≤ p in parallel do
15: partition Sk into p consecutive

blocks Sj
k, 1 ≤ j ≤ p, such that

|Sj
k| = |Rj

k|
16: end for
17: for 1 ≤ k ≤ p in parallel do
18: S′

k ← ⊕p
j=1S

k
j , 1 ≤ k ≤ p

19: end for
20: for 1 ≤ k ≤ p in parallel do
21: for 1 ≤ j ≤ s do
22: Ck[Pk[j]] ← S′

k[j]
23: end for
24: end for
25: C ← ⊕p

k=1Ck

548 G. Cong et al.

Algorithm 6. EW(W , D, R, n̄, m̄, p)

1: divide R, W , and D into p blocks of size
s = m̄/p, s = m̄/p, and w = n̄/p, respec-
tively

2: for 1 ≤ k ≤ p in parallel do
3: sort Rk and Wk and store original

location of jth element in Prk[j] and
Pwk[j], 1 ≤ j ≤ s, respectively

4: partition Rk and Wk into p blocks Rj
k,

and W j
k , 1 ≤ j ≤ p, respectively, such

that ∀r ∈ Rj
k,

r
s
= j, ∀r ∈ W j

k ,
r
s
= j

5: end for

6: for 1 ≤ j ≤ p in parallel do
7: R′

j ← ⊕p
k=1R

j
k

8: W ′
j ← ⊕p

k=1W
j
k

9: end for
10: for 1 ≤ k ≤ p in parallel do

11: for 1 ≤ j ≤ |R′
k| do

12: Dk[R
′
k[j]] ← min(Dk[R

′
k[j]],W

′
k[j])

13: end for
14: add edges for winning writes to F
15: end for

16: return F

The concurrent writes are done collectively through EW with the min prior-
ity function, shown in Algorithm6. Similar to Algorithm5, lines 1–9 partition the
write requests (in R) and values (in D) into blocks, and group requests according
to the target processor that owns the D block. At lines 10–15 a processor writes
the data to the D location applying the min function. There are no concurrent
writes to D at any time. With ER and EW, the Borůvka iteration is transformed
into Algorithm 7. Note fine-grain synchronization is no longer needed.

Algorithm 7. Simu (E, D)

1: F ← ∅
2: for 1 ≤ i ≤ n in parallel do
3: I[i] ← ∅
4: end for
5: for 1 ≤ i ≤ m in parallel do
6: let (u, v) = ei ∈ E
7: A[2 ∗ i − 1] ← u, A[2 ∗ i] ← v
8: end for
9: call ER(C,A,D, n, 2 ∗ m, p)

10: for 1 ≤ i ≤ m in parallel do
11: du ← C[2 ∗ i − 1], dv ←, C[2 ∗ i]

12: if Min[D[du]] > w(ei) then
13: R[i] ← dv, W [i] ← w(ei)
14: end if
15: end for
16: F ← F ∪ EW (W,D,R,min, n,m, p)
17: for 1 ≤ i ≤ n in parallel do
18: while D[i] �= D[D[i]] do
19: D[i] ← D[D[i]]
20: end while
21: end for
22: return F

Algorithm 7 (Simu) also has better locality than Algorithm 1 as random
accesses to D are transformed into multiple random accesses to blocks of D.
When these blocks fit in cache, performance can be improved.

The performance improvement for a random graph of 100M vertices, 400M
edges and a scalefree graph of 100M vertices, 1B edges is shown in Fig. 5. The
speedups are between 2.5 to 11 for the random graph and between 3 and 9 for
the scalefree graph (Fig. 6).

Accelerating Minimum Spanning Forest Computations 549

 2

 4

 6

 8

 10

 12

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

Simu

Fig. 5. Random graph

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16 32 64 128

sp
ee

du
p

threads

Simu

Fig. 6. Scalefree graph

Fig. 7. In log − log plot

 10

 100

 1000

 10000

 1 2 4 8 16 32 64 128

tim
e

(s
ec

on
ds

)

threads

Scalefree graph (100M vertices, 1B edges)

Boruvka
updt

stages
simu

stgspsimu

Fig. 8. In log − log plot

6 Combining Stages and PRAM Simulation

Both Stages and Simu are meta approaches that improve the performance of
existing MSF algorithms. Stages exploits the properties of both the input and the
Borůvka iteration to improve locality, while Simu reduces synchronization and
improves cache performance through scheduling the memory accesses. Stages is
specific to the “graft-and-shortcut” pattern, while Simu can be applied to many
irregular algorithms. We combine the two approaches. That is, we use Simu as
the base algorithm for Stages. In Algorithm 4, instead of calling Algorithm2 at
line 7, we call Algorithm 7. We call this approach Stages+Simu.

Figures 7 and 8 show the performance of Borůvka, Borůvka-updt , Stages
with Borůvka, Simu, and Stages+Simu for a random graph with 100M ver-
tices, 400M edges and a scalefree graph with 100M vertices, 1B edges. For both
inputs, Borůvka-updt is faster than Borůvka. Stages and Simu are faster than
Borůvka-updt . For the random graph, Simu is faster than Stages, while for
the scalefree graph, Stages is faster than Simu. Stages+Simu is consistently
the fastest among all implementations. Stages+Simu is more than an order of
magnitude faster than the base implementation.

550 G. Cong et al.

Table 1. networks

Network Vertices Edges

Bone 7798786 202895861

Adhead 12582914 327484556

Along 144441346 867447553

Journal 4846609 85702474

Phone 73037362 1248697024

Twitter 41652230 1468365181

Random 100M 400M

Scalefree 100M 1B

 2

 4

 6

 8

 10

 12

 14

 16

 18

ablong adhead bone journal phone twitter random scalefree

sp
ee

du
p

input

Speedups

stgs+simu

Fig. 9. Speedups

We next compare the performance of Stages+Simu with the best prior par-
allel MSF implementations on several networks. In addition to the synthetic
graphs, we include two classes of real-world networks shown in Table 1. The
first class contains three computer vision networks (bone, adhead , and ablong)
constructed from the images from Siemmens Corporation Research and Robarts
Research Institute [8]. A vertex is placed on a 2D or 3D grid corresponding
to the pixels (or voxels). Edges connect the vertex to other vertices within the
standard 8- (or 26-) neighborhood. These networks have regular structures and
small weights. The second class of networks are social networks. These networks
capture social relationships among entities. journal is a snapshot of the friend-
ship network of the LiveJournal on-line blogging community [22]. phone records
the phone calls whose origination or termination involve users in Cambridge,
MA. twitter is a snap shot of the twitter networks [16]. The social networks are
assigned random weights.

Figure 9 shows the speedups of Stages+Simu over the best prior parallel
implementation (the fastest among Bor-AL, Bor-FAL, and Borůvka) at 32
threads. The range of speedups is between 2 to 17. The speedups are relatively
modest for the vision networks (on average 2.43). This is largely due to the small
weights and the regularity in the network. The speedups are larger for social net-
works. For phone the speedup is 8.4. The speedup for twitter is 3.1. Although
twitter has more edges than phone, it has much fewer vertices. Recall that poor
locality in Borůvka is associated with accessing D and Min with the vertices
as indices. Similar networks with more vertices will likely see more performance
improvement from Stages+Simu. Both random and scalefree have more vertices
(100M), and for them the speedups are 14.4 and 16.7, respectively.

7 Conclusion and Future Work

We present accelerating minimum spanning forest computations through a series
of meta algorithms. We improve locality and reduce synchronization for existing
MSF implementations. The three approaches range from simple to sophisticated
with different degrees of performance gain. Stages+Simu combines two different

Accelerating Minimum Spanning Forest Computations 551

locality optimization approaches and can drastically improve the performance of
MSF algorithms. Stages+Simu is up to 17 times faster than the base Borůvka
implementation for synthetic graphs, and it is between 2 to 9 times faster for
vision networks and social networks. As networks in applications become larger,
locality optimization such as ours becomes even more critical to achieving high
performance on current and future platforms.

In future work we will study optimization of graph algorithms on GPUs and
a cluster of GPUs. We will evaluate the effectiveness of approaches presented
in our study. We will also study architectural support for efficient execution of
graph algorithms on current and emerging architectures.

References

1. Adler, M., Dittrich, W., Juurlink, B., Kuty�lowski, M., Rieping, I.: Communication-
optimal parallel minimum spanning tree algorithms (extended abstract). In: SPAA
1998: Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms
and Architectures, pp. 27–36. ACM, New York (1998)

2. Agarwal, V., Petrini, F., Pasetto, D., Bader, D.: Scalable graph exploration on
multicore processors. In: Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC
2010, pp. 1–11. IEEE Computer Society, Washington, DC (2010)

3. An, L., Xiang, Q., Chavez, S.: A fast implementation of the minimum spanning
tree method for phase unwrapping. IEEE Trans. Med. Imaging 19(8), 805–808
(2000)

4. Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the min-
imum spanning forest of sparse graphs. In: Proceedings of the 18th Interna-
tional Parallel and Distributed Processing Symposium, IPDPS 2004, Santa Fe,
New Mexico, April 2004

5. Banerjee, D., Sharma, S., Kothapalli, K.: Work efficient parallel algorithms for large
graph exploration. In: 2013 20th International Conference on High Performance
Computing (HiPC), pp. 433–442, December 2013

6. Barnat, J., Bauch, P., Brim, L., Ceska, M.: Computing strongly connected compo-
nents in parallel on cuda. In: 2011 IEEE International Parallel Distributed Process-
ing Symposium (IPDPS), pp. 544–555, May 2011

7. Beamer, S., Asanović, K., Patterson, D.: Direction-optimizing breadth-first search.
In: Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, SC 2012, pp. 12:1–12:10. IEEE Computer
Society Press, Los Alamitos, CA, USA (2012)

8. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image
segmentation. Int. J. Comput. Vision 70(2), 109–131 (2006).
http://dx.doi.org/10.1007/s11263-006-7934-5

9. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph
mining. In: Proceedings of the 4th SIAM International Conference on Data Mining,
April 2004

10. Chen, C., Morris, S.: Visualizing evolving networks: minimum spanning trees versus
pathfinder networks. In: IEEE Symposium on Information Visualization, Seattle,
WA, October 2003

11. Chong, K.W., Han, Y., Lam, T.W.: Concurrent threads and optimal parallel min-
imum spanning tree algorithm. J. ACM 48, 297–323 (2001)

http://dx.doi.org/10.1007/s11263-006-7934-5

552 G. Cong et al.

12. Cong, G., Bader, D.A.: Lock-free parallel algorithms: an experimental study. In:
Bougé, L., Prasanna, V.K. (eds.) HiPC 2004. LNCS, vol. 3296, pp. 516–527.
Springer, Heidelberg (2004)

13. Fich, F., Ragde, P., Wigderson, A.: Simulations among concurrent-write prams.
Algorithmica 3(1–4), 43–51 (1988)

14. Goh, K.I., Oh, E., Jeong, H., Kahng, B., Kim, D.: Classification
of scale-free networks. Proc. Natl. Acad. Sci. 99, 12583 (2002).
http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cond-mat/0205232

15. Hong, S., Oguntebi, T., Olukotun, K.: Efficient parallel graph exploration on multi-
core CPU and GPU. In: 2011 International Conference on Parallel Architectures
and Compilation Techniques (PACT), pp. 78–88, october 2011

16. Kunegis, J.: KONECT - The Koblenz network collection. In: Proceed-
ings of the International Conference on World Wide Web Compan-
ion, pp. 1343–1350 (2013). http://userpages.uni-koblenz.de/kunegis/paper/
kunegis-koblenz-network-collection.pdf

17. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Coverage prob-
lems in wireless ad-hoc sensor networks. In: Proceedings of the INFOCOM 2001,
pp. 1380–1387. IEEE Press, Anchorage, April 2001

18. Olman, V., Xu, D., Xu, Y.: Identification of regulatory binding sites using minimum
spanning trees. In: Proceedings of the 8th Pacific Symposium on Biocomputing
(PSB 2003), pp. 327–338. World Scientific Pub., Hawaii (2003)

19. Palmer, E.: Graphical Evolution. Wiley-Interscience Series in Discrete Mathematic.
Wiley, New York (1985)

20. Patwary, M., Ref, P., Manne, F.: Multi-core spanning forest algorithms using the
disjoint-set data structure. In: Proceedings of the 2012 IEEE International Parallel
& Distributed Processing Symposium, IPDPS 2012, pp. 827–835. IEEE Computer
Society, Washington, DC (2012)

21. Pettie, S., Ramachandran, V.: A randomized time-work optimal parallel algorithm
for finding a minimum spanning forest. SIAM J. Comput. 31(6), 1879–1895 (2002)

22. Stanford SNAP Large Network Dataset Collection. http://memetracker.org/data/
index.html

23. Vishkin, U.: Implementation of simultaneous memory address
access in models that forbid it. J. Algorithms 4(1), 45–50 (1983).
http://dblp.uni-trier.de/db/journals/jal/jal4.html#Vishkin83

http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cond-mat/0205232
http://userpages.uni-koblenz.de/kunegis/paper/kunegis-koblenz-network-collection.pdf
http://userpages.uni-koblenz.de/kunegis/paper/kunegis-koblenz-network-collection.pdf
http://memetracker.org/data/index.html
http://memetracker.org/data/index.html
http://dblp.uni-trier.de/db/journals/jal/jal4.html#Vishkin83

	Accelerating Minimum Spanning Forest Computations on Multicore Platforms
	1 Introduction
	2 Base MSF Algorithm and Target Platform
	3 Update Edges for Locality
	4 Stages
	5 PRAM Simulation
	6 Combining Stages and PRAM Simulation
	7 Conclusion and Future Work
	References

