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Abstract. Characterization of communication patterns of parallel pro-
grams has been used to better understand the behavior of such pro-
grams as well as to predict performance of large scale applications. This
characterization could be performed by observing some communication
attributes like volume or spatial characteristics of message passing paral-
lel applications in different scenarios. This paper describes a methodology
to characterize parallel communication patterns using a graph visualiza-
tion tool in addition to a traditional monitoring tool that generates trace
files. Graph visualization tools are commonly used to analyze large net-
work connections existent in a variety of social or natural structures.
Although, since it is possible to represent large scale parallel programs
as graphs of communicating processes, this paper proposes a method-
ology that takes advantage of such kind of tool to aid in characterize
communication patterns.

1 Introduction

Basically, characterization of communication patterns in message passing par-
allel programs resides in to explore mainly three attributes of message passing
programs: spatial distribution, volume of messages and temporal distribution.
The spatial behavior is characterized by the distribution of messages destina-
tions. The volume of data transferred is characterized by the distribution of
message sizes and the average number of messages. The temporal behavior is
characterized by the distribution of message generation rate [12].

The importance of such characterization relies in a better understanding of
communication performance which has a crucial influence on the overall perfor-
mance of a parallel program. A proper understanding of communication behavior
of parallel applications may support the design of better communication subsys-
tems as well as help application developers to maximize their application per-
formance on a target architecture [21]. Usually, the methodology to characterize
communication patterns consists in to dynamically record communication events
and statistically analyze and organize those data post-mortem. The characteri-
zation data are commonly presented through bar graphs or tables. An example
of the characterization of communication patterns to improve the performance
of MPT [17] programs could be found in [15].
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This paper proposes an alternative perspective to characterize communica-
tion patterns in large scale parallel applications. The methodology consists in to
analyze the data recorded in a trace file by using a graph visualization tool
and some metrics based on complex networks theory. In order to do this task,
we first create a communication graph from an adjacency matrix. In this work,
this graph is extracted directly from the communication matrix generated by
EZTrace [18], a trace file generator. Second, the generated graph is loaded into
the Gephi graph visualization tool [3]. It includes several graph layout algorithms
to provide different views, as well as it provides some complex networks related
metrics that are also used in the characterization.

In order to construct a suitable visualization it is important to choose the best
layout algorithm as well as its parameters. In addition, tools like Gephi include
a variety of filters which help in highlight some specific features of communi-
cation links. Our methodology defines some applicable layout choices in order
to develop a relevant communication characterization. Specifically in this work,
we use a determined layout and some complex networks metrics to preliminarily
characterize the spatial and volume attributes of NAS parallel benchmarks [1].
The goal is to primary explore the methodology to demonstrate its potential.

As first results, the graph visualization and analysis allowed a topology char-
acterization that is not easily obtained by state-of-art parallel visualization tools.
After some tests with several layout options, it was possible to actually visualize
the toroidal stencil shape of SP-MZ NAS parallel benchmark as well as to ana-
lyze its behavior as it scales. This kind of characterization could be very useful
in the development phase of parallel applications.

Besides the benefits of the characterization itself, this proposal has the advan-
tage of using existing tools. As in [11], we also claim that this approach avoids
the high costs of building totally new visualization systems. The present work
preliminarily expose the potential of the technique while we develop more specific
ways to apply it to parallel systems by adding new information and temporal
behavior.

This paper is organized as follows. First it is presented some related work
and tools used in the methodology. After, it is described the methodology and
it is presented a case study along with primary conclusions.

2 Related Work

Several works on characterization of communication patterns in parallel pro-
grams have been proposed over the years that explore mainly three attributes
of message passing programs: temporal, spatial and volume. Besides, there are
other attributes like the communication locality, explored in [12].

In [21] both point-to-point and collective communications are considered. For
point-to-point they quantify the message type, message frequency, message size,
and message destinations. For collectives, they examine their type, frequency,
and payload. Their results show applications studied are sensitive to changes in
the system size and the problem size. Lee in [14] also measured the communi-
cation timing, sources and destinations, and message size distributions in order
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to characterize MPI programs. His experimental results also show such metrics
could be used to predict performance.

In [19] a set of applications is characterized along four dimensions: point-to-
point communication, collective communication, memory load operations, and
floating point operations. Particularly for point-to-point communication, they
measure distributions for number of messages, type, payload size, and size of
destination clique.

This work presents a different methodology based on graph visualization
and complex network theory. The first characterization provided is a topological
view of the parallel application, that was not provided by any of the above
mentioned related work. The first results show that is possible to easily visualize
processes connections that exhibit some regularity in communication patterns
and observe their behavior as the program scales. The topological view could be
further explored by applying filters as the graph visualization tools are mostly
interactive. Also, some common metrics from complex networks theory were used
to characterize the applications. Metrics like the average degree, graph density
and others were used to characterize the scalability of analyzed applications.

Besides previous work on characterization, it is also important to highlight
some visualization tools as well as recent work on parallel program visualization,
since in the present proposal graph visualization is key to characterization.

Vampir [13] is a parallel program visualization tool that provides a framework
for program analysis, which enables developers to display program behavior at
any level of detail. Performance data obtained from a parallel program execution
can be analyzed with a collection of different performance views. The present
work has no intention to repeat the level of detail provided by Vampir, but to
present a complementary perspective.

The work in [16] presents another way to evaluate parallel programs and
could be related to Vampir as another potential view. The work is related to
the present effort in the sense that it allows the visualization of large parallel
programs along with communication patterns. However, while their work is more
focused on hardware topology, this work addresses the application topology.

Before to present the methodology, we briefly approach some basic complex
network theory that are important to the characterization.

3 Complex Networks Basics

Graphs become increasingly important in modeling complicated and /or complex
structures, such as circuits, images, chemical compounds, protein structures, bio-
logical networks, social networks, the Web, workflows, and even XML documents
[8]. The research in graph mining and graph visualization is producing a large
collection of techniques and tools that could be useful in a variety of research
areas. This section explains how a large parallel message passing program can be
modeled as a graph of communicating processes as well as how complex networks
theory could help in characterizing communication patterns.

Recently, it can be observed a new movement of interest and research in the
study of complex networks, i.e. networks whose structure is irregular, complex
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and dynamically evolving in time, with the main focus moving from the analysis
of small networks to that of systems with thousands or millions of nodes [4].
The complex network theory is aimed mostly to analyze very large and dynam-
ical irregular networks, but some metrics and tools could also apply to regular
structures like the ones formed by processes in a parallel program.

A graph G, is a pair of sets (V, E), where V is a finite set of vertices and
E is a set of edges, each edge connecting a pair of vertices. In directed graphs
(digraphs), each edge has a direction and self-loops are allowed. In undirected
graphs, each edge is an unordered pair of vertices, thus the adjacency is sym-
metric. In weighted graphs, each edge has an associated weight, which is a value
assigned to the edge.

A large parallel program consists of hundreds or thousands of distributed
processes. These processes could be naturally modeled as vertices of a graph.
In order to execute a parallel algorithm, processes have to exchange messages,
which creates connections or links between pairs of processes. These communi-
cation operations could be modeled as the edges of a graph. The number or the
volume of messages exchanged could be assigned to the edges as their weight.
Considering these characteristics it is straightforward to think in a parallel pro-
gram as a graph whose attributes could characterize its communication patterns.

More information about complex networks theory can be found in [4,7]. In
this work we are particularly interested in metrics that are summarized below:

— Average degree: the degree of a node is the number of edges connected to
it, or, in this context, the number of neighbors or connections of a process. In
complex networks, the degree is used as one of the measures of centrality of a
node, and the degree distribution is largely used to characterize a network. In
this work, the average degree will be used to observe how the degree evolves
along with the scalability of a parallel program.

— Average shortest path length: this metric measures the typical separation
between two nodes in a graph and it is normally used to evaluate the transport
of communication in a network. In a parallel program, this transport occurs
in a regular way defined by the parallel algorithm. In the present work this
metric will be used to examine how is the behaviour of the parallel program
related to the distance among processes as the program scales.

— Average clustering coefficient: this metric is largely used, along with the
degree distribution, to characterize real complex networks, like social net-
works, for example. It measures where two individuals with a common friend
are likely to know each other [4]. In parallel programs this seems out of con-
text, but the idea here is that it could help to understand the parallel program
network if we can compare it to real networks.

— Graph density: this metric expresses the actual number of edges versus the
number of edges that would be present if the graph was complete. In social
networks, the density decreases as the network grows and our hypothesis is
this is also desirable for scalable parallel programs.
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3.1 Graph Visualization and Analysis

For graph visualization and analysis we chose Gephi [3], an open source net-
work exploration and manipulation software. Developed modules can import,
visualize, spatialize, filter, manipulate and export all types of networks.

Layout algorithms set the graph shape and it is the most essential operation.
Graphs are usually laid out with force-based algorithms. They follow a sim-
ple principle: linked nodes attract each other and non-linked nodes are pushed
apart. The Gephi tutorial, which could be found in [5], summarizes the layout
choices, for example, OpenOrd (emphasis in divisions), ForceAtlas, Yifan Hu,
Fruchterman-Reingold (emphasis in complementarities), and others.

The algorithms with emphasis in complementarities are used mostly to build
readable graphs, which could be very convenient also to apply filters. For the
representation of parallel programs our emphasis relies on the divisions or com-
plementarities among communicating processes. The Yifan Hu layout [10], for
example, has good results for large undirected graphs and could provide good
visualizations for parallel programs as will be presented in this paper.

4 Case Study: Characterizing NAS Parallel Benchmarks

This section presents the methodology and the first results on characterizing
parallel programs through graph visualization and complex networks metrics.
The NAS parallel benchmarks [2] were chosen for its large use for testing the
capabilities of parallel computers and parallelization tools. In order to present
the case study, first we describe the methodology, followed by a brief description
of NAS SP-MZ and BT-MZ benchmarks and finally the visualization and metrics
for the characterization.

4.1 Methodology

In order to build a graph of communicating processes, it is necessary first to
collect execution data: how many processes, how was the communication between
them, and how was the distribution, the volume and the number of messages
exchanged, for example. This task could be accomplished by using a trace file
generator. Second, it is required to read the produced trace file or statistics
file and generate another file with the textual representation of the graph in a
specific graph format. This textual representation of the graph will be finally
loaded to the graph visualization tool.

Thus, the methodology could be divided basically in two phases: graph build-
ing and graph visualization. In the graph building phase, first the communication
data are collected from a trace file generator in the form of a communication
adjacency matrix. Then, the graph is written in some specific textual format
considering the processes as nodes and communication links as edges. The total
number or volume of messages exchanged during the execution will be the weight
of the edges.
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In the graph visualization phase, the communication graph is loaded into a
graph visualization tool that allows different layouts as well as the use of filters
to visualize subgraphs. These subgraphs could be used to decrease the volume
of visualized nodes if it becomes too large.

Different trace file generators could be used in order to extract informa-
tion about the execution of a parallel program. Besides, there are some ways to
instrument a program in order to generate data about specific events. Our app-
roach in this work was to use EZTrace [18], a generic framework for performance
analysis. In addition to provide an execution trace file, EZTrace also produces a
statistic file and two communication adjacency matrix files. Since in this specific
work we are interested in the communication size and in the number of messages
exchanged, we used the EZTrace matrixes directly. For further works we intend
to collect other events and even timestamps from the trace file.

Since EZTrace already provides the adjacency matrices, it is straightforward
to build a textual representation for the graph. Several graph formats could
be used for this task, like the ones supported by Gephi: GEXF, GDF, GML,
GraphML, CSV, among others [5]. For simplicity, in this work we chose the
GML format [9]. A script was written to read the adjacency matrices generated
by EZTrace and write it in GML format. Nonetheless, in the future we intend to
use GEXF format, which is a Gephi project. GEXF is XML based being more
flexible and providing more features.

4.2 NAS Parallel Benchmark

The NAS Parallel Benchmarks (NPB) [2] are well-known problems for testing
the capabilities of parallel computers and parallelization tools. They exhibit
mostly fine-grain exploitable parallelism and are almost all iterative, requiring
multiple data exchanges between processes within each iteration. The application
benchmarks Lower-Upper Symmetric Gauss-Seidel (LU), Scalar Penta-diagonal
(SP), and Block Tri-diagonal (BT) solve discretized versions of the unsteady,
compressible Navier-Stokes equations in three spatial dimensions. Each operates
on a structured discretization mesh that is a logical cube.

The NPB Multi-Zone versions of LU, BT, and SP benchmarks are LU-MZ,
BT-MZ, and SP-MZ. In each, a logically rectangular discretization mesh is
divided into a two-dimensional horizontal tiling of three-dimensional zones of
approximately the same aggregate size as the original NPB. The major differ-
ence between the three multi-zone problems lies in the way the zones are created
out of the single overall mesh [20].

The SP-MZ and BT-MZ versions are of specially interest in this work, since
zones in each of the two horizontal dimensions grows as the problem size grows.
The difference between the two implementations relies in the variation of zone
sizes which only happens in BT-MZ implementation (in SP-MZ the zone size is
fixed).

The implementation follows a stencil communication pattern with exchange
of boundary values between zones taking place after each time step. Solution
values at points one mesh spacing away from each vertical zone face are copied
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to the coincident boundary points of the neighboring zone [2]. The problem is
periodic in the two horizontal directions (x and y), so donor point values at
the extreme sides of the mesh system are copied to boundary points at the
opposite ends of the system. This property characterizes a toroidal system and
was captured by Yifan Hu [10] graph layout algorithm as demonstrated later in
this paper.

4.3 Characterization Results

This subsection presents some results in characterizing NAS parallel benchmarks
SP-MZ and BT-MZ implementes with MPI [17]. The characterization is pre-
sented by means of visualization and network properties: average degree, average
shortest path length, average cluster coefficient and graph density.

Characterizing SP-MZ. First, a characterization is presented for class C of
NAS SP-MZ, which were executed with 32, 64, 128 and 256 processes in a single
node. Figure 1 presents the visualization for the four cases with Yifan Hu graph
layout provided by Gephi.

Despite the reduced visualization, it is possible to observe the regularity of
the shape throughout different problem sizes. Also, it is likely to identify the
cylindrical aspect that characterizes a regular toroidal stencil algorithm. As the
problem grows, the cylinder volume also grows instead of the cylinder diameter.
It is possible to infer by this visualization that this 3D characteristic helps the
algorithm to scale since it preserves a more local communication pattern.

Table 1 presents the network metrics for SP-MZ. The average degree for 32
and 256 processes are absolute values; i.e., all nodes have exactly the same degree.
It is interesting to notice that the average degree does not grow significantly with
the size of the problem. This means that the number of each process connections
stays practically the same. This seems to be a relevant feature of a scalable
parallel program, since the communication overload per process is stable as the
problem size grows.

The average shortest path length has a sublinear growth. According to [4],
in regular hypercubic lattices in D dimensions, the mean number of vertices
one has to pass by in order to reach an arbitrarily chosen node, grows with
the lattice size as N'/¢. SP-MZ has a 3D toroidal structure and the measured
average path length is just a little above this expectation. This metric seems
to be a good reference for scalable parallel programs, since it denotes proximity
among nodes.

The average cluster coefficient presented very small values, even 0 for two
cases. These two cases are the most regular cases, where all nodes had exactly
the same degree. In this particular case study, a low cluster coefficient seems to
be an indication of regularity or balance in the communication pattern. However,
more case studies would be necessary to observe the behavior of this metric in
parallel programs.

The last metric analyzed was the density which decreases as the problem
size grows. As discussed before, this metric expresses the actual number of edges
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Fig. 1. Visualization of SP-MZ: (a) 32 processes, (b) 64 processes, (¢) 128 processes
and (d) 256 processes.

Table 1. Metrics for SP-MZ

Metric 32 64 128 | 256
Av. degree 3.0 |45 425 4.0
Av. shortest path |4.64 |[4.95 |5.85 |8.03
Av. cluster coeff. | 0 0.183]0.046 | 0
Density 0.097 | 0.071 | 0.033 | 0.016

versus the number of edges that would be present if the graph was complete.
The decrease of density in this case means the relative number of connections
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among processes decreases with the problem size. Since an excessive number of
connections usually represents communication and synchronization overload in
parallel programs, this characteristic seems to be desirable in parallel programs.

Characterizing BT-MZ. The BT-MZ benchmark has a more irregular behav-
ior. The Fig. 2 shows the graph visualization for BT-MZ using the same layout
algorithm as in SP-MZ (Yifan Hu graph layout provided by Gephi). It is possible
to see that the shape is undefined in BT-MZ version, except for the last case.

(a) (b}

(d)
(ch

Fig. 2. Visualization of BT-MZ: (a) 32 processes, (b) 64 processes, (c) 128 processes
and (d) 256 processes.

The Table2 presents the metrics for the same problem sizes as for SP-MZ
analysis. The average degree for 32 and 256 processes are absolute values; i.e.,
all nodes have the same presented degree.
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Table 2. Metrics for BT-MZ

Metric 32 |64 128 | 256
Av. degree 20 |14.22|7.5 | 4.0
Av. shortest path | 1.35| 1.81|3.04|8.03
Av. cluster coeff. |0.64| 0.21/0.06 | 0
Density 0.65| 0.23/0.06 0.016

As mentioned before, BT-MZ implements variation of zone sizes which makes
its structure more irregular and unbalanced than SP-MZ. This could be seen
in its metrics, except for the last column, that is identical to SP-MZ for 256
processes. This means that for the last case of class C, the two versions have
the same behavior related to the metrics analyzed and even considering the
visualization.

The BT-MZ average degree is less stable than in SP-MZ, which is highly
related to its greater irregularity. The average shortest path is inferior, except
for 256 processes, while the average cluster coefficient and density are superior
than in SP-MZ in most cases. As the metrics shows, it is possible to recognize
characteristics that denote regularity or irregularity in the cases studied. Other
studies are needed to advance in the use of these metrics for characterization
and performance analysis.

5 Discussion and Future Work

The presented methodology is a preliminary work on using graph analysis tools
to help in performance analysis of parallel programs. The goal is to offer a
supplementary perspective of parallel applications, instead of replace any of the
existent tools.

One of the main features of state-of-the-art analysis tools is the possibility
to follow the events in a timeline, like for example, the traditional space-time
diagram present in Vampir framework [13]. Our first approach presented here
doesn’t capture temporal aspects of the application. Instead, this first proposal
approximates more with other traditional view, the Communication Matrix (also
present in Vampir tool), but here only with final cumulative values. While the
Communication Matrix is a flat 2D view, the produced graphs rather could
provide topological 3D views, depending on the communication characteristics
of the algorithm. Graph analysis tools, like Gephi, add different types of possible
interactions for the analysis, like the generation of complex networks metrics
presented here. Other suitable feature could be the use of filters, that we intend
to explore in future works.

There are many possibilities yet to explore, one of them being the dynamic
visualization. In order to accomplish this, we intend to capture timestamps for
each communication event from the trace file and to add this information to
the graph. This is possible, for example, by using the GEXF format (Graph
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Exchange XML Format) [6]. This format is part of Gephi project and allows
networks to be filtered with the timeline component.

6 Conclusion

This paper presents a first work on characterizing parallel applications through
graph visualization and analysis. We presented a methodology where a graph
of communicating processes is extracted from trace data and loaded to a graph
visualization tool in order to perform the characterization. We used EZTrace to
generate the trace data for NAS parallel benchmarks and Gephi graph visual-
ization tool to analyze it.

The work was able to provide parallel program visualization and analysis for
some network metrics. The characterization allowed to identify some appropriate
features for parallel programs, like a stable average degree and low density. Also,
it was possible to compare both implementations in terms of their structure.
Even that these are preliminary results, it is possible to estimate the potential
of the technique considering scalable parallel applications.

We intend to continue this work first by exploring larger versions of NAS par-
allel benchmarks. After that, we intend to explore different features like other
layouts, filters and statistics as well as a dynamic visualization mechanism to
add temporal visualization. Other possibilities like load and energy balance diag-
nostics will be also considered.
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