SAUCE: A Web-Based Automated Assessment
Tool for Teaching Parallel Programming

Moritz Schlarb®) | Christian Hundt, and Bertil Schmidt

Institute of Computer Science, Johannes Gutenberg University,
D-55128 Mainz, Germany
{schlarbm,hundt,bertil.schmidt}@uni-mainz.de

Abstract. Many curricula for undergraduate studies in computer sci-
ence provide a lecture on the fundamentals of parallel programming
like multi-threaded computation on shared memory architectures using
POSIX threads or OpenMP. The complex structure of parallel programs
can be challenging, especially for inexperienced students. Thus, there is
a latent need for software supporting the learning process. Subsequent
lectures may cover more advanced parallelization techniques such as the
Message Passing Interface (MPI) and the Compute Unified Device Archi-
tecture (CUDA) languages. Unfortunately, the majority of students can-
not easily access MPI clusters or modern hardware accelerators in order
to effectively develop parallel programming skills. To overcome this, we
present an interactive tool to aid both educators and students in the
learning process. This paper describes the “System for AUtomated Code
Evaluation” (SAUCE), a web-based open source (available under the
AGPL-3.0 license at https://github.com/moschlar/SAUCE) application
for programming assignment evaluation and elaborates on its features
specifically designed for the teaching of parallel programming. This tool
enables educators to provide the required programming environments
with a low barrier to entry since it is usable with just a web browser.
SAUCE allows for immediate feedback and thus can be used interactively
in class room settings.

1 Introduction

The teaching of parallel programming techniques has increasingly gained impor-
tance during the last decade due to the ubiquity of multi-core architectures both
on portable devices and workstations. Moreover, it is a well-known fact that
despite the exponential growth of modern CPUs’ compute capabilities their
single-threaded performance has barely increased during the recent past. The
development of parallel algorithms can be exceedingly difficult for inexperienced
students since scaling up the number of cores involves complex restructuring of
the program’s control flow. As a result, an extensive education of parallelization
techniques is becoming increasingly important for every student in computer
science.

Besides the theoretical education of parallel algorithms, their practical imple-
mentation can be challenging for the students. Race conditions and erroneous

© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 54-65, 2015.
DOI: 10.1007/978-3-319-27308-2_5

https://github.com/moschlar/SAUCE

SAUCE: A Web-Based Automated Assessment Tool 55

synchronization may lead to incorrect results, implicit serialization of concurrent
tasks and deadlocks may degrade performance or render the program defective.
Hence, practical programming exercises are indispensable to develop the relevant
domain knowledge and skills. This process is ideally supervised, such that the
student receives immediate feedback after writing the source code. However, due
to limited human resources a supervising assistant can often not be provided.
A common workflow consists of the following steps:

1. Provide remote logins for a compute cluster or workstation.
2. Submit the student’s program to a queuing system and wait for execution.
3. Manually evaluate the program’s functionality by verifying its output.

As a result, small programming exercises embedded in lectures are often difficult
to realize due to the lack of time. In this paper, we present a unified framework
for the automated assessment and evaluation of source code in the field of parallel
programming which can be used from any device with just a web browser. The
presented “System for AUtomated Code Evaluation” (SAUCE) is free software
(AGPL-3.0) and can be downloaded at [12]. A demo instance of SAUCE includ-
ing the discussed examples using OpenMP, MPI and CUDA can be accessed at
our website [13].

The rest of this paper is organized as follows: Sect. 2 discusses related work
and compares the presented software solutions regarding the use in teaching
environments. Technical aspects of SAUCE including extensibility of the soft-
ware, teaching-related features and security matters are discussed in Sect. 3. The
use case for the computation of a Poisson problem using Jacobi iteration on an
MPI cluster is presented in Sect.4. Further examples include multi-threaded
programming with OpenMP and massively parallel programming using CUDA.
Section 5 concludes the paper.

2 Related Work

For an educated view on previous work, the functionality offered by SAUCE must
be split between offering a modern web-based interface for writing, compiling
and running software, which could be considered an Integrated Development
Environment (IDE), and the automated assessment of a written piece of software,
which is more alike to the principles of Continuous Integration (CI) extended
for educational purposes.

While there are some recent projects which provide an IDE in a web browser,
like compilr [6] (closed source, paid access only), ideone [9] (closed source,
usable anonymously) or Cloud9 [5] (open source), there are far less systems
that can be used for programming assessment and to enhance the classical edu-
cational feedback loop of practical exercises. There are older approaches to this
task for academic environments, like CourseMarker [8] or PC? [2], which are
both used through Java-based GUI client programs that need to be installed
on the student’s computer. Current projects that combines a web-based edit-
ing interface and an automated assessment of the written sequential programs

56 M. Schlarb et al.

embedded within a classical university course structure include WebLab (TU
Delft) [14], Jack (University of Duisburg-Essen) [7] (both closed source) and
Praktomat (KIT) [4] (open source). However, none of the above are explicitly
targeted at parallel programming.

3 Technical Aspects

3.1 Python

SAUCE is written in the Python programming language. Python’s syntactical
and semantical features, along with the vast amount of third-party packages for
all purposes, make it a good choice for the development of this state-of-the-art
web application. Its widespread use and popularity increase the chance of the
project to be further developed and extended in the future.

Python has a clear and readable syntax, which makes the source code com-
fortably readable, even for people not familiar with the language or with pro-
gramming at all. A major strength of Python is its extensibility. Moreover, mod-
ules can be written in C or C++ with the use of the Python language bindings.
This allows developers to combine the power of the interpreted Python language
with more efficient and hardware-oriented languages like C or C++ and CUDA.

3.2 SAUCE Web Application

SAUCE is a web application written using the TurboGears 2 rapid web develop-
ment framework [10], which follows the Model-View-Controller (MVC) pattern
(see Fig. 1), which is a common design principle for web applications to achieve
separation of concerns. TurboGears 2 provides basic building blocks for con-
trollers and facilitates the coordination between the various components.

Web Browser
http://sauce.informatik.uni-mainz.de/. ..

HTTP Request

HTTP ResponseT

Rendered Controller
Results

. Results I Results
View Model

Parameters

Fig. 1. The control flow within the Model-View-Controller pattern for one request.

SAUCE: A Web-Based Automated Assessment Tool 57

Model. The model component defines the structure of the data for the applica-
tion and the so-called business logic. The model part of SAUCE is realized with
the SQLAlchemy object relational mapper (ORM) [3], which allows to use a rela-
tional database management system (e.g., SQLite, MySQL, PostgreSQL) like an
object database. Hence, the ORM is an abstraction layer between the applica-
tion and the database that facilitates the usage of object oriented programming
paradigms and eliminates many problems regarding security and complexity of
classical relational databases.

Controller. The controller is the central part of the application, which is respon-
sible for user interaction. A user might also be another program that accesses
the MVC application as a web service. The user requests an action by accessing
a specific URL, which triggers a method that handles the input data (i.e., form
field values or URL parameters), performs operations on the model data and
returns some data to a specific view.

View. Following the paradigm of separation of concerns, the view is only respon-
sible for the presentation of data retrieved from the controller and must not per-
form any modification on the data. It can also return information in a machine-
readable format like XML or JSON. All the templates for SAUCE make use
of the Twitter Bootstrap CSS framework, which is a state-of-the-art frontend
framework containing styles for basic and advanced HTML5 elements. Bootstrap
has been chosen because it features a clean and technical layout with focus on
informational and form elements, which both suit the use case of this application.

3.3 Learning Tools Interoperability

SAUCE allows for the usage of its testing functionality from within other teach-
ing platforms like Moodle or Coursera through the Learning Tools Interoper-
ability (LTT) specification [1]. Using this interface makes it possible to provide
a seamless experience, since students do not need to log in separately or join a
course manually — they simply use the already existing authentication on the
calling teaching platform. The testing results will be submitted back to the call-
ing platform for central grading and feedback. As a result, SAUCE can be used
as a service in a “headless” mode.

3.4 Security Considerations

Apart from classical security implications of web applications, additional aspects
have to be considered since an application like this essentially allows a poten-
tial attacker to submit arbitrary code that will be executed within the server
operating system.

There are two dangerous classes of users to be considered: Inexperienced
programmers that submit faulty programs without intent and programmers who
try to intentionally provoke and stress the system or to find ways of gaining
unauthorized access to the system. The most common types of attacks in the
given context are:

58 M. Schlarb et al.

— Intentional and unintentional denial of service attacks like filling the memory
or the hard disk with data or endless calculation loops, rendering the system
unusable for other users or causing the application to subsequently fail.

— Information leakage by getting credentials to access the system or the database
or opening network connections to transfer data in or out of the system.

Explicit security requirements regarding the execution of submitted programs
can be summarized as follows:

— Deny read or write access to arbitrary files and directories (white-listing only
a temporary directory used for the test run).

— Deny access to arbitrary system resources (e.g., hardware devices).

— Restrict CPU and memory usage and the process runtime.

— Prohibit network access (or at least access to the outside network).

SAUCE uses different techniques to address the aforementioned security require-
ments.

Traditional Unix Permissions that are based on users, groups and file or
directory permissions, are enforced by the operating system with regards to
the traditional Unix paradigm that “everything is a file” and thus provide a
basic amount of access control on a file system level. Given that the SAUCE
application is running under an unprivileged user account, its access to important
or sensitive parts of the file system is prohibited.

Sandboring, which means to separate possibly endangered parts of the applica-
tion into a container, where their impact is minimized and malicious operations
are revertible. It is advisable to use virtualization techniques for this kind of sep-
aration, like chroot, LXC or dedicated virtual machines. This also implies using
an HTTP reverse proxy which forwards HTTP requests and their responses to
and from arbitrary back end “worker” machines where the application itself runs.
The distributed execution architecture as outlined in Sect. 3.5 provides implicit
sandboxing, regardless of whether individual parts run on physical or virtual
machines.

Resource Limits for process groups can be defined on various physical and log-
ical resources and are enforced directly by the operating system kernel. Restric-
tions can be placed on memory usage, CPU execution time, open file handles,
amongst others. By limiting the number of processes, it is possible to prevent a
“fork bomb”, where a process tries to infinitely spawn new child processes.

Firewall solutions are mandatory for any kind of web application or virtual
machine setup. For example, with the Linux firewall tool “iptables”, rules can be
based on network packet attributes (like source or destination addresses, ports,
etc.), but it is also possible to filter based on the Unix user of the application
that created the packet. This can be used to allow normal operation of the web
server and the application but restrict all network access for the user account
that is used for executing the submitted programs.

SAUCE: A Web-Based Automated Assessment Tool 59

3.5 Distributed Execution

Especially for programming parallel architectures, the possibility to dispatch
steps that require specialized hardware and software, like the compilation and
execution of submitted programs to worker nodes depending on their configura-
tion, is important. A dedicated web server, where the SAUCE web application
is running will most likely not have direct access to an accelerator card or an
MPI cluster. Moreover, it would be inconvenient to set up an instance of the
web application on several machines that feature a required piece of hardware.
Therefore, we develop a lightweight queuing system for running submission tests
on worker nodes instead of the host system (see Fig.2). A test job is a contigu-
ous unit of work consisting of compilation and repeated execution, once for each
defined test case.

_---~< compiles
enque.ues deque.ues ,'/ submission
test job test job ' \
_ - - \
\
\
1
Web App Queue Worker]
1
1
— ¢ 1
H ’a
receives and returns v
N\
validates test result S executes
< . ..
~=---" submission

test result
’,\ 1

\ 1
for each
test case

Fig. 2. Schematic overview of the distributed architecture that uses a task queue to
dispatch compilation and execution of test jobs to one of many workers.

4 Use Cases

We provide a demo instance'of SAUCE featuring three interactive programming
exercises for the parallelization techniques MPI, OpenMP and CUDAZ2. The
submitted code is compiled and executed on the following platform:

CPU: Intel Xeon X5650 Hex-Core @ 2.67GHz with 96 GB attached RAM
GPU: Nvidia Tesla K40c with 12 GB attached video RAM
Software: GCC 4.8.2, OpenMPI 1.6.5, OpenMP 4.0, NVCC 6.5.12

Note, this instance runs as a freely accessible cloud service and thus the provided
resources are limited to one CPU and one GPU. Nevertheless, SAUCE can handle
programs on multiple nodes especially during the execution of MPI programs.

! Visit [13] and log in with username teacher1 and password teachpass.
2 These assignment examples are also available in the SAUCE repository at [12].

60 M. Schlarb et al.

4.1 Solving the Poisson Equation Using MPI

A popular example for the teaching of communication primitives on distributed

memory architectures is the iterative computation of the steady-state solution

of the Poisson equation A¢ = f over the rectangular domain {2 with Dirichlet

boundary condition ¢(p) = g(p) for all p € 9f2. The discretized update rule for

unit step size h = 1 and a vanishing exterior heat potential f = 0 is given by

the ordinary average over the four-neighbourhood of a pixel (i,7) € £2\042 [11]:
oli — 1,51+ o, j — 1] + ¢[i,j + 1] + ¢[i + 1, j]

oli,j] — y .

double phil[N*M], tmp[N*MI;
double error = INFINITY, epsilon = 1E-6;

auto update = [&] (const int& i, const int& j) {
tmp [i*M+j] = 0.25f*(phi[(i-1)*M+j] + phil[ixM+j-1]
+ phi[(i+1)*M+j] + phil[i*M+j+1]1);};

while (error > epsilon) {
for (int i = 1; i < N-1; i++)
for (int j = 1; j < M-1; j++)
update (i, j);

error = uniform_norm(phi, tmp, N, M);
copy_image (tmp, phi, N, M);

}

Fig. 3. Repetitive convolution of an image ¢ of size N x M by averaging the four-
neighborhood of a pixel. Note that the border pixels are not altered by the averaging.

The sequential implementation is similar to a repetitive convolution of an image ¢
with a cross-shaped stencil. Figure 3 depicts the source code for the single-threaded
computation of the steady-state solution. A parallelization of the sequential algo-
rithm can be achieved by independently updating each of the (N —2) - (M — 2)
interior points. Note, the implicit barrier at the end of the body of the while-loop.
Using MPI, a suitable partitioning of the image ¢ has to be distributed to the
individual processes. For the sake of simplicity, we choose a block distribution
such that p tiles of size W=2)-M are computed independently on p processes. The
communication of the adjacent rows between the p tiles shall be accomplished
asynchronously in each iteration of the while-loop (see Fig.4). Afterwards, a
global Allreduce collective determines the maximum error of all tiles and thus
enforces synchronization. The educational goal of this task is the teaching of
asynchronous communication primitives and the realization of synchronization
with global barriers.

The students’ task is to write the corresponding source code that handles
the communication between the tiles. Figure 5 depicts a code skeleton that has
to be completed by the students. This task was embedded as a pair program-
ming exercise during a lecture on High Performance Computing (HPC) at the

SAUCE: A Web-Based Automated Assessment Tool 61

rank=0
} Isend/Irecv

rank=1
stencil } Isend /Irecv

rank=2

Fig.4. An example of a block distribution of the image ¢ (N = 11 and M = 16)
into p = 3 tiles of height #52 = 3. Border pixels (gray cells) are not altered during
the update step. The adjacent rows (blue cells) have to be communicated between
the processes during each iteration. The interior pixels (white cells) can be updated
independently while waiting for the asynchronous communication (Color figure online).

Johannes Gutenberg University in the winter term 2014/15. Approximately half
of the students could solve it within 15 min. The output verification is presented
in textual and visual form: First, a test method determines if the submitted pro-
gram computes an image ¢p,, that agrees with the sequential result ¢soq within
a predefined error threshold (see Fig. 6). Second, SAUCE provides a visual com-
parison between the expected image and the computed result to the student (see
Fig. 7). The additional visual information can be helpful to spot errors in the
asynchronous communication calls. Furthermore, it is possible to expose addi-
tional information about the program which is not taken into account during the
correctness test. As an example, the student can evaluate the program’s speedup
and efficiency in comparison to sequential code using runtime information.

Further MPI exercises including matrix multiplication using submatrix scat-
tering, traditional matrix vector multiplication and the distributed numeric inte-
gration of functions using the trapezoidal rule have been successfully embedded
in the tutorials and lectures of the aforementioned HPC course.

4.2 0Odd-Even Sort Using OpenMP

SAUCE can also be used to teach parallel programming on shared memory archi-
tectures. In this paper, we present a multi-threaded example based on OpenMP.
The parallelization of Odd-Even Sort, a modified variant of Bubble Sort that
interleaves swaps of odd and even indices, can be used to illustrate the usage
of thread pools in OpenMP (see Fig.8). Furthermore, exercises using POSIX

62 M. Schlarb et al.

// state sends and receives (upper and lower being the borders of the tile)

/** TO BE COMPLETED BY STUDENTS #*

if (rank+1l < size) {
double * 1lst_row = phi + (upper-1)*M, * nxt_row = lst_row + M;
MPI_Isend(lst_row, M, MPI_DOUBLE, rank+1, O, MPI_COMM_WORLD, req+2);
MPI_Irecv(nxt_row, M, MPI_DOUBLE, rank+1, O, MPI_COMM_WORLD, req+3);

}

if (rank > 0) {
double * prv_row = phi + (lower-1)#*M, * fst_row = prv_row + M;
MPI_Isend(fst_row, M, MPI_DOUBLE, rank-1, O, MPI_COMM_WORLD, req+0);
MPI_Irecv(prv_row, M, MPI_DOUBLE, rank-1, O, MPI_COMM_WORLD, req+1);

}

*k /

// update the interior of the tile
for (int i = lower+(rank>0); i < upper-(rank+i<size); i++)
for (int j = 1; j < M-1; j++)
update (i, j);
// wait until asynchronous communication done (MPI_Wait)

/** TO BE COMPLETED BY STUDENTS *x*
if (rank+1 < size)

MPI_Wait (req+3, sts+3);
if (rank > 0)

MPI_Wait (req+l, sts+1);
*% /

// update halo pixels at the tile borders
if (rank > 0)
for (int j = 1; j < M-1; j++)
update (lower, j);
if (rank+1 < size)
for (int j = 1; j < M-1; j++)
update (upper-1, j);

// now update error of approximation and copy tmp to phi
error = uniform_error (phi, tmp, N, M, lower, upper, 0, M);
copy_image (phi, tmp, N, M, lower, upper, 0, M);

// make sure all threads have the same error (why is this important?)
MPI_Allreduce (&error, &error, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);

Fig. 5. The provided code skeleton of the while-loop body. The students are asked to
fill in the blue-colored comments. Furthermore, they have to explain the importance of
the Allreduce collective in order to ensure a deadlock-free MPI program (Color figure
online).

Threads have also been successfully included in the lecture, e.g., the proper use
of atomics, compare and swap loops, condition variables.

4.3 Array Reversal Using CUDA

Massively parallel accelerators can also be used with SAUCE since it effectively
supports any programming language that can be compiled and executed on
Unix-like operating systems. The demo instance provides a CUDA array rever-
sal algorithm that uses shared memory to ensure coalesced accesses to global
memory. The major goal of this task is to train the students’ ability to uti-
lize shared memory and the proper usage of the __syncthreads () primitive for

SAUCE: A Web-Based Automated Assessment Tool 63

Compilation result C Run tests again

Runtime 161911702156 seconds

Testrun results

Test ® Visible
Date Sun 17 May 2015 06:02:43 PM

Runtime 19.4045299789 seconds

Result

Command line -

arguments N

Expected and

10965ms (sequential)
observed output o s =

2318ms (parallel)
test passed
Look at http://data.sauce.informatik.uni-mainz.de/J3rZzf.png

Fig. 6. Textual feedback for the correctness of the computed image ¢ provided by
SAUCE. The test is passed if the maximum residue between the sequential and the
parallel solution ||@seq — @par||oo is smaller than a predefined threshold. Furthermore,
the teacher or student may write comments to the output via a print statement (here
lines with leading #) that are not evaluated during the test e.g., the runtime of the
program.

the synchronization of CUDA threads within a thread block. Further CUDA
examples including matrix multiplication and image convolution have been suc-
cessfully embedded in the aforementioned HPC course. The possibility to print
out execution times allows for a detailed discussion whether the use of shared
memory is beneficial in each specific case. Alternatively, a direct comparison of
execution times between device and host code is conceivable.

4.4 Grading Features

SAUCE offers several features for the manual correction and grading of submit-
ted source code. First, the teacher can annotate parts of the source code and
leave suggestions or an improved version of the program for the students. Sec-
ond, SAUCE features grading of individual submissions and team submissions
of arbitrary size. Third, in rare cases where students submit source code that
does not compile correctly, the teacher may clone the submission to his own user
account and manipulate it freely. Fourth, it is possible to search the submission
database for cases of plagiarism. To achieve this, a similarity score based on
the Jaccard index is computed for all pairs of submissions and presented to the

64 M. Schlarb et al.

0correct communication 0broken communication 0 difference

50 50 50

100 100 100

—

150 150 150

200 200 200

0 50 100 150 0 50 100 150 0 50 100 150

Fig. 7. Visual feedback for the resulting image ¢ provided by SAUCE. The left panel
depicts the steady-state solution computed with correct asynchronous communication.
The solution in the middle lacks any communication and thus five sharp horizontal
edges can be observed using p = 6 processes, each of them computing an independent
solution. The modulus of the difference between both solutions is plotted in the right
panel. The color map (jet) ranges from small values (blue) to high values (red) (Color
figure online).

void parallel_sort(std::vector<unsigned int>& X) {

unsigned int i, phase, N = X.size();

auto swap = [] (unsigned int& x, unsigned int& y)
{ auto tmp = x; x = y; y = tmp; };

/*x TO BE COMPLETED BY STUDENTS

#pragma omp parallel private(phase)

*%/
{
for (phase = 0; phase < N; phase++)
if (phase % 2 == 0) { //even phase
/** TO BE COMPLETED BY STUDENTS
#pragma omp for
*% /
for (i = 1; i < N; i += 2)
if (X[i-11 > X[il)
swap (X[1i], X[i-1]1);
} else { // odd phase
/** TO BE COMPLETED BY STUDENTS
#pragma omp for
*% /
for (i = 1; i < N-1; i += 2)
if (X[i] > X[i+11)
swap (X[i], X[i+1]);
}
}

Fig. 8. The provided code skeleton for the parallelization of Odd-Even Sort using
OpenMP pragma statements. The students are asked to fill in the blue-colored com-
ments. A further task could be the discussion of implicit barriers introduced by the #
pragma omp for clauses (Color figure online).

SAUCE: A Web-Based Automated Assessment Tool 65

teacher in multiple varieties (e.g., a list of the top-k similarity scores or den-
drograms). Finally, SAUCE can also be used in programming contest scenarios
since it provides dedicated features like hidden test cases as well as a fine-grained
definition of time and resource limits.

5 Conclusion

In this paper, we have presented a unified framework for the automated assess-
ment and evaluation of source code in the field of parallel programming which
can be used from any device with just a web browser. The presented “System
for AUtomated Code Evaluation” (SAUCE) is free and open source software
(AGPL-3.0) and can be downloaded at [12]. Moreover, we have discussed its
use in interactive programming exercises in the context of parallel program-
ming. Three examples for the major parallelization paradigms MPI, OpenMP
and CUDA have been described and provided as SAUCE exercises. A demo
instance of SAUCE including the discussed examples can be accessed at our
website [13].

References

1. Learning Tools Interoperability. http://www.imsglobal.org/1ti/

2. Ashoo, S.E., Boudreau, T., Lane, D.A.: Programming Contest Control System.
http://www.ecs.csus.edu/pc2/

3. Bayer, M.: The Python SQL Toolkit and Object Relational Mapper. http://www.
sqlalchemy.org/

4. Breitner, J., Hecker, M.: Quality control for programming assignments. https://
github.com/KITPraktomatTeam /Praktomat/

5. Cloud9: Online Code Editor. https://c9.io

6. Compilr: Online Editor and Sandbox. https://compilr.com

7. Goedicke, M., Striewe, M., Balz, M.: Computer aided assessments and program-
ming exercises with JACK. Technical report (2008)

8. Higgins, C., Hegazy, T., Symeonidis, P., Tsintsifas, A.: The CourseMarker CBA
system: improvements over Ceilidh. Educ. Inf. Technol. 8(3), 287-304 (2003).
http://dx.doi.org/10.1023/A:1026364126982

9. Ideone: Online Compiler and Debugging Tool. http://ideone.com

10. Molina, A.: TurboGears: Rapid Web Development Framework. http://turbogears.
org

11. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill
Education Group, New York (2003)

12. Schlarb, M.: System for AUtomated Code Evaluation on Github. https://github.
com/moschlar/SAUCE

13. Schlarb, M., Hundt, C., Schmidt, B.: System for AUtomated Code Evaluation
Cloud Service. http://sauce.informatik.uni-mainz.de

14. WebLab: Learning Management System. https://weblab.tudelft.nl/

http://www.imsglobal.org/lti/
http://www.ecs.csus.edu/pc2/
http://www.sqlalchemy.org/
http://www.sqlalchemy.org/
https://github.com/KITPraktomatTeam/Praktomat/
https://github.com/KITPraktomatTeam/Praktomat/
https://c9.io
https://compilr.com
http://dx.doi.org/10.1023/A:1026364126982
http://ideone.com
http://turbogears.org
http://turbogears.org
https://github.com/moschlar/SAUCE
https://github.com/moschlar/SAUCE
http://sauce.informatik.uni-mainz.de
https://weblab.tudelft.nl/

	SAUCE: A Web-Based Automated Assessment Tool for Teaching Parallel Programming
	1 Introduction
	2 Related Work
	3 Technical Aspects
	3.1 Python
	3.2 SAUCE Web Application
	3.3 Learning Tools Interoperability
	3.4 Security Considerations
	3.5 Distributed Execution

	4 Use Cases
	4.1 Solving the Poisson Equation Using MPI
	4.2 Odd-Even Sort Using OpenMP
	4.3 Array Reversal Using CUDA
	4.4 Grading Features

	5 Conclusion
	References

