
A Case Study of Application Structure
Aware Resilience Through Differentiated

State Saving and Recovery

Anshu Dubey1(B), Hajime Fujita2, Zachary Rubenstein2, Brian Van Straalen1,
and Andrew A. Chien2,3

1 Computational Research Division Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA

adubey@lbl.gov
2 Computer Science Department, University of Chicago, Chicago, IL 60637, USA
3 Argonne National Laboratory, Mathematics and Computer Science Division,

Argonne, Lemont, IL, USA

Abstract. Resilience is a growing concern for large-scale simulations.
As failures become more frequent, alternatives to global checkpointing
that limit the extent of needed recovery become more desirable. Addi-
tionally, platforms will differ in both error rates and types, therefore,
a flexible and customizable recovery strategy will be extremely helpful
to the applications running on these platforms. Applications often have
structures that provide logical confinement spaces that can be exploited
for this purpose. We investigate a customizable recovery strategy using
Chombo, a structured adaptive mesh refinement (SAMR) library, as a
case study. We exploit the inherent granularities and hierarchy in SAMR
to limit the impact of faults for localized recovery, and identify tunable
parameters for customizing the strategy depending upon the application
and platform behavior. We use Global View Resilience (GVR) library,
which provides global versioning arrays for application-controlled state
saving as our resiliency interface.

1 Introduction

In order to effectively utilize future large-scale, high performance computers,
applications will face several challenges, including more frequent failures that
manifest themselves in various ways. The usual mode of checkpoint-restart is
already reaching the limit of its usefulness in large-scale simulations where a
non-trivial fraction of execution time is taken up by the checkpointing process.
The restarts tend to be even slower than the checkpoints and even a node failure
every few hours can prove to be significantly detrimental to the applications’
runtime and computational efficiency. The checkpoints and restarts are slow
because they use global snapshots and parallel file system for read and write. As
the number of nodes involved in a calculation increases, the mean time between
node failures proportionately decreases. Node failures usually cause an abort
followed by job termination in the batch queue.
c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 619–630, 2015.
DOI: 10.1007/978-3-319-27308-2 50

620 A. Dubey et al.

To deal with frequent failures, several applications have developed the ability
to avoid “abort” when there is a failure, thereby avoiding the job termination.
The application is able to restart itself from a previously saved checkpoint in
the same job slot and continue execution. However, there is still the cost of
reading from the file system and restarting, and the cost of lost calculations
since the last checkpoint. There are many efforts to provide more efficient ways
of checkpointing such as: non-blocking multilevel checkpointing [12], replication-
based checkpointing [15], or localized checkpointing/restart [13]. Although these,
and other new technologies that will eliminate the involvement of the file system
in checkpointing, are expected to reduce the costs of state saving substantially,
these technologies do not adequately address the variability of error rates in
different application instances. For that we need a flexible, local and customizable
recovery strategy.

One option for local recovery is to carry redundant information on surround-
ing nodes from which a consistent global state can be reconstructed in case of
a node failure. This approach was explored in an oct-tree based SAMR code,
FLASH [4,5], in [6]. Another option is to exploit the structure within the appli-
cation for local state saving recovery, for example [13]. Some methods combine
more than one approach to achieve fault tolerance, for example [14] makes use
of adaptive fault-tolerance through both checkpointing and redundancy. In this
paper we take a multi-pronged approach to fault tolerance. Similar to contain-
ment domains we use the application structure to confine the extent of recovery
[2]. But unlike containment domains we tailor our recovery mechanisms to spe-
cific error modes. Additionally, we make use of tuning parameters based on
cost-benefit analysis to explore the available trade-offs.

We use Chombo [3], a general purpose SAMR library, augmented with the
Global View Resilience (GVR) library, [7] as a case study for our approach. GVR
leaves the definition of the consistent state to be saved up to the application.
This allows applications to decompose their state into smaller, more localized
snapshots from which recovery can be effected with minimal impact or inter-
action with the overall global state. Additionally, the versioning capability of
GVR further reduces the cost of saving individual local snapshots as long their
definition does not undergo any change. Also, the co-existence of several versions
of the snapshot (the extent of versioning is also under application control) gives
further flexibility in devising the recovery strategy.

The Chombo-GVR interface can recover from both resource failure and tran-
sient data corruption. Recovery from resource failure itself can be either global
or local depending on circumstances. The transient data corruption errors within
a node can be handled locally if they are detected immediately and their extent
is known to be confined to the node. Depending upon the difficulty and/or delay
in transient error detection (which is out of scope of this paper) a non-local
recovery may be necessary. In future we may also include forward error correc-
tion that could use the corresponding data from coarser parts of the mesh for
reconstruction similar to [6].

A Case Study of Application Structure Aware Resilience 621

The focus and main contribution of this paper is devising a recovery strategy
that exploits the application’s structure and granularities, and provides tunable
parameters for customization. We take the approach of identifying the logical
confinement regions of the state spatially and temporally, and examining the
error modes that can be mapped to these regions. We then devise a recovery
strategy for each error mode and map it to the corresponding granularity in
the application. In the final step we model the overheads for cost-benefit analy-
sis. Though we use SAMR as our case study, our approach should be equally
useful to other applications which have nested granularities or hierarchies. The
paper is organized as follows, we first give a brief description of the two libraries,
Chombo and GVR, in Sect. 2, followed by a discussion of the local saving and
reconstruction strategy in Sect. 3. Section 4 describes preliminary cost measure-
ments of the overheads introduced into the application by the resiliency strategy,
and how they can be used as tuning parameters for specific computing platforms
and/or specific instances of application use. Finally, conclusions and future work
are discussed in Sect. 5.

2 The Libraries

Chombo defines patches of uniform resolution (finer) that are embedded within
other patches of lower resolution (coarser) as shown in Fig. 1. Patches can be sub-
divided into boxes, all boxes with the same resolution constitute a level, where
individual boxes may be distributed arbitrarily in physical space as long as they
are fully enclosed within a region of next level of coarse resolution. Therefore
a level can be viewed either as a logical entity (same resolution) (see Fig. 2)
or a physical entity (union of all boxes at the same resolution), and Chombo’s
data structures allow either view. The solution advances with the same time-step
everywhere on a given level, though it differs from other levels if subcycling is
being used. With subcycling, for a refinement ratio R the finer level takes R
steps for every step taken by the embedding coarse level. Most of bookkeeping
in Chombo is managed on a level-by-level basis, with some cross-level manage-
ment. The level meta-information includes knowledge of all boxes with their
integer index space within the global mesh. This information can be harnessed
to determine the adjacency of boxes for the purpose of filling the halo of ghost
cells as needed. The information is also used to distribute the load among proces-
sors. The cross-level management is used for purposes such as filling the ghost
cells for boxes that exist at fine-coarse boundaries, to reconcile various physical
quantities such as fluxes as the fine-coarse boundaries, and synchronization of
time-advancement when there is sub-cycling.

The depth of AMR hierarchy depends upon the scientific domain and the
specific application. The count and shape of the patches and their boxes is not
static, it changes as necessary when the solution evolves. The finer patches fol-
low more structure in the solution space, with the finest ones existing where
there is maximum structure and therefore smallest length scales in the physical
domain. With subcycling the finer levels do considerably more work than the

622 A. Dubey et al.

Fig. 1. SAMR mesh showing three levels of resolution.

Fig. 2. A logical view of multiple levels of resolution in an AMR mesh.

coarser levels, which is why each level does its own load distribution. This way
all compute resources get a mix of levels and therefore roughly equal amount of
work.

GVR is a lightweight library which enables applications to run reliably on
unreliable computers. It provides two main features: multi-version, multi-stream
distributed arrays and a unified error handling interface. GVR provides PGAS-
style distributed arrays (similar to Global Arrays [11]), but extends them with
primitives to create persistent versions [16]. Multiple versions enable applications
to perform more powerful recovery from complex errors such as latent errors,
which cannot be detected immediately (see [8]). Different arrays can choose
optimal versioning cadences depending on the array. GVR also provides a unified
error handling interface for various error sources, through which application can
receive error events and handle the errors. This allows application programmers
to reuse an error handler for different error causes, thus reducing the cost for
writing error handlers.

As mentioned in Sect. 1, GVR allows the application to define what consti-
tutes a consistent recoverable state, and what goes into each array. In addition,
GVR places no restriction on how many arrays can be defined by an applica-
tion, and being PGAS-style distributed arrays, provides random access anywhere

A Case Study of Application Structure Aware Resilience 623

within an array. The GVR interface works by allocating arrays as requested by
the application, and then letting the application store data through “put” func-
tions. When it is safe to save the state of an array, the application can create a
version through the“version inc” function. Created versions are accessible to the
application by specifying the appropriate version number. The “put” functions
allow random access within the array. Similar to “put”, the “get” function is used
to fetch arbitrary information from a specified version of an array. There are also
no restrictions on the amount of information that can be fetched in one instance
of using “get”. Therefore the granularity of information exchanged with an array
is also under the control of the application. These flexible accessibility features
of GVR, and its low overheads, make it particularly attractive for exploring con-
tainment and differentiation based recovery strategies in applications where the
structure of the application can be exploited for this purpose.

GVR takes two measures to protect the contents of the array. The first mea-
sure is preserving multiple versions. GVR’s API defines that old versions are
read-only, which makes it easier for the library to store them in a different loca-
tion or to apply coding, compression, encryption, etc. to the data. Then as a sec-
ond measure, GVR stores an old version of an array in a different process’ mem-
ory or a secondary storage such as node-local SSD or parallel shared file system,
in order to protect the array data from resource failures such as node/process
crash. When storing old versions in a secondary storage, GVR utilizes Scalable
Checkpoint Restart [9] to exploit multi-level storage hierarchy and its data pro-
tection schemes for node-local storage.

3 Resilience Strategy

Our resiliency strategy is based on five simple ideas.

– Check if there is any hierarchy to be exploited in the application’s structure.
– Identify granularities within the application that can be used to confine the

impact of the fault and recovery from it.
– Consider the types of faults that the strategy is expected to handle, and map

recovery from each fault type to the appropriate granularity of the application.
– At each granularity determine the minimum state to be saved to effect a full

recovery.
– Identify tuning parameters to enable customization to specific instances of

application execution.

The default checkpointing in Chombo, like many other production-grade
high-performance computing (HPC) applications, saves a global snapshot of the
state into a parallel file using HDF5 [10] library. Such global snapshots are saved
at regular intervals, and therefore an attempt is made to minimize the amount of
saved information that can be used to reconstruct the complete AMR hierarchy
without any loss upon restart. For this purpose Chombo needs to save a very
small amount of global state meta-information and also a moderate amount of
level-specific meta-information in addition to the physical data residing on each

624 A. Dubey et al.

box. Because the snapshot is global, it can only be done when all the levels
are synchronized. By definition, that is the point at which the coarsest level
completes its timestep.

In order to formulate a differentiated recovery strategy for AMR we consider
its inherent structures. An obvious coarse granularity in AMR is a “level” which
is an almost self contained unit of computation. The meta-information of a
level includes complete knowledge of all existing boxes and their mapping to
the processes, the evolution time and the timestep (dt), which is uniform for
a level. Because the boxes in AMR are dynamically created and destroyed, a
level can also do its own regridding and distribution of boxes among processors.
A level interacts with the level below and the level above at the fine-coarse
boundaries. The second, finer granularity exists at the “box” level. A box with
its surrounding halo of ghost cells is a complete computational unit for the
operators being applied to the field variables. If an error occurs in a box and
can be detected before it spreads out to other boxes, it should be possible to
completely confine the recovery to the affected box.

3.1 Saving Chombo State with GVR

For saving the state using GVR we view each level in the AMR hierarchy as a
loosely independent component. Therefore, we construct one array for each level
which includes the meta information as well as the physical data on all the boxes
at that level. Figure 3 shows an example of mapping one AMR level to one array.
For each box in the level, we include its index-space on the discretized mesh and
the offset within the global array of the physical data belonging to the box. In
order to complete a global snapshot we only need to add one more array for the
global meta-information such as the number of field variables, the depth of mesh
hierarchy, the refinement ratio between levels and the array version numbers for
each level.

However, AMR presents an additional challenge to the GVR model. In a
normal mode GVR operates by allocating resources for an array, which remain
fixed throughout its existence. Versioning is used to preserve the array state
as needed. This assumption is not valid for AMR where the resources used by
a level change whenever there is a regridding of the mesh at that level. This
limitation can be overcome in one of two ways, each with its own advantage
and disadvantage. One option is to free the existing array for the level and
reallocate a new one every time there is regridding. This option minimizes the
space used by the array but may not be very efficient in time because there
will be cost of freeing and reallocating the resources. This is more important
when the cost of allocation is higher than that of incrementing the version. The
other option is to allocate more space for the level’s array than needed and free
and reallocate only when the required space exceeds the current allocation. This
option may be more efficient time-wise, but is not as efficient in space usage. We
have chosen the second option with extra allocation being a tunable parameter,
where setting the extra allocation to zero optimizes the space usage, and can
give better performance time-wise if the size of the mesh data for the level does

A Case Study of Application Structure Aware Resilience 625

Fig. 3. Mapping AMR levels to GVR arrays

not increase with every regrid event. Such a scenario can arise, for example,
where the higher refinement is following a shock. Here the part of the physical
domain which is highly refined changes with time, but the amount of highly
refined domain may not change very much.

Populating the Arrays. The initial state saving requires making an estimate
of space to be allocated for the global meta-data and the level arrays. We pop-
ulate them at the beginning of the simulation as soon as the mesh is initialized.
The cadence of state-saving at each level is a tunable parameter. When it is time
to save the state, the physical data of the boxes and meta-information such as
“current time” that change at every timestep are updated in the array and the
version of the array is increased. A regrid event has to be treated differently. It
may be necessary to reallocate an array for a level if its size has grown more
than the allocation for the current array. In addition to all quantities updated at
a normal timestep state save, with regrid the index-space for the boxes and their
offsets also change, so they have to be updated. When no regridding is involved
one can either complete a timestep computation for a level and put all the boxes
data into the array at once, or one can put individual box’s data as soon as it is
computed within the loop. This is another tuning parameter which can be used
only when state is being saved at every timestep at every level.

3.2 Failure Scenarios and Recovery Modes

We target the following failure and recovery scenarios in designing our strategy.

Permanent Resource Failure: The most common manifestation of resource
degradation is node failure where recovery implies a restart on fewer nodes.
Detection and notification to the application is designed be to under the control
of GVR. The recovery is either global with a full restart at all levels, or it can be
done at the granularity of the affected levels if situation allows. The computation
will be rolled back at minimum to the beginning of the last saved timestep of the

626 A. Dubey et al.

coarsest affected level. In the worst case it will have to roll back to the beginning
of the last coarsest timestep saved. In the present version of Chombo resource
failure recovery ends up defaulting to the global mode because all levels in the
AMR hierarchy distribute their work on all processors. The instances where some
levels don’t have any boxes on a processor are rare. Deep AMR hierarchies with
highly localized refinement patterns may benefit from non-global recovery, but
those are also rare among current suite of applications using Chombo.

Temporary Resource Failure: We assume that a temporary resource failure
implies that none of the data on that resource is reliable, however there is no
need to reconstitute and restart. In this situation recovery at the granularity
of affected levels by fetching the data from the corresponding GVR array will
suffice if the snapshots were being saved at every timestep of every level. If the
cadence of saving was different, consistent recovery may have to rollback further.
The detection and notification to the application is again up to GVR.

Data Corruption: Data corruption is detected by the application and is a
research area in its own right. In this work we are not focussing on fault detection
and injection methods, except one simple detection method discussed below (also
see [1] for a similar method). For many AMR applications corruption in a box
can be detected by checking for |xn−xn−1| < ε. Here xn and xn−1 are the newly
computed and the previous timestep’s values respectively at a point in space.
And ε is largest valid change in value at any point between two consecutive
timesteps in a given operator as determined by the application expert. If data
corruption is detected, we recompute xn. There can be two possible outcomes of
recomputing: the new value is the same, or it is different. If it is different from the
original calculation and falls within the valid range we can either accept the value
or recompute it one more time to verify correctness if more confidence is desired.
However, if several errors are detected in the same box the computation for the
whole box should roll back to the beginning of the timestep. The granularity of
recovery is confined to a box if the last version increment was at the beginning to
the current timestep. If that is not true, one has to determine the closest coarse
level “m” that had a version increment at the beginning of its timestep. All finer
levels including the current level and “m” have to roll back to the beginning of
m’s timestep. If “m = 0” it effectively becomes a global restart. If the new value
is different and still outside the valid range, or if it is identical to the previously
calculated one, then a more systemic problem is indicated, and the recovery may
need to be abandoned. The more appropriate thing to do would be to trigger
diagnostics to determine the overall state of the simulation data to see if an
abort is necessary.

Meta-data Corruption: Meta-data corruption is more difficult to detect but
easier to recover from. The reason why detection is difficult is because the data
elements have no inherent correlation with each other. Neither is there any evo-
lution in the values of most data elements. In current version of Chombo the
meta-data is replicated on all processors, so it can simply be fetched from one
of the neighbors. And if the saving is being done every timestep then it can also

A Case Study of Application Structure Aware Resilience 627

be fetched from GVR array. The granularity of recovery for this type of error is
also at the box level. For all data corruption recoveries the random access into
the GVR array is the crucial feature.

4 Tuning for a Specific Platform

Computing platforms vary in their rates and extent of failure. This will be partic-
ularly true of the future large scale platforms. Also, depending upon the specific
problem being solved, the same code may run at different machine scales at dif-
ferent times. For some runs a local cluster is sufficient while for others a large
fraction of a leadership-class machine may be necessary. Therefore, one strategy
with fixed parameters is not likely to be an efficient resiliency solution every-
where. The best way to make a strategy flexible is to turn the parameters into
tuning knobs wherever possible. In the current version of our strategy the tuning
parameters can be: (1) the timing of various snapshots at each level, (2) whether
to allocate larger array or reallocate for every regrid, (3) save as soon as every
box is done or after all boxes are done, and (4) whether to trigger diagnostics
upon detecting unrecoverable data error or abort.

We illustrate the cost-benefit analysis with the example of frequency of snap-
shots as the tuning parameter. In a state-save-recovery scenario the cost of recov-
ery is Tsave + Tlost + Treconfig, where Tsave is the cost of saving the snapshot,
Tlost is the cost of lost computation which has to be redone and Treconfig is
the cost of fetching data and reconfiguring as needed. For any level Tsave for
one snapshot is a fixed cost in between regridding steps. It includes the cost of
putting necessary meta-data and the physical data from all blocks into the GVR
array and incrementing the version. At regridding time it is the cost of possibly
reallocating an array, putting all the meta-data and physical data into the array
and incrementing its version. Treconfig can be as little as the cost of reading
back a box’s data from the last GVR array version, or it could be as large as the
complete global restart. Tlost depends upon where the error occurred and how
far back the application has to roll back.

To get an estimate of the costs involved we ran an experiment with a gas-
dynamics problem where a shock hits a ramp, using built-in timers in Chombo
for measurements. The quantities we measured for the AMR part of the code are
the overall runtime and tlevn, the time to compute one timestep at level n, and
treconfig time for reconfiguring a level for a restart. We also measured the time to
write a complete checkpoint file to the filesystem (tfile). For GVR we measured
Talloc, the time to allocate a GVR array; Tbox time to put/get (they are very
similar) one box worth of data; Tlevel, time for putting away or getting one level
worth of data. The experiment was run on Edison, the Cray machine at NERSC
using 128, 256, 512 and 1024 cores. For the experimental setup we used 3 levels
of refinement (in all a hierarchy of 4 levels), with the problem size weak-scaling
as the number of cores is increased. The parallelization model is pure MPI for
the AMR, and distributed arrays for GVR. The quantities displayed in the tables
are taken from measurements on rank 0 because there is very little variance in

628 A. Dubey et al.

Table 1. Measured AMR quantities in the application.

Procs Run tlev0 tlev1 tlev2 tlev3 treconfig tfile

128 1581 0.82 2.65 2.91 3.13 0.63 60.33
256 1639 1.72 2.78 3.01 3.15 0.75 61.67
512 1923 1.82 2.86 3.03 3.16 1.58 125.67
1024 1841 2.19 2.83 3.01 3.18 2.9 52.67

Table 2. Measured GVR related quantities for saving state.

Procs Talloc Tlevel Tbox TverInc

128 0.22 1.75 0.0048 1.02
256 0.04 1.82 0.0055 1.07
512 0.61 1.37 0.0081 0.41
1024 2.36 3.25 0.0092 1.23

timing between cores since the application operates in bulk-synchronous mode.
This set of measurements are only meant to highlight the use of tuning knobs.
Experimentation in many more computing environments under different fault
conditions will be necessary to formulate a full cost model for AMR resiliency,
and will be part of our future work.

Now let us consider a scenario where there was data corruption error in the
final timestep of the finest level running on 512 cores. We can compute the cost
of recovery under two contrasting snap-shot saving regimes. One where only
global snapshots are being taken, and another one where every level takes its
own snapshot at each one of its timesteps. Recollect that the global snapshots
can only be taken when all levels are synchronized, which is the end of the
coarsest time step. Here in the first scenario Tsave = 0.61 + 4 × 1.37 = 6.09
from Table 2. Assuming that we are doing subcycling Tlost = 1.82 + 2 ∗ 2.86 +
4 ∗ 3.03 + 8 ∗ 3.16 = 44.94 from Table 1 and Treconfig = 1.58 second, for the
overall recovery cost of 52.61 seconds. For the second scenario the dominant
cost is the saving cost because only the corrupted box will need to be read
back from GVR and there is no need for reconfiguration. Again taking into
account subcycling, Tsave = 0.61 + 1.37 + 2 ∗ 1.37 + 4 ∗ 1.37 + 8 ∗ 1.37 = 20.55,
Tlost = 3.16 and Treconfig = 0.0081, giving the cost of recovery at 23.72. The
above analysis shows that different fault scenarios should consider different snap-
shot saving regimes. When data corruption errors are infrequent the fixed cost of
saving every timestep at every level will be an overkill. Whereas when the data
corruption errors are frequent, taking the global snapshots only strategy could
cause the application to repeat computations often, thereby costing much more
than the fixed cost of Tsave at higher cadence.

A Case Study of Application Structure Aware Resilience 629

5 Future Work

We have presented a methodology for spatial and temporal decomposition of
a complex but highly structured application in order to devise a differentiated
resiliency strategy. This kind of approach is particularly important for the class
of problems that do not have the option of devising fault-resistant computations.
These applications have to rely on rollback-recovery, so minimizing its cost is very
important to them. An important part of cost minimization is evaluation of the
trade-offs between overheads and lost work with different error rates in different
platforms and application instances. To facilitate this evaluation we have shown
how tuning knobs can be incorporated in the strategy. One aspect of transient
error recovery mode was not explored in this work: forward error correction
through reconstructing from lower fidelity coarse grid data. Additionally, the
cost model is preliminary, it does not take into account the possible delays, and
therefore lost work, in transient error detection. Both these aspects of resiliency
tend to be specific to an application instance and also domain dependent, and
are not understood very well. Further out we will extend the forward-error cor-
rection work from [6] to cover more application domains that use AMR. As error
detection in AMR matures, we will incorporate the error detection related costs
in our model.

Acknowledgments. This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy and completed in
part with resources provided by NERSC, a DOE user facility supported by the Office
of Science.

References

1. Berrocal, E., Bautista-Gomez, L., Di, S., Lan, Z., Cappello, F.: Lightweight silent
data corruption detection based on runtime data analysis for HPC applications.
Technical report (2014)

2. Chung, J., Lee, I., Sullivan, M., Ryoo, J.H., Kim, D.W., Yoon, D.H., Kaplan, L.,
Erez, M.: Containment domains: a scalable, efficient, and flexible resilience scheme
for exascale systems. In: The Proceedings of SC12 (2012)

3. Colella, P., Graves, D., Keen, N., Ligocki, T., Martin, D., McCorquodale, P.,
Modiano, D., Schwartz, P., Sternberg, T., Van Straalen, B.: Chombo software
package for AMR applications design document. Technical report, LBNL, Applied
Numerical Algorithms Group, Computational Research Division (2009)

4. Dubey, A., Antypas, K., Ganapathy, M., Reid, L., Riley, K., Sheeler, D., Siegel,
A., Weide, K.: Extensible component-based architecture for FLASH, a massively
parallel, multiphysics simulation code. Parallel Comput. 35(10–11), 512–522 (2009)

5. Dubey, A., Reid, L., Fisher, R.: Introduction to FLASH 3.0, with application to
supersonic turbulence. In: Physica Scripta T132, : Topical Issue on Turbulent Mix-
ing and Beyond, Results of a Conference at ICTP. Trieste, Italy, August (2008)

6. Dubey, A., Mohapatra, P., Weide, K.: Fault tolerance using lower fidelity data
in adaptive mesh applications. In: Proceedings of the 3rd Workshop on Fault-
tolerance for HPC at Extreme Scale, pp. 3–10. ACM (2013). http://doi.acm.org/
10.1145/2465813.2465817

http://doi.acm.org/10.1145/2465813.2465817
http://doi.acm.org/10.1145/2465813.2465817

630 A. Dubey et al.

7. Fujita, H., Dun, N., Rubenstein, Z.A., Chien, A.A.: Log-structured global array
for efficient multi-version snapshots. In: IEEE CCGrid 2015 (2015)

8. Lu, G., Zheng, Z., Chien, A.A.: When is multi-version checkpointing needed? In:
Proceedings of the 3rd Workshop on Fault-tolerance for HPC at Extreme Scale,
FTXS 2013. ACM (2013)

9. Moody, A., Bronevetsky, G., Mohror, K., De Supinski, B.R.: Design, modeling,and
evaluation of a scalable multi-level checkpointing system. In: SC 2010 (2010)

10. NCSA: Heirarchical Data Format 5 (2008). http://hdf.ncsa.uiuc.edu/HDF5/
11. Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., Apr, E.:

Advances, applications and performance of the global arrays shared memory pro-
gramming toolkit. IJHPCA 20(2), 203–231 (2006)

12. Sato, K., Mohror, K., Moody, A., Gamblin, T., de Supinski, B., Maruyama, N.,
Matsuoka, S.: Design and modeling of a non-blocking checkpointing system. In:
SC 2012 (2012)

13. Shet, A.G., Elwasif, W.R., Foley, S.S., Park, B.H., Bernholdt, D.E., Bramley, R.:
Strategies for fault tolerance in multicomponent applications. Procedia Comput.
Sci. 4, 2287–2296 (2011)

14. Shi, X., Pazat, J., Rodriguez, E., Jin, H., Jiang, H.: Adapting grid applications
to safety using fault-tolerant methods: design, implementation and evaluations.
Future Gener. Comput. Syst. 26(2), 236–244 (2010)

15. Walters, J., Chaudhary, V.: Replication-based fault tolerance for MPI applications.
IEEE Trans. Parallel Distrib. Syst. 20(7), 997–1010 (2009)

16. Zheng, Z., Chien, A.A., Teranishi, K.: Fault tolerance in an inner-outer solver: a
gvr-enabled case study. In: 11th International Meeting High Performance Comput-
ing for Computational Science, VECPAR 2014 (2014)

http://hdf.ncsa.uiuc.edu/HDF5/

	A Case Study of Application Structure Aware Resilience Through Differentiated State Saving and Recovery
	1 Introduction
	2 The Libraries
	3 Resilience Strategy
	3.1 Saving Chombo State with GVR
	3.2 Failure Scenarios and Recovery Modes

	4 Tuning for a Specific Platform
	5 Future Work
	References

