
Energy-Performance Tradeoffs for HPC
Applications on Low Power Processors

Enrico Calore1(B), Sebastiano Fabio Schifano2, and Raffaele Tripiccione1

1 Dipartimento di Fisica e Scienze Della Terra, Università di Ferrara and INFN,
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Abstract. Energy efficiency is becoming more and more important in
the HPC field; high-end processors are quickly evolving towards more
advanced power-saving and power-monitoring technologies. On the other
hand, low-power processors, designed for the mobile market, attract
interest in the HPC area for their increasing computing capabilities,
competitive pricing and low power consumption. In this work we study
energy and computing performances of a Tegra K1 mobile processor using
an HPC Lattice Boltzmann application as a benchmark. We run this
application on the ARM Cortex-A15 CPU and on the GK20A GPU,
both available in this processor. Our analysis uses time-accurate mea-
surements, obtained by a simple custom-developed current monitor. We
discuss several energy and performance metrics, interesting per se and
also in view of a prospective use of these processors in a HPC context.

1 Introduction

The computational performances of current HPC systems are increasingly bound-
ed by their power consumption, and this is only expected to become worse in
the foreseeable future. This is also relevant from the point of view of operating
costs; indeed, large computing facilities are considering the option to charge not
only running time but also energy dissipation.

In response to these problems, high-end processors are quickly introduc-
ing more advanced power-saving and power-monitoring technologies [7]. On the
other hand, low-power processors, designed for the mobile market, are gaining
interest as it appears that they may eventually fill (or at least reduce) their
performance gap with high-end processors and still keep a competitive edge
on costs, thanks to the economies of scale associated to large production vol-
umes of mobile devices [4,13]. The power consumption problem is starting to be
approached also from the software point of view, with developers focusing not
only on performance, but also learning to optimize codes to achieve the most
acceptable trade-off between performance and energy efficiency [5,17].

In this paper we address one facet of these issues. We analyze in details, using
accurate measurements, the role played by hardware factors and by some soft-
ware aspects in the energy-performance landscape of real-life HPC applications.
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Fig. 1. Power monitoring setup. A benchtop power supply provides a constant 12 V
voltage; the supply current passes through a current-to-voltage converter, whose analog
output depends linearly on the current value. An Arduino UNO board digitizes and
store these values and –at the end of the test– downloads them to the Jetson TK1
through a serial over USB connection.

Our application benchmark is a code based on Lattice Boltzmann methods,
widely used in CFD, while our hardware testbed is a low-power Tegra K1 SoC
(System on a Chip), embedding a multi-core CPU and a GPU. We use two
versions of our code, optimized respectively for CPU and GPU, with different
configurations and compilation options. We then measure energy consumption
and performance of the computationally intensive kernels, using several clock
frequency combinations, and building a large database of measured data. We
then analyze these results, also guided by a simple but effective model of the
energy behavior of our test system.

2 The Hardware Testbed

The hardware setup that we use is based on a NVIDIA Jetson TK1 development
board, embedding a Tegra K1 SoC, and a custom current monitoring system,
able to acquire and store current values and – at the end of the test – download
them to the Jetson TK1. Our setup is shown in Fig. 1.

The Tegra K1 SoC, hosted on the Jetson TK1 board, has a CPU and a GPU
on a single chip; the CPU is a NVIDIA “4-Plus-1”, a 2.32 GHz ARM quad-core
Cortex-A15 and a low-power shadow core; the GPU is a NVIDIA Kepler GK20a
with 192 CUDA cores (with 3.2 compute capability). Both units access a shared
DDR3L 2 GB memory bank on a 64-bit bus running at up to 933 MHz.

This system has several energy-saving features: cores in the CPU can be
independently activated and the frequency of the CPU, GPU and memory sys-
tem can be individually selected in a wide range (CPU: 204 · · · 2320.5 MHz in
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20 steps; GPU: 72 · · · 852 MHz in 15 steps; Memory: 12.75 · · · 924 MHz in 12
steps). The system includes a performance governor that by default keeps only
the low-power shadow core of the CPU active at low frequency when the proces-
sor is idle, and activates the other cores and increases their clock frequencies, as
activity is detected within the system. The GPU clock frequency is also scaled
in a similar fashion. For our tests, we find it more useful to disable this system
and explicitly control all units and their frequency, in order to obtain accurate
power consumption data for known values of frequencies and active cores.

We selected this board as our testbed for several reasons: (i) this SoC contains
a multi-core CPU as well as a GPU, so we may test both architectures; (ii) this
chip allows fine and independent control of the clock frequencies of CPU, GPU
and memory interface; (iii) low-power systems are constantly improving their
performance, so these systems may quickly become interesting building blocks
for HPC platforms; (iv) the low power requirements of this system make it easy
to develop an accurate power monitoring system.

int fd ;
struct termios newtio , oldtio ;

// I n i t i a l i z e Arduino S e r i a l conn .
fd = init_serial(&oldtio , &newtio ) ;

// Star t arduino data a c qu i s i t i o n
start_arduino_acq ( fd ) ;

run_my_function ( ) ;

// Star t arduino data read−out
start_arduino_readout ( fd , filename , 900 ) ;

// Close s e r i a l connect ion
close_serial ( fd , &oldtio ) ;

Code 1.1: Example of code run on the
Jetson board to trigger data acquisi-
tion and readout.

// This i s c a l l e d every ms by
// an hardware timer
ISR ( TIMER0_COMPA_vect ) {
if ( acquireData ) {

byte i ;
unsigned int sensorValue = 0;
// Average over avgSamples read ings
// one read co s t s about 0 .11ms
for ( i = 0; i < avgSamples ; i++) {

// read the input on analog pin0
sensorValue += analogRead ( A0 ) ;

}
isendBuffer [ idx ] = sensorValue ;
idx++;

}
}

Code 1.2: Function executed every
1 ms on Arduino UNO board to ac-
quire current samples.

The Jetson TK1 is powered by a single 12 V source, so its overall power con-
sumption can be easily derived by current measurements. We have developed a
simple system able to measure the current flowing into the Jetson TK1 board
with very good accuracy and time resolution (≈ 1 msec) and able to correlate
measurements with the execution of specific software kernels. The setup uses an
analog current to voltage converter (using a LTS 25-NP current transducer) and
an Arduino UNO board; the latter uses its embedded 10-bit ADC to digitize
current readings and stores them in its memory. We synchronize the Arduino
UNO and the Jetson TK1 through a simple serial protocol built over an USB
connection. With this setup, a generic application running on the Jetson TK1
only needs to trigger the Arduino UNO to start acquisition immediately before
launching the kernel function to be profiled. After the function under test com-
pletes, acquired data is downloaded from the Arduino UNO memory, so it can
be stored and analyzed offline. The monitor acquires current samples with 1 ms
granularity; for increased accuracy, multiple consecutive readings (e.g. 5 in our
case) are performed and averaged. This setup is able to correlate current mea-
surements with specific application events with an accuracy of a few milliseconds,
minimally disrupting the execution of the kernel function to profile.
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Fig. 2. Raw data collected by the current monitoring system as the Jetson GPU runs
20 iterations of a CUDA kernel. Current increases during the first iterations as the
performance governor (in default mode) increases the clock frequency.

Code. 1.1 shows how to instrument a test program, while Code 1.2 shows the
routine running on Arduino UNO every millisecond to acquire a current sample.
Figure 2 shows a snapshot of raw current measurements; the plot refers to a
CUDA kernel running 20 times consecutively on the Jetson’s GPU, highlighting
the good time resolution and accuracy. In this case, the configuration of the
performance governor was the default one, so power consumption changes during
the first iterations, reflecting automatic frequency scaling.

Once N current samples i[n] are available for the time interval TS correspond-
ing to the execution of a given kernel, different power metrics can be computed.
The instantaneous power can be computed as p[n] = V × i[n] and the average
power as Pavg = 1

N

∑N−1
n=0 p[n]. Another popular metric, the so-called energy-to-

solution is defined as ES = TS × Pavg.

3 The Application Benchmark

Lattice Boltzmann methods (LB) are widely used in computational fluid dynam-
ics, to describe flows in two and three dimensions. LB methods [16] – discrete in
position and momentum spaces – are based on the synthetic dynamics of pop-
ulations sitting at the sites of a discrete lattice. At each time step, populations
hop from lattice-site to lattice-site and then incoming populations collide among
one another, that is, they mix and their values change accordingly. LB models
in n dimensions with p populations are labeled as DnQp; we consider a state-
of-the-art D2Q37 model that correctly reproduces the thermo-hydrodynamical
evolution of a fluid in two dimensions, and enforces the equation of state of a
perfect gas (p = ρT ) [14,15]; this model has been extensively used for large
scale simulations of convective turbulence (see e.g., [1,2]). In the algorithm, a
set of populations (fl(x, t) l = 1 · · · 37), defined at the points of a discrete and
regular lattice and each having a given lattice velocity cl, evolve in (discrete)
time according to the following equation:
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fl(x, t + Δt) = fl(x − clΔt, t) − Δt

τ

(
fl(x − clΔt, t) − f

(eq)
l

)
(1)

The macroscopic variables, density ρ, velocity u and temperature T are defined
in terms of the fl(x, t) and of the cls (D is the number of space dimensions):

ρ =
∑

l

fl, ρu =
∑

l

clfl, DρT =
∑

l

|cl − u|2 fl, (2)

the equilibrium distributions (f (eq)
l ) are themselves a function of these macro-

scopic quantities [16]. In words, populations drift from different lattice sites
(propagation), according to the value of their velocities and, on arrival at point
x, they change their values according to Eq. 1 (collision). One can show that,
in suitable limiting cases, the evolution of the macroscopic variables obeys the
thermo-hydrodynamical equations of motion of the fluid. Close inspection of
Eq. 1 also shows that the algorithm offers a huge degree of easily identifiable
parallelism; this makes LB algorithms popular HPC massively-parallel applica-
tions.

An LB simulation starts with an initial assignment of the populations, in
accordance with a given initial condition at t = 0 on some spatial domain, and
iterates Eq. 1 for each point in the domain and for as many time-steps as needed.
At each iteration two critical kernel functions are executed: (i) propagate moves
populations across lattice sites collecting at each site all populations that will
interact at the next phase (collide). Consequently, propagate moves blocks of
memory locations allocated at sparse addresses, corresponding to populations
of neighbor cells; (ii) collide performs all the mathematical steps associated to
Eq. 1 and needed to compute the population values at each lattice site at the new
time step. Input data for this phase are the populations gathered by the previous
propagate phase. This step is the floating point intensive step of the code.

These two kernels are the most time consuming parts of any LB simulation. It
is very helpful for our purposes that propagate involves a large number of sparse
memory accesses, so it is strongly memory-bound. collide, on the other hand, is
strongly compute-bound, heavily using the floating-point unit of either processor,
and the performance of the floating-point unit is the ultimate bottleneck.

4 Measurements

Our benchmark is based on codes implementing the LB algorithm described in
the previous section and exploiting to a large extent the available parallelism. On
the GPU we run an optimized CUDA code, developed for large scale CFD sim-
ulations on large HPC systems [3,9]. On the CPU we run a plain C version
[6,11] using NEON SIMD intrinsics exploiting the vector unit of the ARM
Cortex-A15 cores. We also use OpenMP for multi-threading within the 4 cores
and OpenMPI for future testing purposes on multiple boards.

We have instrumented both kernels as described in Sec. 2, and performed a
large number of test runs, monitoring the current profile at all times during the
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Fig. 3. Current measurements while running the collide kernel on the CPU with
4 OpenMP threads for a 128 × 1024 points lattice. Each run (plot line) is performed
at a different CPU clock frequency, spanning between 204MHz (lowest green line) and
2.3GHz (highest red line). The Memory clock is set at its maximum value (Color figure
online).

tests, accumulating a large data-base of measured data. On the software side,
we have included runs with different numbers of OpenMP threads (for CPU)
and CUDA block sizes (for the GPU); on the hardware side we have logged data
for most combinations of the adjustable clock frequencies, disabling automatic
frequency scaling. The C code using NEON intrinsics, was run on the CPU
manually forcing the use of the G cluster (i.e. the high performance quad-core).
When running on the GPU, the CPU was forced to use the LP cluster (i.e. the
low performance shadow core). For the sake of a fair comparison, all tests adopt
single precision for floating point data, since the Cortex-A15 is a 32-bit CPU
and double precision vector instructions are not available.

Figure 3 shows current data for collide given different settings of the CPU
clock (GPU and memory clocks are fixed); similar results are available for the
propagate kernel, for most of the clock combinations and for both GPU and CPU.

5 Results and Discussion

We consider energy-to-solution (ES) and time-to-solution (TS) – and the correla-
tions thereof – as relevant and interesting parameters when looking for tradeoffs
between time and energy conflicting requirements. Figure 4 shows measured val-
ues of TS (vertical axis) and ES (coded by colors) for propagate and collide
kernels and for several clock frequency settings, when running on both CPU and
GPU processors. From these plot, we see, for instance, that energy consumption
is dominated by the collide kernel (notice the different color scales). propagate
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Fig. 4. Time- and energy-to-solution of the profiled kernels while running on the CPU
and GPU with different CPU, GPU and memory clock frequencies. Lattice size is
128x1024 points.

is equally performing and power-greedy on both processors; this was expected,
since on this system the CPU and GPU share the same memory.

To better highlight the time/energy tradeoff, we plot ES as a function of TS ,
on either processors and for both kernels, see Fig. 5. Interestingly enough, ES

scales approximately linearly with TS , but large fluctuations are present. A crude
way to understand this behavior is as follows: as the processor executes a kernel,
it consumes power in two ways: (i) the power associated to the (constant in
time) background current (including the leakage current of the processor and the
current drawn by ancillary circuits on the board) and (ii) the power associated
to the switching activity of all gates of the processor as it transitions across
different states while executing the program. The first term implies, in our crude
model, a constant power rate (P0), while the second term implies an average
energy dissipation CV 2 every time a bit in the state of the processor toggles
during execution (V is the processor power supply, while C is an average value
of the capacitance associated to the output of each gate); this model derives
directly from early power analyses found in classic books in VLSI design [12],
and recently discussed in [8]. While we are fully aware that the actual situation
is more complex, we let this simple model guide our further analysis. We fit ES

as a function of TS as follows:

ES = E0 + P0 × TS (3)
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Fig. 5. Measured values of ES vs. TS on the CPU (top) and GPU (bottom), for the
collide (blu) and propagate (red) kernels corresponding to several values of the clock
frequencies. Results of a fit of collide data to Eq. 3 of is also shown (Color figure online).

P0 should be independent of the program under test, while E0 should depend on
the kernel and the processor executing it, as – to first approximation – it counts
the number of state transitions that the processor has to go to execute the code,
irrespective of the frequency at which they happen.

Possible sanity checks for our models are: (i) P0 is the same for all measured
kernels and processors, and (ii) its value is close to the one derived from current
measurements as the system rests in the idle state.

We fitted the two parameters from data for the collide kernel, obtaining
ECPU

0 = 410 mJ, PCPU
0 = 2.99 W, EGPU

0 = 120 mJ, PGPU
0 = 3.00 W; as

expected the two values for P0 are almost equal and consistent with the value,
≈ 3 W, obtained from current readings (≈ 250 mA) when the system is idle.

It is interesting to subtract from ES the contribution associated to the back-
ground current, as computed from Eq. 3, and define EK

0 = ES − P0 × TS , that
should depend only on the profiled kernel (labelled by superscript K) and on
the processing unit. Figure 6 plots EK

0 as function of TS ; this shows a clean
lower-bound constant envelope of all data points – as expected from our model
– with large fluctuations, clustering around some values of TS . The insets in
Fig. 6 provide a closer look at two such clusters, showing for each point a label
with GPU (left) and memory (right) frequency. This clarifies the origin of these
clusters: their points correspond to cases in which one of the two subsystems
(either memory or compute-unit) [10] has become the performance bottleneck;
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Fig. 6. Measured values of EK
0 , defined in the text, as a function of TS , for the collide

(blue) and propagate (red) kernels on CPU (top) and GPU (bottom). The insets zoom
onto two data clusters, showing for each point the GPU (left) and memory (right) clock
frequency in MHz (Color figure online).

increasing the frequency of the other subsystem means that the latter has to go
through system states (stalled states) that do not advance the computation, so
performance remains approximately constant, while energy dissipation increases.

This analysis helps identify best values of processor/memory clock pairs for
each kernel, given a target TS or an assigned energy budget. This is particularly
relevant of course when TS is close to its lower possible value: indeed, this is the
only area (enlarged in Fig. 7 for the collide kernel on GPU) where one can look
for an optimal energy/time trade-off; in fact, the plots make it evident that an
accurate matching of clock frequencies is an effective way to reduce EK

0 ; on the
other hand, accepting lower performance – that is settling for TS significantly
longer than the best possible value – does not reduce EK

0 but rather increases
the energy burden associated to the P0×TS contribution, and consequently total
energy dissipation. We also note that different kernels may have different ideal
clocks pairs, so, after finding a satisfactory tradeoff for each of them, it helps if
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Fig. 7. Close-in view of the EK
0 vs. TS graph, in a region corresponding to the best

possible values for TS . For each data point, we list the GPU (left) and memory (right)
clock frequencies (MHz).

they can be dynamically adjusted before each kernel starts. Clock adjustments,
in our test case, may improve EK

0 by large factors; however what is really relevant
is the total energy dissipation, ES , for which the background contribution is not
small and linearly dependent on time; so the bottom line is that: (i) careful
energy optimization may reduce ES by ≈ 10 · · · 20% at best, and (ii) contrary
to intuition, using very low clock frequencies is an ineffective way to reduce
dissipation.

6 Conclusions and Future Works

The analysis of the previous section suggests the following remarks:

– to first approximation, the best energy saving option for this class of proces-
sors, correspond to running the system at a frequency close to the highest
possible value, as determined from data shown in Figs. 5, 6 and 7, and then
(if possible) remove power from the (sub-)system.

– as a corollary, options to run codes at very low frequencies are almost useless;
it is probably more useful to add more flexible (and fast) options to remove
power from parts of the processor; efficient ways to save the state of the
subsystem before shut down would be most welcome.

– limited but not negligible power optimization is possible by adjusting clocks
on a kernel-by-kernel basis; this is best done via direct energy profiling of the
actual codes; it is then important that low-power system are able to measure
their consumption with minimal disruption to the running code and make
results easily available.

– reducing the latency time associated to clock changes is also important to
make the selection of the best clock values possible even for short kernels,
without significant performance loss.
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– a more radical way to address the problem is to reduce V , as one reduces clock
frequencies; in fact, to first approximation, V scales linearly with frequency,
while power is proportional to V 2. We are not sure to which extent this strat-
egy is already carried out for the Jetson TK1; we stress that this should be
done consistently across the whole system.

In this paper, we have described a number of power benchmarks of a Jetson
TK1 processor, made possible by a power monitoring system with good time
resolution and accurate time correlation with the execution of the kernels under
test. We have been able to disentangle the energy dissipation associated to the
actual computation and the one associated to background currents. We have
shown that – at least for this low power system – background dissipation has a
significant impact on overall energy dissipation; in spite of that, limited but not
negligible optimization is possible by carefully matching the values of all clock
frequencies on the system; we have finally discussed possible new features that
low-power systems should have to improve energy tuning.

We plan to continue along this line of analysis in several ways: (i) improv-
ing the current monitoring system, to have more information available and to
measure how the various parts of the system contribute to energy dissipation;
(ii) extend the analysis to more advanced low-power systems supporting double
precision floating point maths, such as the forthcoming Jetson X1 board, and to
high-end HPC accelerators, such as NVIDIA K40 or K80 GPUs; (iii) consider
not only hardware-based tuning, but also software options toward energy saving:
work is in progress along these directions.
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