
Teaching Parallel Programming
in Interdisciplinary Studies

Eduardo Cesar, Ana Cortés, Antonio Espinosa, Tomàs Margalef(B),
Juan Carlos Moure, Anna Sikora, and Remo Suppi

Computer Architecture and Operating Systems Department,
Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain

{eduardo.cesar,ana.cortes,antoniomiguel.espinosa,tomas.margalef,
juancarlos.moure,anna.sikora,remo.suppi}@uab.cat

Abstract. Nowadays many fields of science and engineering are evolving
by the joint contribution of complementary fields. Computer science, and
especially high performance computing, has become a key factor in the
development of many research fields, establishing a new paradigm called
computational science. Researchers and professionals from many differ-
ent fields require a knowledge of high performance computing, including
parallel programming, to develop a fruitful work in their particular field.
So, at Universitat Autònoma of Barcelona, an interdisciplinary master
on Modeling for science and engineering was started 5 years ago to pro-
vide a deep knowledge on the application of modeling and simulation
to graduate students on different fields (Mathematics, Physics, Chem-
istry, Engineering, Geology, etc.). In this master, Parallel Programming
appears as a compulsory subject, because it is a key topic for them. The
concepts learnt in parallel programming must be applied to real appli-
cations. Therefore, a subject on Applied Modelling and Simulation has
also been included. In this paper, the experience on teaching parallel
programming in such interdisciplinary master is shown.

Keywords: Parallel programming · Message passing · Shared memory ·
GPUs · MPI · OpenMP · CUDA

1 Introduction

Many fields of science and engineering are applying the techniques and recent
advances in complementary fields. In this interdisciplinary context, researchers

E. Cesar, A. Cortés, A. Espinosa, T. Margalef, J.C. Moure and A. Sikora—This
work has been partially supported by MICINN-Spain under contract TIN2011-28689-
C02-01, MINECO under contract TIN2014-53234-C2-1-R and GenCat-DIUiE(GRR)
2014-SGR-576.
A. Espinosa and J.C. Moure—We want to thank Nvidia Corporation for the dona-
tion of the GPU systems used in this paper.
R. Suppi—This work has been partially supported by MICINN-Spain under con-
tract TIN2011-24384, MINECO under contract TIN2014-53172-P and GenCat-
DIUiE(GRR) 2014-SGR–1562.

c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 66–77, 2015.
DOI: 10.1007/978-3-319-27308-2 6

Teaching Parallel Programming in Interdisciplinary Studies 67

and professionals with a wider knowledge are highly demanded by companies and
research centres. Universitat Autònoma of Barcelona started a Master degree
on Modeling for Science and Engineering to provide such kind of professionals
to those companies. The students enroll from different degrees: Mathematics,
Physics, Chemistry, Engineering, Computer Science, and others. The master
studies has been very successful, attracting students from many countries of ori-
gin. Also, companies are actively hiring finishing students and providing intern-
ships for students while attending the master.

A key point in the success of the master is the strong collaboration with
companies applying such techniques and methods in their everyday business
processes, so that the students can realize the significant impact of such tech-
niques and methods and economical savings provided in a specific company.

The master itself involves an interdisciplinary collaboration among profes-
sors from different departments; mainly Physics, Mathematics, and Computer
Architecture and Operating Systems. Its objective is to provide the students
the basic knowledge to be able to model a physical system, to represent it in
a mathematical way, to solve it applying different methods such as differential
partial equations, optimisation, time series, and related methods. Finally, they
program some implementations as high performance computing applications or
simulations. The main three pillars of the training of the students are:

– Definition of complex systems.
– Mathematical representation and resolution of such systems.
– High performance computing implementation of designed solutions, typically

by means of a software simulation tool.

In this context, we strive for a good training in parallel programming and a
successful experience with the efficiency analysis of the implementation of some
real small-size applications.

This paper focuses on the description of the training on parallel program-
ming and on applied modelling and simulation that is offered to the students.
In Sect. 2 we present the basic concepts on parallel programming shown to the
students to establish a common framework. Section 3 describes the parallel pro-
gramming approaches taught to the students and the lab exercises proposed to
them. Then, Sect. 4 presents some examples of real applications that are shown
and proposed to the students for their development. Finally, Sect. 5 presents the
main conclusions of this teaching experience.

2 Basic Concepts for Interdisciplinary Students

Parallel Programming is a core subject in this interdisciplinary master, but the
first challenge is to set a common background for the students. The students of
the master typically have some programming knowledge of high level languages
such as Java or Python, but usually they have a limited knowledge of C pro-
gramming language. Since C is at the core of high performance computing, the

68 E. Cesar et al.

very first part of the course is devoted to introduce to the students its main con-
cepts and to work on several programming exercises. Usually, students succeed
in this initial training part due to their high interest and their previous program-
ming experience. Our previous experiences have showed us that devoting some
time for setting this basic C knowledge must become a hard requirement before
introducing OpenMP or MPI programming.

Once the students have learned the C programming principles, it is necessary
to introduce them to the basic concepts of parallel programming. The first point
is the general idea of parallelism itself and how HPC computing platforms are
designed. So, a general idea about parallel and distributed systems, multi-core
processors, memory hierarchy and GPUs, are presented to the students. These
objectives become a challenge because it is necessary to provide the students
useful real architecture concepts while avoiding too deep architectural details
that are complex to relate to programming issues and may bore them and become
a serious problem. For this reason, we provide a gentle introduction with selected
further readings for those students particularly interested in these architectural
aspects.

The following point in the subject is an introduction to parallel algorithms.
Some of the students have some experience in sequential programming or even
in object oriented programming, but the computational aspects of parallel algo-
rithm design must be introduced to the students, showing them different current
paradigms and related tools.

We provide details on several parallel algorithms for different problems. The
first problem considered is matrix multiplication, which most of them know very
well and have already programmed in a sequential way. We start by showing
them how the problem is inherently parallel. Several matrix multiplication par-
allel algorithms are shown and analysed considering different aspects such as
computational complexity, communication requirements, data size and memory
requirements. These different algorithms are analysed considering the previously
mentioned architectural aspects, showing the implications of computing capa-
bilities, communication network and memory limitations.

Along the course we identify several important parallel computation pat-
terns [17], which are used in many examples. The map pattern is exemplified
by the vector addition algorithm (and the outer loops of matrix multiplica-
tion). It becomes an appropriate pattern to introduce parallelism as it does not
involve any dependence nor communication among threads. The reduce pattern
is studied in the inner loop of matrix multiplication, we use it to introduce the
problem of synchronization and the idea of re-associating arithmetic operations
to increase parallelism. The stencil pattern is used to simulate the movement of
a string, and requires synchronization and to share and communicate boundary
data.

Two additional parallel computation patterns are studied by means of exer-
cises proposed to the students. The parallel prefix algorithm (scan pattern) and
the convex hull problem (divide and conquer or recursive pattern) are proposed
so that students analyse the problem and find out the potential parallelism in

Teaching Parallel Programming in Interdisciplinary Studies 69

the algorithm. The students compare their proposals considering aspects such
as algorithm complexity, memory and communication requirements, and so on.

When the students have understood all this basic concepts, it is possible
to tackle the parallel programming challenge. This topic is presented in next
section.

3 Parallel Programming

Once the basic concepts of programming and parallelism have been presented
to the students, it is possible to enter in the core part of Parallel Programming.
In this part three paradigms are presented: Shared memory, Message passing
and Accelerator-oriented kernel programming (GPUs). The rationale for this
organisation is that developing programs with a shared memory model, such as
OpenMP, requires a simple modification of a C sequential program by including
just some directives. So, the students can parallelise their sequential C programs
in just one lab session. After OpenMP, MPI is introduced. In this case, it is nec-
essary to think how to parallelise the algorithm, which processes must be defined,
how such processes must communicate, and so on. This implies a larger effort
from the students. The last approach introduced is CUDA, as a programming
model for GPUs (accelerators), that requires a more detailed understanding of
memory hierarchy and the coordinated use of thousands of threads to reach rel-
evant performance gains. The programming sessions are complemented with the
introduction of performance analysis tools to understand the benefits of parallel
programming and to detect and correct performance bottlenecks. The develop-
ment of this topics is covered in the following subsections.

3.1 Shared Memory: OpenMP

As mentioned above, once students are familiarized with C and basic concepts
about parallel algorithms, the most natural way for introducing parallel appli-
cations development is using OpenMP [6].

OpenMP is a portable and flexible directive-based API for shared-memory
parallel programming which, for some basic code constructions, allows to express
parallelism in an extremely simple way. Given these characteristics, it has become
the de-facto standard for multicore share-memory architectures. In addition, cur-
rent laptops and desktop computers have multicore processors and, consequently,
students can test all the examples given in class and develop new ideas in their
own computer.

After a few motivating examples, such as the one shown in Listing 1.1, the
contents of the OpenMP lecture are structured as follows:

– Introduction. Concept of thread, shared and private variables, and need for
synchronization.

– Fork-join model. The #pragma omp parallel clause. Introducing parallel
regions.

70 E. Cesar et al.

– Data parallelism: parallelizing loops. The #pragma omp for clause. Data
management clauses (private, shared, firstprivate).

– Task parallelism: sections. The #pragma omp sections and #pragma omp
section clauses.

– OpenMP runtime environment function calls. Getting the number of
threads of a parallel region, getting the thread id, and other functions.

– Synchronization. Implicit synchronization, nowait clause. Controlling exe-
cuting threads, master, single, and barrier clauses. Controlling data depen-
dencies, atomic and reduction clauses.

– Performance considerations. Balancing threads’ load, schedule clause.
Eliminating barriers and critical regions.

Listing 1.1. OpenMP simple example: adding two vectors.

#pragma omp p a r a l l e l for
for (i = 0 ; i < N; i++)

c [i] = a [i] + b [i] ;

The concepts introduced in this lecture are reinforced in a lab session, where
students must use OpenMP for parallelizing the code for simulating the move-
ment of a string developed in the C labs (see Listing 1.2). In this way, students
continue their work and can experience the advantages of using the 4 cores avail-
able in each lab equipment.

Listing 1.2. String simulation main computation loop.

for (t =1; t<=T; t++) {
for (x=1; x<X; x++)

U3 [x] = L2∗U2 [x] + L∗(U2 [x+1]+U2 [x−1]) − U1 [x] ;
double ∗TMP =U3 ;
// ro t a t e usage o f v e c t o r s
U3=U1 ; U1=U2 ; U2=TMP;

}
Parallelizing this code with OpenMP is straightforward as can be seen in

Listing 1.3, its only complexity is that the clause firstprivate(T,U1,U2,U3)
must be used to ensure that each thread does the same vector rotation using
its private copies. This parallelization is specially designed to be done in a short
time, leaving students plenty of opportunities to test the code and analyze its
behavior.

Listing 1.3. Parallelized string simulation main computation loop.

#pragma omp p a r a l l e l f i r s t p r i v a t e (T,U1 ,U2 ,U3)
for (t =1; t<=T; t++) {

#pragma omp for
for (x=1; x<X; x++)

U3 [x] = L2∗U2 [x] + L∗(U2 [x+1]+U2 [x−1]) − U1 [x] ;
double ∗TMP =U3 ;

Teaching Parallel Programming in Interdisciplinary Studies 71

// ro t a t e usage o f v e c t o r s
U3=U1 ; U1=U2 ; U2=TMP;

}

3.2 Message Passing: MPI

After explaining parallelism at multi-core level using shared memory, the next
step is to introduce cluster parallelism (distribute memory) using message pass-
ing. With this objective, the course includes two lectures on Message Passing
Interface (MPI) [4] and two lab sessions for developing related exercises.

MPI is by far the most used interface for developing distribute memory par-
allel programs, mainly because many libraries have been implemented based on
the MPI consortium specification (OpenMPI, MPICH, Intel MPI, etc.). MPI
includes plenty of features but this course focuses on presenting the basic MPI
program structure and the functions for point-to-point as well as collective com-
munication.

The contents of the MPI lectures are structured as follows:

– Message passing paradigm. Distributed memory parallel computing, the
need for a mechanism for interchanging information. Introducing MPI history.

– MPI program structure. Initializing and finalizing the environment
MPI Init and MPI Finalize. Communicator’s definition (MPI COMM WORLD),
getting the number of processes in the application (MPI Comm size) and the
process rank (MPI Comm rank). General structure of an MPI call.

– Point-to-point communication. Sending and receiving messages (MPI Send
and MPI Recv). Sending modes: standard, synchronous, buffered and ready
send.

– Blocking and non-blocking communications. Waiting for an operation
completion (MPI Wait and MPI Test).

– Collective communication. Barrier, broadcast, scatter, gather and reduce
operations.

– Performance considerations. Overlapping communication and computa-
tion. Measuring time (MPI Time). Discussion on the communication overhead.
Load balancing.

Students work around these concepts in the lab sessions by developing a
simple program for computing π approximation using the dartboard approach.
This approach simulates throwing darts to a dartboard on a square backing.
As each dart is thrown randomly the ratio of darts hitting the board to those
landing on the square is equal to the ratio between the two areas, as shown in
Fig. 1, which is π/4.

A parallel implementation of this algorithm can consists of a certain number
of processes throwing a fixed number of darts and calculating its own approxi-
mation of π, then, one of the processes (the master) receives all approximations
and calculates the average value. In this solution workers send their results to
the master (process with rank 0) using point-to-point communication.

72 E. Cesar et al.

Fig. 1. Dartboard π approximation.

A second approach consists in distributing the total number of throws among
all processes, each of them will calculate its number of hits (darts in the circle)
and send it to the master process, which will compute π approximation. In this
case, the master sends the number of throws that must be done by each process
and receives the number of hits using always collective communication functions.

3.3 GPUs: CUDA

CUDA is an extension for massively parallel programming of GPUs (or acceler-
ators). We choose CUDA instead of OpenCL because of the existence of efficient
and mature compiling, debugging and profiling tools, and because of the exten-
sive information available. The contents of the CUDA lectures are structured as
follows:

– Introduction. Hierarchy of threads: warp, CTA (Cooperating Thread Array)
and grid. 3-dimensional thread identifiers.

– Model of an accelerator: host and device. Moving data among host and
device. Allocating memory on the device and synchronizing the execution.

– Architectural restrictions. Warp size. Maximum CTA and grid dimen-
sions.

– Memory space. Global, local and shared memory.
– Synchronization. Warp-level and CTA-level synchronization.
– Performance considerations. Excess of threads to tolerate the latencies

of data dependencies. Increasing work per thread to improve instruction-level
parallelism.

The lecture uses vector addition as an example to introduce the CUDA
syntax. Four implementations are provided and evaluated using: (a) one sin-
gle thread, (b) one CTA, (c) a grid of CTAs where each thread performs a single
addition, and (d) a grid of CTAs with more work per thread. We show the perfor-
mance results (deceiving, for the first implementations) to motivate the different
solutions and the need for developing good performance engineering skills.

Teaching Parallel Programming in Interdisciplinary Studies 73

We present Thrust [11], a high-level parallel algorithms library written in
C++, to show the students the benefit of learning object-oriented programming
and software engineering concepts. However, due to the limited background of
our students and obvious time limitations, it is out of the scope of our course.

Students must use CUDA in a lab session for parallelizing the code that
simulates the movement of a string. They explore, step by step, the different
obstacles they must save to exploit the full potential of GPUs and increase
performance 10x with respect to the multicore CPU code.

3.4 Performance Analysis: Tools

It is not only important to be able to develop applications using the differ-
ent approaches taught during the course. Parallel programming main goal is
to improve applications performance and, consequently, performance analysis
should be introduced to students.

During the course labs, students use basic tools, such as nvprof [1], perf
Linux command [8], jumpshot [10] and likwid [3] for visualizing and analyzing the
behavior of their applications. These tools are enough for the simple applications
developed and the small cluster used in this course.

However, our students will likely participate in the development of real par-
allel applications during their professional life. Consequently, a lecture is used
to describe the performance analysis cycle shown in Fig. 2 and introduce the
main tools currently available for supporting each of these steps.

For example, Performance API (PAPI) [9] and Dyninst [2] are mentioned
as supporting tools for getting execution measurements; Tuning and Analysis
Utilities (TAU) [20], Scalasca [21] and Paraver [7] are presented as analysis and
visualization tools; and Periscope Tuning Framework (PTF) [18], MATE [19]
and Elastic [16] are introduced as automatic analysis and tuning tools.

It is worth mentioning that the Computer Architecture and Operating Sys-
tems department of Universitat Autònoma of Barcelona have received support
from computation industry leaders for the design and development of computa-
tion labs. We have been appointed by Intel as an Academic Partner with the use
of Intel Parallel Studio as one of the programming environments for the practi-
cal laboratories and we have also been awarded as a GPU Teaching Center by
Nvidia Corporation for introducing CUDA and GPU technology into the com-
puter architecture studies. Our materials and systems are well updated to the
latest versions released by Nvidia.

4 Applied Modelling and Simulation

The main goal of the Applied Modelling and Simulation subject is to introduce
to the students real applications that use modelling and simulation and apply
parallel programming. It is very significant to show the need to use high perfor-
mance computing to make these real applications operational.

So, the proof of concept for this subject are developed by two different parts:

74 E. Cesar et al.

Fig. 2. Performance analysis in the application development cycle.

– simulation model development and its performance analysis,
– analysis of cases of use in collaboration with industry and research laboratories

that use modeling and simulation activities every day.

In the first case study, a model of emergency evacuation using Agent Based
Modeling is presented to the students [15]. In this model there are different
aspects of analysis: the environment and the information (doors and exit signals),
policies and procedures for evacuation, and social characteristics of individuals
that affect the response during the evacuation. Moreover, the model includes the
following hypothesis as a starting point to define it:

– In emergency evacuation situations, people are generally nervous or even in
panic, so they tend to perform irrational actions.

– Individuals try to move as quickly as possible (more than normal).
– Individuals try to achieve their objectives and may try to push each other in

their attempt to exit through a specific door causing physical injury to other
individuals.

Students receive a partial model that includes management of the evacuation
of an enclosed area that presents a certain building structure (walls, access, etc.),
obstacles, with a particular signaling and the corresponding safe zones and exits.
The model also includes individuals who should be evacuated to safe areas. The
model has been developed to support different parameters such as: individuals
with different ages, total number of people in the area, number of exits, number of

Teaching Parallel Programming in Interdisciplinary Studies 75

chained signals and safe areas, speed of each individual, probability of exchanging
information with other individuals. The model is implemented in NetLogo [5]
and the Fig. 3 is a representation of its main characteristics.

Fig. 3. Agent Based Modeling for emergency evacuations.

The first practical work for the students is to use a single-core architecture
to make a performance analysis of the model and then modify it to incorporate
a new, not covered, policy: overcrowding in exit zones [14]. With this new model
the students must complete a new performance analysis.

Considering the variability of each individual in the model a stability analysis
is required. For this the Chebyshov Theorem (also spelled as Tchebysheff) will
be used with confidence interval of 95 % and α = 0.05,m = 6. The result for
this analysis indicates that 720 simulations must be made at least to obtain
statistically reliable data. Taking into account the 720 executions on one core
processor, the simulation time (average) is 7.34 h for 1000 individuals and 27.44 h
for 1,500 individuals per scenario. In order to use this tool as Decision Support
System (DSS), the students are instructed of necessary HPC techniques and the
embarrassingly parallel computing model is presented to reduce the execution
time and the decision-making process time [13]. To perform this task, students
must learn how to execute multiple parametric Netlogo model runs in a multi-
core system and how to make a performance analysis to evaluate the efficiency
and scalability of the proposed method.

The second case presented to the students is the paradigmatic example of
meteorological services. Everybody watches the weather forecast on the TV news
everyday and can imagine the complexity of the models involved, with huge
meshes of points with hundreds of variables estimated for every point, and the
computing requirements needed to provide a real prediction. However, in this
particular case, it is known that weather prediction models show chaotic behav-
iour. The way to keep this chaotic behaviour as limited as possible is to execute,
not just a single simulation, but a complete set of scenarios (called ensemble)
and apply statistical methods to conform the final prediction. This meteoro-
logical modelling and prediction part is presented by members of the Servei

76 E. Cesar et al.

Meteorològic de Catalunya (Meteorological Service of Catalonia). Obviously, it
is out of the scope of the subject to develop a meteorological model, but the stu-
dents can use some small specific models such as wind field models (WindNinja
[12]) for analysing its execution time, scalability and speedup. In this context,
some students (one or two per year) may enroll an internship in this meteoro-
logical service developing code for some particular model or applying parallel
programming techniques to some of the existing models.

In a similar way, a collaboration has been established with the IC3-BSC
(Institut Català de Ciències del Clima - Barcelona Supercomputing Center),
but in this case the models and predictions are related to climatological mod-
els involving very large time scales. In this case, the real time aspect is not
so critical, since the predictions are considered for decades or even centuries.
However, the main point is to run hundreds or thousands of simulations with
different parameters that make the total amount of computational requirements
extremely large. Also in this case, some students carry out a internship in this
centre, where they have access to very large computing resources and can make
very interesting studies on speedup and scalability.

5 Conclusions

Many fields of science and engineering are evolving by the contribution of com-
plementary fields. This implies that working teams in companies and research
centres have significant interdisciplinary components and it is necessary that peo-
ple from different fields are able to establish a common ground and understand
the requirements and problems of all the sides. High performance computing,
including parallel and distributed programming, becomes a central factor that is
applied to many fields from science and engineering. So, it is necessary that the
students from different fields receive a significant training in high performance
computing. In this way, they are able to design and develop their own applica-
tions and, even more important, they understand the implications of using some
particular architecture or programming paradigm. In this way they can establish
a common language with computer scientists and work together in the develop-
ment of more powerful and successful applications. In this interdisciplinary con-
text, the experience of teaching parallel programming in interdisciplinary studies
at master level has been presented. The main conclusion is that the experience is
very successful and most students enjoy developing parallel programs, analysing
their behaviour and trying to improve their performance. After this experience
it would be very interesting to introduce similar subjects at the undergraduate
level, so that students from different fields are able to apply high performance
computing techniques to their computational problems from the very beginning.

References

1. Cuda Visual Profiler. http://docs.nvidia.com/cuda/profiler-users-guide/index.
html#visual-profiler. Accessed 18 May 2015

http://docs.nvidia.com/cuda/profiler-users-guide/index.html#visual-profiler
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#visual-profiler

Teaching Parallel Programming in Interdisciplinary Studies 77

2. Dyninst API. http://www.dyninst.org/. Accessed 18 May 2015
3. Lightweight performance tools. https://code.google.com/p/likwid/. Accessed 18

May 2015
4. Message Passing Interface Forum. http://www.mpi-forum.org/. Accessed 18 May

2015
5. NetLogo. Wilensky, U.: Center for Connected Learning and Computer-Based Mod-

eling. Northwestern University, Evanston, IL (1999). https://ccl.northwestern.edu/
netlogo/index.shtml. Accessed 18 May 2015

6. OpenMP. http://openmp.org/. Accessed 18 May 2015
7. Paraver. http://www.bsc.es/computer-sciences/performance-tools/paraver. Acce-

ssed 18 May 2015
8. perf: Linux profiling. https://perf.wiki.kernel.org/index.php/Main Page. Accessed

18 May 2015
9. Performance API. http://icl.cs.utk.edu/papi/. Accessed 18 May 2015

10. Performance Visualization. http://www.mcs.anl.gov/research/projects/perfvis/
software/viewers/. Accessed 18 May 2015

11. Bell, N., Hoberock, J.: Thrust: a productivity-oriented library for CUDA. Jade
Edition, GPU Computing Gems (2012)

12. Forthofer, J., Shannon, K., Butler, B.W.: Initialization of high resolution surface
wind simulations using nws gridded data. In: Proceedings of 3rd Fire Behavior and
Fuels Conference, 25–29 October 2010

13. Foster, I.T.: Designing and Building Parallel Programs - Concepts and Tools for
Parallel Software Engineering. Addison-Wesley, Reading (1995)

14. Gutierrez-Milla, A., Borges, F., Suppi, R., Luque, E.: Individual-oriented model
crowd evacuations distributed simulation. In: Proceedings of the International
Conference on Computational Science, ICCS 2014, Cairns, Queensland, Australia,
10–12 June, 2014. pp. 1600–1609 (2014). http://dx.doi.org/10.1016/j.procs.2014.
05.145

15. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd
dynamics: experiments, simulations, and design solutions. Transp. Sci. 39(1), 1–24
(2005). http://dx.doi.org/10.1287/trsc.1040.0108

16. Mart́ınez, A., Sikora, A., César, E., Sorribes, J.: ELASTIC: a large scale dynamic
tuning environment. Sci. Program. 22(4), 261–271 (2014)

17. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Pat-
terns for Efficient Computation, 1st edn. Morgan Kaufmann Publishers Inc., San
Francisco (2012)

18. Miceli, R., Civario, G., Sikora, A., César, E., Gerndt, M., Haitof, H., Navarrete,
C., Benkner, S., Sandrieser, M., Morin, L., Bodin, F.: AutoTune: a plugin-driven
approach to the automatic tuning of parallel applications. In: Manninen, P., Öster,
P. (eds.) PARA. LNCS, vol. 7782, pp. 328–342. Springer, Heidelberg (2013)

19. Morajko, A., Morajko, O., Margalef, T., Luque, E.: MATE: dynamic performance
tuning environment. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-
Par 2004. LNCS, vol. 3149, pp. 98–107. Springer, Heidelberg (2004)

20. Shende, S., Malony, A.D.: The Tau parallel performance system. IJHPCA 20(2),
287–311 (2006)

21. Wolf, F.: Scalasca. In: Encyclopedia of Parallel Computing, pp. 1775–1785 (2011)

http://www.dyninst.org/
https://code.google.com/p/likwid/
http://www.mpi-forum.org/
https://ccl.northwestern.edu/netlogo/index.shtml
https://ccl.northwestern.edu/netlogo/index.shtml
http://openmp.org/
http://www.bsc.es/computer-sciences/performance-tools/paraver
https://perf.wiki.kernel.org/index.php/Main_Page
http://icl.cs.utk.edu/papi/
http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/
http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/
http://dx.doi.org/10.1016/j.procs.2014.05.145
http://dx.doi.org/10.1016/j.procs.2014.05.145
http://dx.doi.org/10.1287/trsc.1040.0108

	Teaching Parallel Programming in Interdisciplinary Studies
	1 Introduction
	2 Basic Concepts for Interdisciplinary Students
	3 Parallel Programming
	3.1 Shared Memory: OpenMP
	3.2 Message Passing: MPI
	3.3 GPUs: CUDA
	3.4 Performance Analysis: Tools

	4 Applied Modelling and Simulation
	5 Conclusions
	References

