
A Cache-Aware Performance Prediction
Framework for GPGPU Computations

Alexander Pöppl(B) and Alexander Herz

Institut für Informatik, Technische Universität München,
Boltzmannstraße 3, 85748 Garching Bei München, Germany

{poeppl,herz}@in.tum.de

Abstract. We present a model for the automated prediction of aver-
age execution times for OpenCL-based computations on GPUs. The
model encompasses the whole execution of the computation, including
the transfer to and from the GPU, and the kernel execution itself. In con-
trast to existing static prediction frameworks, we incorporate the caches
available on modern GPUs into our model. Using our benchmark suite,
we show that memory access patterns can be grouped into five pat-
terns that exhibit significantly different memory access performance. By
extending our static analysis framework to differentiate the performance
behavior of these memory access patterns, we improve on predictions
made by existing GPU performance models. In order to evaluate the
quality of our model, we compare cache-aware and cache-unaware pre-
dictions for a large set of randomly generated OpenCL kernels with their
actual execution time.

1 Introduction

OpenCL is a powerful platform to express data parallel computations on a wide
range of accelerator devices which are commonly used in HPC applications [2].
It has been recognized that task-allocation, i.e. the distribution of computations
onto the different available computing resources, on heterogeneous systems is an
important problem [5,11].

To address this problem, schedulers for heterogeneous platforms, such as
Qilin [11] or StarPU [5] have been proposed. The quality of their schedules
is highly dependent on a realistic execution time prediction for the individual
computations on each specific device. Measuring the execution time for all com-
putations on all possible devices is very time and energy consuming. Therefore,
static execution time prediction models have been established [3,8,10].

These models enable high quality predictions on early generation GPGPUs.
However, the caches introduced into the memory hierarchy of later GPGPU
generations are neglected. We have benchmarked a large set of randomly gener-
ated memory accesses on a range of current GPGPUs. Our measurements show
that the accesses can be categorized into five patterns with distinct performance
characteristics. Using these measurements, we extract a performance character-
istic for each pattern and incorporate it into our performance prediction model.
c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 749–760, 2015.
DOI: 10.1007/978-3-319-27308-2 60

750 A. Pöppl and A. Herz

Finally, we evaluate the quality of our improved model on a large set of randomly
generated OpenCL kernels. The contributions of this paper are as follows:
– We show that memory accesses can be categorized into patterns with distinct

performance characteristics.
– We present a fully static OpenCL computation performance prediction model.
– We evaluate a large set of randomly generated kernels to show that our cache-

aware model enables improved predictions on GPGPUs with cached memory
hierarchies.

1.1 Example

A frequent application for OpenCL computations are stencil operations on two-
dimensional arrays. A simple example of such a stencil computation is given in
Eq. 1 which we will apply on an array of size n ∗ m. The example is chosen to
illustrate the effects of different access patterns on the execution time.

b(i, j) = a(i, j)2 − a(1, j) (1)

The equation uses a stencil on the input array a to compute all elements of the
output array b. The complete computation is performed in the following steps.
1: nWI = m ∗ n
2: meminput

GPU ← device.alloc(nWI ∗ sWI)
3: memoutput

GPU ← device.alloc(nWI ∗ sWI)
4: copyDataToGPU(→ meminput

GPU)
5: device.kernel(nWI, nWG,m, n)

⇒ ∀id ∈ {0, .., nWI}. sq mod(meminput
GPU ,memoutput

GPU ,m, n)
6: copyDataFromGPU(→ memoutput

GPU)
First, memory segments for the input array and the output array, both with
data type size, sWI, need to be allocated on the GPU (line 2 and 3). Next, we
have to transfer the data from the host system to the GPU (line 4). In line 5, we
execute the kernel which applies Eq. 1 for each element of the output array. The
kernel code for sq mod is shown below. In order to execute the kernel, we have
to specify the number of work-items (i.e. output array elements), nWI, and the
number of work-items per work-group, nWG, which will be executed in parallel.
The parameter id, shown in the result of the kernel execution above, represents
the index of the work-item the kernel is currently applied on. It is not explicitly
given as a parameter, but can be obtained during the execution of the kernel
using the function get global id(0). Finally, the results of the computation
need to be copied back to the host system for further processing (line 6).

kernel void sq mod (global f loat ∗matr ix , global f loat ∗ res ,
unsigned int m, unsigned int n) {

s i z e t cu r r en t po s = g e t g l ob a l id (0) ;
unsigned int curren t row = cu r r en t po s / n ;
unsigned int c u r r en t c o l = cu r r en t po s % n ;
r e s [cu r r en t po s] = matr ix [curren t row ∗ n + c u r r en t c o l]

∗ matr ix [curren t row ∗ n + c u r r en t c o l]
− matr ix [c u r r en t c o l] ;

}

A Cache-Aware Performance Prediction Framework 751

1.2 Prediction of Kernel Execution Times

We will develop our performance prediction model by subdividing the complete
computation into several steps analogous to the example in the previous section.
Hence, the overall execution time of an OpenCL computation is given by Eq. 2
which adds up the time required to copy data to the device (step 4), executing
the kernel (step 5) and copying the result back (step 6). Here nWG holds the
number of work-items in a single work-group, and nXU the number of execution
units, i.e. the degree of parallelism on the device. The execution time of the
actual kernel (step 5) is calculated using Eq. 3. The average execution time of
each of the elementary operations WOp(nOp) ∗ tOp(nWI) is added to the base
overhead tBase(nWI) and divided by the utilization of the GPU U(nWG, nXU).
WOp are functions determining how the execution time scales with the number of
operations nOp of the same type occurring in the same kernel. We found that for
the basic operations, the execution time does not scale linearly with the number
of operations of the same type (see Subsect. 2.4). The family of functions tOp

assigns an execution time based on the elementary expression and the number of
work-items nWI. The utilization function U(nWG, nXU) describes the degree of
parallelization achieved by the GPU based on the number of execution units and
the size of the work-group. We will discuss each cost component in the following
sections.

t(nWI, sWI, nWG) = tTransfer(nWI, sWI) + tKernel(nWI, nWG) (2)

tKernel(nWI, nWG) =
tBase(nWI) +

∑
Op∈Expr.-Types WOp(nOp)tOp(nWI)
U(nWG, nXU)

(3)

2 Runtime Model

In this section, we describe the individual components of our model for the
prediction of OpenCL kernels executed on a specific GPU. We will first model
the costs of the data transfer, followed by the costs for the individual kernel
components. Loops, conditional statements and intrinsic functions for operations
such as the square root or the sine are not yet regarded in the model. For most
of the measurements, we ran microkernels with the operation that was to be
classified and compared its performance with another microkernel that lacked
the operation but was otherwise identical. We took multiple samples for each
data point, in order to ensure a standard error ratio of 0.02.

2.1 Transfer of Data to and from the Device

Most modern GPUs have a dedicated portion of memory separate from the
system’s main memory, to be used exclusively by them. As mentioned above,
data needs to be transferred to and from that memory. In order to predict the
time spent on data transfer, one has to consider two components. The first one is
the bandwidth bw, which is determined by the underlying bus system, typically

752 A. Pöppl and A. Herz

0 2 4 6

·107

0

20

40

Number of DWords

T
im

e
in

m
s

To GPU

ttotrans(nWI) = bw−1
to nWI + lto

From GPU

tfromtrans(nWI) = bw−1
from nWI + lfrom

(a) Costs of data transfer

0 0.5 1 1.5

·107

0

0.2

0.4

nWI

Empty Kernel Runtime

tBase(nWI) = cBase nWI + cfixedBase

(b) Kernel Execution base cost

Fig. 1. On the diagram to the left, the time spent on transferring memory from and to
the GPU is shown. The diagram on the right shows the base cost for kernel execution.

PCI Express, and the second one the signal propagation and access latency lprop,
which is determined by all the effected components, i.e. the bus systems and the
memory modules [1,4,7].

We measured the time it took to transfer an array with nWI work-items
between system and device memory. These measurements, with their results
displayed in Fig. 1a, show a linear dependency between the amount of data trans-
ferred and the transfer time. It can be seen that there is significantly more time
spent copying data to the GPU than on copying the results back again, although
the size of the data remains the same. This effect is also mentioned by Fuji et
al. [7], who state driver optimizations as a reason for the different costs. Our
model reflects this effect with separate assignments for the bandwidth bw and
latency l being required for each direction [7].

2.2 Base Cost of Kernel Execution

Computations on GPUs are performed in a highly parallel fashion, with each
work-item being computed in its own thread. These need to be started, coordi-
nated and put into blocks, which causes a non-negligible amount of overhead,
that, as shown in Fig. 1b, scales linearly in regards to the number of computed
work-items.

2.3 Influence of the Work-Group Size

Each work-item belongs to a work-group. Work-items within a work-group are
executed concurrently, and only once all work-items belonging to one work-group

A Cache-Aware Performance Prediction Framework 753

0 50 100
0

5

10

15

20

Number of work items per work-group

T
im

e
in

m
s

Observed Runtime

(a) NVidia GT-650M

0 50 100
0

5

10

15

20

Number of work items per work-group

Observed Runtime

(b) Intel HD Graphics 4000

Fig. 2. Execution time for different work-group sizes. We only show the results of work-
groups with less than 100 work-items in order to highlight the performance penalties
of using work-group sizes that are slightly bigger than multiples of the number of
execution units. The kernel we used to evaluate this behavior performs one read from
and write to the global memory, and one floating point division.

are finished may work-items from another start their calculations. It follows that
the work-group needs to be sufficiently large in order to fully utilize all available
processing elements of the GPU. Additionally, all work-groups need to have the
same size, hence the total number of work-items needs to be evenly divisible by
the work-group size. However, using the biggest possible work-group size is not
always optimal for maximizing GPU utilization.

We can observe the effects of improper resource utilization in Fig. 2, espe-
cially on the HD 4000. There is a clear performance degradation whenever the
utilization of the execution units is less than optimal. We model the utilization
as U(w, nXU), defined in Eq. 4. Term A denotes the portion of the computation
that can be performed using all available execution units, while B is the remain-
der of the execution which does not fully utilize the available resources. Note
that the size of the work-group is not determined automatically, but set by the
programmer when the kernel execution is started.

U(nWG, nXU) =
�nWG
nXU

	

nWG
nXU

�
︸ ︷︷ ︸

A

+
nWG modnXU

nXU

nWG
nXU

� − �nWG
nXU

	

nWG
nXU

�
︸ ︷︷ ︸

B

(4)

2.4 Basic Operations

Generally, GPU kernels consist of memory accesses and arithmetic expressions.
We evaluate the behavior of arithmetic expressions, signified by the four basic
operations +, −, ∗ and /. In order to model the execution time of basic opera-
tions, the number of work-items nWI and the accumulated number of each type

754 A. Pöppl and A. Herz

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

2

4

6

nWI

T
im

e
in

m
s

/Float

+Float

−Float
∗Float

(a) One operation per work-item

0 20 40 60 80 100 120 140
0.2

0.4

0.6

nOps

+Float

−Float
∗Float

(b) Multiple Operations per work-item

Fig. 3. The diagrams above display the progression of the execution time for basic
operations, based on the number of work-items on the left and based on the number
of operations in a single kernel on the right.

of basic operations nOps performed within the kernel must be taken into account.
Our measurements (results depicted in Fig. 3a) show that there is a linear rela-
tion between the number of work-items and the execution time. For the number
of operations within a work-item, we found the execution time to increase lin-
early as well, but only after a certain number of operations, as shown in Fig. 3b.
We modeled this behavior with Eq. 5.

W type
op (nOps) =

{
a nb

Ops + c : nOps ≤ nsat
Ops

a′nOps + c′ : nOps > nsat
Ops

ttypeop (nWI) = ctypeop nWI (5)

The GPU dependent constants a, a′, b, c, c′ are obtained by fitting W type
op

(nOps) to Fig. 3b, the constant ctypeop is obtained by fitting ttypeop (nWI) to Fig. 3a.

2.5 Memory Accesses

Memory accesses scale, similarly to basic operations, linearly in regards to the
number of work-items and to the number of the same access in the kernel. As
expected from the three-tier memory model (with private, local and global mem-
ory) of OpenCL, we observed a large spread in execution time for accesses to
different types of memory. In the kernel introduced in Subsect. 1.1, we see two of
the different memory types in use. Private memory is implicitly used for all the
parameter values and local variables. The pointers given as a parameter to the
kernel point to segments of the global memory. There is one write access to the
global memory, and three read accesses, with two of them accessing the same
address in the same kernel execution. The third only accesses items from the
first row. While local memory is not featured in the example it could be used by
declaring a variable outside the kernel, e.g. local float mem[4].

A Cache-Aware Performance Prediction Framework 755

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

1

2

nWI

T
im

e
in

m
s

Global Write

Local Read

Local Write

Private Access

(a) Different kinds of memory accesses

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

5

10

nWI

Complex

Coalesced

2 Identical

Interval

Constant

(b) Different Global Read Accesses

Fig. 4. The diagrams above display the results of our measurements for the cost of dif-
ferent memory accesses. In the left picture, the different kinds of memory accesses are
compared to each other. On the right side, read accesses to the global memory with dif-
ferent access patterns are displayed. The memory accesses used for these measurements
are the ones given in the text.

These are usually implemented using different memory types, which, as we
concluded from the result of our measurements, depicted in Fig. 4a, differ signifi-
cantly in terms of access time. Private memory accesses are practically cost-free.
Local accesses, while more expensive, are still significantly faster than global
accesses.

However, only distinguishing between different memory types has proven
insufficient for obtaining precise estimations the execution time of kernels. In
the following, we discuss groups of memory access patterns identified by our
measurements which are shown in Fig. 4b. Each pattern is associated with a char-
acteristic memory access latency, induced by the caches utilized by the respective
pattern. In the patterns, x denotes the index of the current work-item which can
be computed using get global id(0) inside the kernel.

Some memory accesses always read from the same address, e.g. matrix
[0x2a]. The content of this address only needs to be cached once. Further reads,
including those made from other work-items that are able to access the same
cache, do not need to fetch from the off-chip memory a second time. We refer to
these as constant accesses.

If all of the addresses that are reached by an access are in a range that fits
into the cache – the size of which may be queried from the OpenCL runtime –
of that device (e.g. matrix[x&0xFF]), the values can still be held in the cache,
and expensive off-chip accesses may be avoided. While this kind of read is more
expensive than the constant one, the costs of the interval access are still below
the costs of other global accesses.

The most common memory access ranges over a memory area that is signif-
icantly greater than the typical cache (e.g. matrix[x]). However, as this is the
default case, the GPU vendors implemented optimizations [12], and typically
several addresses will be loaded at once, reducing the number of accesses to the
off-chip memory significantly. This kind of access is called a coalesced access.

756 A. Pöppl and A. Herz

In some kernels, there are multiple identical accesses to the same address (e.g.
matrix[x] * matrix[x]). We found subsequent accesses to the same address
within the same kernel to be cheaper compared to accesses to a different address.
On the GT-650M, we observed subsequent reads to the same address to be
without any extra cost, while for other GPUs the overhead was comparable to
constant accesses. The reason for the speedups may be compiler optimizations.
These values may be stored in a cache, or the compiler may store them in a
register file. This eliminates or severely reduces the cost of subsequent accesses.

Accesses that do not fall into those categories, are referred to as uncoalesced
accesses. With those, caches cannot hide the latency, and the off-chip memory
needs to be accessed frequently. In consequence, these kinds of accesses are at
least one order of magnitude slower than the others.

Note that for some access patterns, our analysis needs to compute the size
of the input arrays statically which is not always possible.

3 Empirical Evaluation

With the model described in the previous section, we built an analysis that
iterates over the syntax tree of the OpenCL kernel and collects the number of
occurrences of each elementary expression. Given the kernel, the experimentally
gathered constants for the GPU operations, the number of work-items nWI and
the desired work-group size nWG, we can predict the total execution time for
the computation. Figure 5a displays the analysis result for a computation using
the kernel from the example in Subsect. 1.1 with an array size m ∗ n = nWI of
4096 × 4096.

In Fig. 5b, the time spent executing the example from Subsect. 1.1 with dif-
ferent input array sizes is compared to predictions that were made during its
compilation. For arrays with more than 128 × 128 entries, the observed result is
very close to the predicted one. Only for smaller arrays does the model slightly
over-estimate the approximation. This may be caused by the larger uncertainty
in the measurements for very small arrays.

4 Quantitative Evaluation

To evaluate the quality of the predictions made with the model, we generated
random valid OpenCL kernels that perform stencil computations. We created
execution time predictions for each kernel, and compared them to the arithmetic
mean of the run time of five different runs of the same kernel. This was done
for array sizes ranging from 32 × 32 to 8192 × 8192 elements. We performed
this evaluation on two thousand generated kernels, separated into two categories
with one thousand samples each. Kernels in the first category have a small
number of expressions and the complexity of memory access patterns is limited
to simple patterns as well. Such kernels may conceivably be used in productive
environments, and will henceforth be referred to as realistic samples. In the other
category, the complexity of the kernels is not restricted. In order to avoid stack

A Cache-Aware Performance Prediction Framework 757

Cost Type # in Kernel Time in µs

−float 1 74.16
∗float 1 74.54
+int 1 55.13
∗int 7 81.04
/int 4 1506

private access 1 0.0
interval global read access 1 770.9

continuous global read access 1 2335
base cost 1 3191

work-group size 1024 -

final prediction 8089

(a) Prediction table for 224 work-items (Array
of size 4096 × 4096)

103 104 105 106 107 108

10−5

10−4

10−3

10−2

Number of Elements

T
im

e
in

s

Our model

Observation

(b) Comparison between predicted
and actual execution time

Fig. 5. This table shows the predictions for the example kernel presented in Sub-
sect. 1.1. On the left, the individual elementary expressions are listed for a fixed work-
item size on the test system, and on the right the overall predictions are compared to
the actual execution time of the kernel. The prediction for this kernel may be computed
as follows: tKernel(nWI, nWG) = MWG(nWG)((cBase+cfloat− +cfloat∗ +cint

+ + 7
7
cint

∗ + 4
4
cint
/ +

civlglobal + ccontglobal)nWI + cfixedBase). Both examples were measured on a NVidia GT-650M.

overflows during the generation, we limited the number of subexpressions to
at most 50 elementary expressions for the calculation. Each generated memory
access may have up to fifty subexpressions in its index expression.

The histograms in Fig. 6 display the result of this evaluation. We used the
quotient prediction

result as a measure of the quality for the result. A perfect prediction
yields 1.0, values smaller than that indicate an underestimation, and larger values
an overestimation. In the histograms, one may see that the prediction performed
poorly in some cases. A possible reason may be an incorrect classification of
memory accesses, where the actual runtime was lower than the predicted one.
Nevertheless, on the Quadro K4000, we observed deviations of less than 30 %
from the perfect result in realistic sample set for 71 % of the samples. For the
unrestricted sample set 43 % were in that interval. The GT-650M has a slightly
different behavior. Here, 63 % of the predictions for the realistic set deviate less
than 30 % from the perfect result. For the unrestricted sample set, 50 % deviate
less than 30 %. We also compared our model to a version that does not use our
memory access patterns (see Fig. 6e). In contrast to the run that used our model,
only 61 % instead of 71 % of all samples deviate by less than 30 %. This shows
that the quality of the prediction can be improved by taking GPU caches into
account.

5 Related Work

In the eight years since GPGPU programming emerged, there have been several
approaches to modeling the execution time of programs running on the GPU.
They can be grouped into two major groups, static and dynamic approaches.

758 A. Pöppl and A. Herz

0.5 1 1.5 2 2.5 3

0

20

40

60

80

100

120

140

160

(a) GT-650M, Realistic

0 1 2 3 4 5

0

20

40

60

80

100

120

140

160

(b) GT-650M, Unrestricted

0.5 1 1.5 2 2.5 3 3.5

0

20

40

60

80

100

120

140

(c) K4000, Unrestricted

0.5 1 1.5 2 2.5 3 3.5

0

50

100

150

200

250

300

(d) K4000, Realistic Samples, Our model

N
u
m

b
e
r

o
f
S
a
m

p
le

s

0.5 1 1.5 2 2.5 3 3.5

0

50

100

150

200

250

300

(e) K4000, Realistic Samples, Simple model

Fig. 6. The diagrams show distributions of benchmark results for both the test with
an unrestricted as well as with a restricted set of OpenCL kernels. We performed the
evaluations on a NVidia GT-650M notebook GPU and a Quadro K4000 workstation
GPU. The X axis denotes the quotient

tprediction
tresult

. The closer this quotient is to 1, the
better the prediction. Using the diagrams in the second row, one can compare the
quality of predictions made using our model with the quality of the predictions made
using a simple model that does not model cache behavior.

C. Luk et al. [11] and G. Diamos and S.Yalamanchili [6] propose dynamic
approaches in order to make scheduling decisions for their respective heteroge-
neous environments. They do this by observing run times of kernels executed
on the GPU and using the gathered information to extrapolate information
about future kernel executions. One big disadvantage with dynamic approaches
is the fact that they do not possess information before the kernel is executed
for the first time. Without any static metric, this has a negative impact on the
quality of schedules involving computations on unknown kernels. One possible
alleviation of this problem to use a static approach such as ours for the initial
estimation, and then use the dynamically gathered data to improve on the initial
value [5,6,8,11].

D. Grewe and M. O’Boyle [8] propose a static, machine-learning based app-
roach. They consider OpenCL kernels, and split them into components. They
take a wider range of basic operations, e.g. sqrt or sin into account. However,
the paper does not model different global memory accesses and their possible
caching [8].

K.Kothapalli et al. [10] contribute a static performance model based on
NVidia’s CUDA framework. They analyze the program based on specifications

A Cache-Aware Performance Prediction Framework 759

provided by NVidia. Their model is more closely tied to the architecture of the
NVidia hardware. They distinguish between the different kinds of memories, e.g.
local and global, but do not incorporate caches into their model [10].

C. Martel et al. [3] propose a performance model that splits the execution
time of a kernel into three components: computation time, time spent on trans-
ferring from global to local memory, and time spent on transfers from local to
private memory. The described model is more detailed in regards to the effects
of the size of the work-group, but also neglects caches.

6 Conclusion

In this paper, we presented an approach for the prediction of OpenCL kernel
execution times. The model we presented takes the different subcomponents of
the computation into account, and also distinguishes between the transfer of
data to and from the GPU, and the computation itself. Memory accesses, which
are a significant factor for the determination of the overall kernel execution time,
are classified according to their cache-behavior.

For smaller OpenCL kernels, which conceivably occur in productive envi-
ronments, our model is able to deliver predictions that are sufficiently accurate
for use in productive applications that require estimation about the duration
of tasks in heterogeneous environments. These systems may utilize the model
in order to get an initial estimation of the duration of a task without the need
to execute it, and enable them, in concert with other models, e.g. for CPUs or
Accelerator platforms, to find a schedule that optimizes the overall utilization
and performance of the system.

In future work, we plan on including language features that are currently not
considered into the model, e.g. for loops, and the intrinsic functions defined by
the OpenCL standard. Another topic of interest is the Standard Portable Inter-
mediate Representation, which will be incorporated in the OpenCL standard in
version 2.1 and may enable us to gain a more fine-granular view of the operations
performed on the hardware and hence provide more elementary predictions [9].

Acknowledgments. This work was partly supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Research Centre “Invasive
Computing” (SFB/TR 89).

References

1. Intel X79 express chipset block diagram. http://www.intel.de/content/www/de/
de/chipsets/performance-chipsets/x79-express-chipset-diagram.html

2. Top 500 list, November 2014. http://www.top500.org/lists/2014/11/
3. Alberto, C.M.M., Sato, H.: Linear performance-breakdown model: a framework for

GPU kernel programs performance analysis. Int. J. Netw. Comput. 5(1), 86–104
(2015)

http://www.intel.de/content/www/de/de/chipsets/performance-chipsets/x79-express-chipset-diagram.html
http://www.intel.de/content/www/de/de/chipsets/performance-chipsets/x79-express-chipset-diagram.html
http://www.top500.org/lists/2014/11/

760 A. Pöppl and A. Herz

4. Weiler, A., Pakosta, A.: High-speed layout guidelines. Technical report, Texas
Instruments, November 2006

5. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009)

6. Diamos, G.F., Yalamanchili, S.: Harmony: an execution model and runtime for
heterogeneous many core systems. In: Proceedings of the 17th International Sym-
posium on High Performance Distributed Computing, HPDC 2008, pp. 197–200.
ACM, New York (2008). http://doi.acm.org/10.1145/1383422.1383447

7. Fujii, Y., Azumi, T., Nishio, N., Kato, S., Edahiro, M.: Data transfer matters for
GPU computing. In: 2013 International Conference on Parallel and Distributed
Systems (ICPADS), pp. 275–282, December 2013

8. Grewe, D., O’Boyle, M.F.P.: A static task partitioning approach for heterogeneous
systems using OpenCL. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 286–305.
Springer, Heidelberg (2011)

9. The Khronos Group: The OpenCL specification (provisional), version 2.1, January
2015. https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf

10. Kothapalli, K., Mukherjee, R., Rehman, M., Patidar, S., Narayanan, P., Srinathan,
K.: A performance prediction model for the CUDA GPGPU platform. In: 2009
International Conference on High Performance Computing (HiPC), pp. 463–472,
December 2009

11. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO-42, pp. 45–55, December 2009

12. NVidia: OpenCL programming guide for the CUDA architecture. Program-
ming Guide, September 2012. http://hpc.oit.uci.edu/nvidia-doc/sdk-cuda-doc/
OpenCL/doc/OpenCL Programming Guide.pdf

http://doi.acm.org/10.1145/1383422.1383447
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
http://hpc.oit.uci.edu/nvidia-doc/sdk-cuda-doc/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://hpc.oit.uci.edu/nvidia-doc/sdk-cuda-doc/OpenCL/doc/OpenCL_Programming_Guide.pdf

	A Cache-Aware Performance Prediction Framework for GPGPU Computations
	1 Introduction
	1.1 Example
	1.2 Prediction of Kernel Execution Times

	2 Runtime Model
	2.1 Transfer of Data to and from the Device
	2.2 Base Cost of Kernel Execution
	2.3 Influence of the Work-Group Size
	2.4 Basic Operations
	2.5 Memory Accesses

	3 Empirical Evaluation
	4 Quantitative Evaluation
	5 Related Work
	6 Conclusion
	References

