
Towards Application Variability Handling
with Component Models: 3D-FFT

Use Case Study

Vincent Lanore1(B), Christian Perez2(B), and Jérôme Richard1(B)

1 École Normale Supérieure de Lyon, Lyon, France
vincent.lanore@ens-lyon.fr, jerome.richard@inria.fr

2 Inria Avalon Research Team, LIP, Lyon, France
christian.perez@inria.fr

Abstract. To harness the computing power of supercomputers, HPC
application algorithms have to be adapted to the underlying hardware.
This is a costly and complex process which requires handling many algo-
rithm variants. This paper studies the ability of the component model
L2C to express and handle the variability of HPC applications. The goal
is to ease application adaptation. Analysis and experiments are done on
a 3D-FFT use case. Results show that L2C, and components in general,
offer a generic and simple handling of 3D-FFT variants while obtaining
performance close to well-known libraries.

Keywords: Application adaptation · Component models · High-
performance computing

1 Introduction

To harness the computing power of supercomputers, high-performance comput-
ing (HPC) applications must have their algorithms adapted to the underlying
hardware. Adaptation to a new hardware can involve in-depth transformations or
even algorithm substitutions because of different scales, features, or communica-
tion/computation ratios. Since hardware evolves continuously, new optimizations
are regularly devised. As a consequence, application codes must often be tweaked
to adapt to new architectures so as to maximize performance; maintainability is
rarely taken into account.

Adapting an application code to a specific use has a cost in terms of devel-
opment time and requires very good knowledge of both the target platform and
the application itself. It might also prove difficult for someone other than the
original code developer(s). Moreover, unless automated, adapting the code for a
specific run is, in many cases, too costly.

A promising solution to simplify application adaptation is to use component-
based software engineering techniques [14]. This approach proposes to build
applications by assembling software units with well-defined interfaces; these units
are called components. Components are connected to form an assembly. Syntax
c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 761–773, 2015.
DOI: 10.1007/978-3-319-27308-2 61



762 V. Lanore et al.

and semantics of interfaces and assemblies are given by a component model. Such
an approach enables easy reuse of (potentially third-party) components and sim-
plifies adaptation thanks to assembly modifications. Also, some component mod-
els and tools enable automatic assembly generation and/or optimization [5,8].
Component models bring many software engineering benefits but very few pro-
vide enough performance for high-performance scientific applications. Among
them is L2C [4], a low-level general purpose high-performance component model
built on top of C++ and MPI.

This paper studies the ability of L2C to handle HPC application variability
on a 3-dimensional Fast Fourier Transform (3D-FFT) use case: a challenging
numerical operation widely used in several scientific domains to convert signals
from a spatial (or time) domain to a frequency domain or the other way round.
Our experiments and adaptation analysis show that it is possible to easily spe-
cialize 3D-FFT assemblies (hand-written, with high reuse, without delving into
low-level code and with as little work as possible) while having performance
comparable to that of well-known 3D-FFT libraries.

The paper is structured as follows. Section 2 gives an overview of related
work. Then, Sect. 3 deals with component models and introduces L2C. Section 4
describes the assemblies that we have designed and implemented with L2C for
various flavors of 3D-FFTs. Section 5 compares the 3D-FFT L2C assemblies with
existing FFT libraries both in terms of performance and in terms of reuse/ease
of adaptation. Section 6 concludes the paper and gives some perspectives.

2 Related Work

This section briefly discusses related works in HPC application adaptation. For
space reasons, only selected relevant publications are presented.

To efficiently run applications on several hardware architectures, it is usually
required to have algorithm variants that specifically target each architecture.
An efficient variant can then be chosen and executed according to hardware and
software characteristics. Variants and choices can be directly implemented in the
application code using conditional compilation or using conditional constructs.
But, it leads to a code difficult to maintain and to reuse due to the multiplication
of concerns in a same code (e.g., functional and non-functional concerns).

Other approaches rely on compilation techniques to handle variants or
choices. Many domain-specific languages (e.g., Spiral [7]) allow the generation of
efficient FFT codes but do not allow the application developers to easily handle
variants since they are implemented inside compilers or associated frameworks.
Some approaches like PetaBricks [1] aim to describe an FFT algorithm in a
high-level language and provide multiple implementations for a given piece of
functionality. This enables the expression of algorithms and their variations.
However variants can be complex to reuse through multiple applications as it is
the responsibility of the developer to support compatibility by providing portable
interfaces.



Towards Application Variability Handling with Component Models 763

Other approaches such as the FFTW codelet framework [10] and the Open-
MPI MCA framework [13] build efficient algorithm implementations by com-
posing units such as pieces of code or components for a specific purpose. These
approaches solve a problem by decomposing it into smaller problems and use a
set of specialized units to solve each one. These approaches provide some forms of
adaptation framework but, to our knowledge, it is not possible to easily integrate
new and/or unique optimizations.

Also, both these examples are specialized frameworks whose top-level algo-
rithms are difficult to change.

This paper studies whether components can be used to adapt HPC applica-
tions in a simpler and more generic manner than commonly used approaches.

3 Component Models

3.1 Overview

Component-based software engineering [11] is a programming paradigm that
proposes to compose software units called components to form a program. A
component model defines components and component composition. A classical
definition has been proposed by Clemens Szyperski [14]: A software component is
a unit of composition with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed independently and is
subject to third-party composition. In many component models, interfaces are
called ports and have a name. To produce a complete application, components
must be instantiated and then assembled together by connecting interfaces. The
result of this process is called an assembly. The actual nature of connections is
defined by the component model and may vary from one model to another.

Component models help to separate concerns and to increase reuse of third-
party software. Separation of concerns is achieved by separating the role of
component programming (low-level, implementation details) from component
assembly (high-level, application structure). Reuse of third-party components is
possible because component interfaces are all that is needed to use a component;
it is thus not necessary to be familiar with low-level details of the implementa-
tion of a component to use it. Component models also allow different pieces of
code to use different implementation of the same service as opposed to libraries.

Separation of concerns and reuse would allow to easily mix pieces of codes
from different sources to make specialized assemblies. Thus, adaptation would no
longer require in-depth understanding of existing implementations (separation
of concerns) or re-development of existing optimizations (reuse).

Many component models have been proposed. The CORBA Component
Model [6] (CCM) and the Grid Component Model (GCM) [2] are notable exam-
ples of distributed models. However, they generate runtime overheads [15] that
are acceptable for distributed application but not for HPC. The Common Com-
ponent Architecture [3] (CCA) aims to enhance composability in HPC. CCA is
mainly a process-local standard that relies on external models such as MPI for
inter-process communication. As a consequence, such interactions do not appear



764 V. Lanore et al.

in component interfaces. The Low Level Components [4] (L2C) is a minimalist
HPC component model built on top of C++ with a negligible overhead at run-
time. It provides amongst other things primitive components, local connections
(process local uses/provides ports), MPI connections (MPI communicator shar-
ing), and optionnally remote connections (CORBA based uses/provides ports).

As this paper studies the use of L2C to ease HPC applications, the next
section presents L2C in more detail.

3.2 L2C Model

The L2C model is a low level component model that does not hide system
issues. Indeed, each component is compiled as a dynamic shared object file.
At launch time, components are instantiated and connected together according
to an assembly description file or to an API.

L2C supports features like C++ method invocation, message passing with
MPI, and remote method invocation with CORBA. L2C components can provide
services thanks to provides ports and use services with uses ports. Component
dependencies are inferred from connections between interfaces. Multiple uses
ports can be connected to a unique provides port. A port is associated with an
object interface and a name. Communication between component instances is
done by member function invocations on ports. L2C also provides MPI ports as a
way to share MPI communicators between components. Components can expose
attributes used to configure component instances. The C++ mapping defines
components as plain C++ classes with a few annotations (to declare ports and
attributes). Thus library codes can easily be wrapped into components.

A L2C assembly can be described using a L2C assembly descriptor file (LAD).
This file contains a description of all component instances, their attributes values,
and the connections between instances. Each component is part of a process and
each process has an entry point (an interface called when the application starts).
It also contains the configuration of MPI ports.

As described in [4], L2C has been successfully used to describe a stencil-like
application with performance similar to native implementations.

4 Designing 3D-FFT Algorithms with L2C

This section analyses how L2C, as an example of a HPC component model, can
be used to implement distributed 3D-FFT assemblies. To that end, we have first
designed a basic 3D-FFT assembly. Then, we have modified it to incorporate
several optimizations. All the assemblies presented here have been implemented
in C++/L2C, and relevant assemblies are evaluated in Sect. 5. Let us first focus
on the methods used to compute a 3D-FFT.

4.1 3D-FFT Parallel Computation Methods

3D-FFT parallel computation can be done using 1D or 2D domain decomposi-
tion [12]. The whole computation can be achieved by interleaving data compu-
tation steps and data transposition steps. Computation steps involve applying



Towards Application Variability Handling with Component Models 765

Fig. 1. Local (one process) basic 3D-FFT assembly using 1D decomposition.

multiple sequential 1D/2D FFTs. Data transposition can be achieved by using
all-to-all global exchanges. Transposition performance is the major bottleneck.

1D decomposition involves 2 local computation steps, and 1 or 2 transpo-
sitions depending on the final data layout. For a given cube of data of size
N × N × N , this approach is scalable up to N processing elements (PEs) at
which point each PE has a slab of height 1.

2D decomposition involves 3 local computation steps, and between 2 and 4
transpositions depending on the final data layout. It scales up to N ×N PEs.

To increase 3D-FFT computation performance and to enable a better adap-
tation to hardware, a sequential 3D-FFT algorithm variant can be selected at
initialization using a planning step. Information about the algorithm selection
is stored in a plan that is then executed at runtime.

4.2 Basic Sequential Assembly

Figure 1 displays a single node sequential assembly that implements the 1D-
decomposition algorithm presented above. It will be the base for parallel assem-
blies. It is based on the identification of 8 tasks that are then mapped to



766 V. Lanore et al.

components: 6 for the actual computation, and 2 for the control of the com-
putation. The computation-oriented components implement the following tasks:

1. Allocator: allocate 3D memory buffers.
2. SlabDataInitializer: initialize input data.
3. Planifier1D X and Planifier2D XY: plan fast sequential FFTs.
4. FFTW: compute FFTs (wrapping of FFTW library, with SIMD vectorization).
5. LocalTranspose XZ: locally transpose data.
6. SlabDataFinalizer: finalize output data by storing or reusing it.

The two control components implement the following tasks:

7. ProcessingUnit: broadcast incoming calls to connected components.
8. SlabMaster: drive the application (e.g., initialize/run FFT computations).

Task 2 (SlabDataInitializer), 6 (SlabDataFinalizer) and 8 (Slab
Master) are specific to the 1D decomposition. These tasks and Task 5
(LocalTranspose XZ) are specific to a given parallelization strategy, here
sequential. Task 3 (Planifier1D X and Planifier2D XY) and Task 4 (FFTW)
are specific to a chosen sequential FFT library (to compute 1D/2D FFT).

All computation-oriented components except Allocator rely on memory
buffers. They can use two buffers (i.e., an input buffer and an output buffer)
or just one for in-place computation. These buffers are initialized by passing
memory pointers during the application startup. For this purpose, these compo-
nents provide an init port to set input and output memory pointers, but also
to initialize or release memory resources.

All computation-oriented components except Allocator provide a go port
which is used to start their computation.

As FFT plans depend on the chosen sequential FFT library, Component
FFTW (Task 4) exposes a specific Plan interface that is used by Planifier1D X
and Planifier2D XY (Task 3). This connection is used to configure the FFT
components after the planning phase.

The application works in three stages. The first stage consists in initializing
the whole application by allocating buffers, planning FFTs and broadcasting
pointers and plans to component instances. In the second stage, the actual com-
putation happens, driven by calls on the go ports of component instances in such
a manner as to interleave computations and communications.

The last stage consists in releasing resources such as memory buffers. The
whole process is started using the go port of the SlabMaster component.

The assembly has been designed to be configured for a specific computation
of a 3D-FFT. Buffer sizes and offsets are described as components attributes;
they are not computed at runtime.

4.3 Parallel Assembly for Distributed Architectures

The distributed version of the assembly is obtained by deriving an MPI version
of SlabDataInitializer (Task 2), SlabDataFinalizer (Task 6), SlabMaster



Towards Application Variability Handling with Component Models 767

(Task 8). Basically, it consists in adding a MPI port to them. LocalTranspose XZ
components are replaced by MpiTransposeSync XZ which also exhibit MPI ports
used for distributed matrix transpositions. Furthermore, this assembly is dupli-
cated on each MPI process (with different attributes). MpiTransposeSync XZ
instances of a same computation phase are interconnected through their MPI
ports, so that they share an MPI communicator. It is also the case for
SlabMaster, SlabInitializer, and SlabFinalizer instances. Data distribu-
tion depends on the chosen decomposition (1D or 2D).

4.4 Assembly Adaptation

This section presents three possible adaptations of the parallel assembly pre-
sented above: load balancing for an heterogeneous distributed system, adjust-
ments of the number of transpositions, and use of a 2D decomposition.

Heterogeneous Assembly. A first example of adaptation is taking into
account heterogeneous hardware architectures, such as for example the thin and
large nodes of the Curie supercomputer. When all nodes do not compute at the
same speed and data is evenly distributed between nodes, the slower nodes limit
the whole computation speed due to load imbalance. To deal with this problem,
load balancing is needed and thus data must be unevenly distributed between
nodes. Since load balancing of 3D-FFTs depends on data distribution, a solution
is to control data distribution through component attributes. A new transposi-
tion component must be implemented to handle uneven data distribution. Thus,
handling heterogeneous systems can be easily done by reusing components from
the previous section with small modifications.

Reducing the Number of Transpositions. Optimizing the transposition
phase is important as it is often the main bottleneck. As explained in Sect. 4.1,
the final transposition can possibly be removed with 1D decomposition (and
up to two transpositions using a 2D decomposition) depending on the desired
orientation of the output matrix. This can be done by adding an attribute to
the Master component: in each process, the second ProcessingUnit component
instance connected to the SlabMaster via init and go ports is removed, and
the transposition component is connected to it via the same port type; the go
and init uses ports of the SlabMaster component are directly connected to
the associated provides ports of components implementing the Task 4 of the last
phase. As the SlabMaster behavior during the initialization depends on whether
a final transposition is used or not (the final buffer differs), a boolean attribute
is added to the SlabMaster to configure it. So, the number of transpositions can
be easily adjusted using assembly adaptation and component replacement.

2D Decomposition Assembly. 2D decomposition assemblies are needed to
scale beyond the limitation of the 1D decomposition described in Sect. 4.1. This



768 V. Lanore et al.

Fig. 2. Distributed 3D-FFT for 2 MPI processes using 2D decomposition.

can be done by adapting the assembly as displayed in Fig. 2. A new transposition
component is introduced as well as

PencilMaster, PencilInitializer, and PencilFinalizer components
which replace SlabMaster, SlabInitializer, and SlabFinalizer. These new
components provide two MPI ports to communicate with instances, that handle
the block of the 2D decomposition of the same processor row, or on the same
processor column. In this new assembly (not well optimized), two computing
phases are also added and are managed by the PencilMaster. Because the 2D
decomposition introduces a XY transposition of distributed data not needed in
the 1D decomposition, a new transpose component was needed. However, the XZ
transposition component can be reused from the 1D decomposition. Although
2D decomposition requires writing multiple new components (with a code sim-
ilar to those into 1D decomposition assemblies), most optimizations from 1D
decomposition assemblies can be applied.

Discussion. Studied 3D-FFT assembly variants are derived from other assem-
blies with local transformations such as adding, removing, or replacing compo-
nents, or just tuning component parameters. Usually, these transformations are
simple to apply, enabling easy generation of many 3D-FFT variants.



Towards Application Variability Handling with Component Models 769

Global transformations are modifications that impact the whole assembly
(components and connections). They usually correspond to a major algorithmic
variation. As such, they are more difficult to apply.

5 Performance and Adaptability Evaluation

This section evaluates the component-based approach in terms of performance
and adaptability of some assemblies described in the previous section. Perfor-
mance and scalability are evaluated on up to 8,192 cores on homogeneous archi-
tectures and up to 256 cores on heterogeneous architectures. Adaptability is
defined as the ease to implement various optimizations, and how much code has
been reused from other assemblies.

Variability experiments were done on 5 clusters of the Grid’5000 experimental
platform [9]: Griffon1, Graphene2, Edel3, Genepi4 and Sol5. Performance and
scalability experiments were done on thin nodes of the Curie supercomputer6.
Each experiment has been done 100 times and the median is displayed. Error
bars on plots correspond to the first and last quartile.

All experiments involve complex-to-complex 3D-FFTs and use a minimum
number of transpositions (i.e., 1 with 1D decomposition, 2 with 2D decompo-
sition). The FFT libraries used as reference are FFTW 3.3.4 and 2DECOMP
1.5.

All libraries are configured to use a synchronous complex-to-complex 3D-
FFT using FFTW sequential implementation (with FFTW MEASURE planning) and
double precision floating point.

5.1 Performance and Scalability Evaluation

Figure 3 displays the completion time obtained for matrices of size 10243 on
the Curie thin nodes for a 1D decomposition (Fig. 3a) and 2D decomposition
(Fig. 3b). Overall, the performance of L2C assemblies, FFTW and 2DECOMP
are close with both 1D and 2D decomposition. With 1D decomposition, we note
that L2C is slightly slower than 2DECOMP and the FFTW (up to 17 %). This
gap is due to the local transposition not being optimized enough in the 3D-
FFT L2C implementation (e.g., cache-use optimization). Due to the lack of 2D
decomposition support of the FFTW, this library does not appear on Fig. 3b.
With 2D decomposition, the gap between 2DECOMP and L2C is lower (less than
8 %). This is a very good result as 3D-FFT L2C implementations have been done
in some weeks, and therefore they are not highly optimized. The results also show
that L2C scales well up to 8,192 cores on 2D decomposition. Beyond this limit,
the L2C deployment phase has yet to be optimized to support it.
1 92 nodes, 2 CPU/node, 4 cores/CPU, Xeon L5420 (2.5 GHz), 20G InfiniBand.
2 144 nodes, 1 CPU/node, 4 cores/CPU, Xeon X3440 (2.53 GHz), 20G InfiniBand.
3 34 nodes, 2 CPU/node, 4 cores/CPU, Xeon E5520 (2.27 GHz), 40G InfiniBand.
4 72 nodes, 2 CPU/node, 4 cores/CPU, Xeon E5420 QC (2.5 GHz), 40G InfiniBand.
5 50 nodes, 2 CPU/node, 2 cores/CPU, AMD Opteron 2218 (2.6 GHz), 1G Ethernet.
6 5040 nodes, 2 CPU/node, 8 cores/CPU, Xeon E5-2680 (2.7 GHz), 40G InfiniBand.



770 V. Lanore et al.

Fig. 3. Completion time of 10243 complex-to-complex homogeneous 3D-FFT on Curie
using both 1D (a) and 2D decompositions (b).

5.2 Adaptation and Reuse Evaluation

Heterogeneous Experiments. Figure 4 shows the completion times obtained
for matrices of size 2563 on the clusters Edel and Genepi up to 256 cores for
a 2D decomposition (Fig. 4). Orange area corresponds to the homogeneous case
because only one Edel 8-core node is used. From 16 cores and up, half the cores
are from Edel nodes and the other half from Genepi nodes. The Edel cluster is
overall faster than the Genepi cluster.

Fig. 4. Completion time of 2563

complex-to-complex heterogeneous 3D-
FFT on Edel and Genepi using 2D
decomposition.

Fig. 5. Number of lines of code (LOC)
for several versions of the 3D-FFT
application. hm: homogeneous; ht: het-
erogeneous; nt: n transpositions.



Towards Application Variability Handling with Component Models 771

We observe that from 8 to 16 nodes 2DECOMP performance decreases and
L2C performance improves. That is because 2DECOMP does not balance its load
and is thus limited by the speed of the slowest cluster. It means the heterogeneous
L2C assembly successfully takes advantage of both clusters and is not limited by
the speed of the slowest one.

Reuse. Table 5 displays code reuse (in terms of number of C++ lines) between
some of the L2C assemblies. Reuse is the amount of code that is reused from the
assemblies listed higher in the table. Version code names are decomposition type
(1D or 2D), followed by hm for homogeneous assemblies or ht for heterogeneous
assemblies, and end with nt where n is the number of transpositions used.

We observe a high code reuse between specialized assemblies: from 68 % to
100 % without any low-level modification. Also note that our L2C implementa-
tions are much smaller than 2DECOMP (11,570 lines of FORTRAN code); that
is also because 2DECOMP implements more features.

Since our components are medium-grained and they have simple interfaces
(see Sect. 4), modifying an assembly for one processing element is only a matter
of changing a few parameters, connections and adding/removing instances. This
process involves no low-level code modification. It is done at architecture level
and is independent of possible changes in the component implementations. Thus,
components ease the integration of new or unique optimizations.

Discussion. Performance results show that L2C assemblies scale up to 8,192
cores with performance comparable to the reference libraries on Curie using
1D/2D decompositions. Adaptation results show that components help to ease
implementation of new optimizations and help to combine them. Several spe-
cialized assemblies have been written with high code reuse (from 68 % to 100 %
reused code without any low-level modification). Specialization (e.g., heteroge-
neous case) is often achieved using simple assembly transformations.

6 Conclusion and Future Work

To achieve adaptability of high-performance computing applications on various
hardware architectures, this paper has evaluated the use of component models
to handle HPC application variability. A 3D-FFT use case has been evaluated.
3D-FFT algorithms have been modelled and specialized using component models
features (component replacement, attribute tuning, and assemblies). The same
work could be applied on other HPC applications to ease their adaptations.

The experimental results obtained on Grid’5000 clusters and on the Curie
supercomputer show that 3D-FFT L2C assemblies can be competitive with exist-
ing libraries in multiple cases using 1D and 2D decompositions. It is consistent
with previous results obtained on a simpler use case [4]. So, using an HPC-
oriented component model adds a negligible overhead while providing better soft-
ware engineering features. Adaptation results show that performance of libraries



772 V. Lanore et al.

can be increased in some special cases (e.g., heterogeneous cases) by adapting
assemblies. Re-usability results show that components enable the writing of spe-
cialized applications by reusing parts of other versions.

Results are encouraging even though more work on the L2C implementation
is needed to let it scale to at least tens of thousands of nodes. Moreover, assembly
descriptions need to be rewritten for each specific hardware. As this process is
fastidious and error-prone, such descriptions should be automatically generated.

Future works include working on automating assembly generation to ease
maintenance and development of assemblies by using a higher level component
model, such as HLCM [5]. Automatic parameter tuning will of course be needed.

References

1. Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Amaras-
inghe, S.: PetaBricks: a language and compiler for algorithmic choice, vol. 44. ACM
(2009)

2. Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, V., Henrio, L., Pérez,
C.: GCM: a grid extension to fractal for autonomous distributed components. Ann.
Telecommun. 64(1–2), 5–24 (2009)

3. Bernholdt, D.E., Allan, B.A., Armstrong, R., Bertrand, F., Chiu, K., Dahlgren,
T.L., Damevski, K., Elwasif, W.R., Epperly, T.G., Govindaraju, M., et al.: A
component architecture for high performance scientific computing. Int. J. High
Perform. Comput. Appl. 20(2), 163–202 (2006)

4. Bigot, J., Hou, Z., Pérez, C., Pichon, V.: A low level component model easing per-
formance portability of HPC applications. Computing 96(12), 1115–1130 (2013).
http://hal.inria.fr/hal-00911231

5. Bigot, J., Pérez, C.: High performance composition operators in component models.
In: High Performance Computing: From Grids and Clouds to Exascale, Advances
in Parallel Computing, vol. 20, pp. 182–201. IOS Press (2011). http://hal.inria.fr/
hal-00692584

6. Boldt, J.: The Common Object Request Broker: Architecture and Specification
(1995). http://www.omg.org/cgi-bin/doc?formal/97-02-25

7. Bonelli, A., Franchetti, F., Lorenz, J., Püschel, M., Überhuber, C.W.: Automatic
performance optimization of the discrete fourier transform on distributed memory
computers. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J.,
Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 818–832. Springer, Heidelberg
(2006)

8. Bozga, M., Jaber, M., Sifakis, J.: Source-to-source architecture transformation for
performance optimization in BIP. IEEE Trans. Indus. Inform. 6(4), 708–718 (2010)

9. Desprez, F., Fox, G., Jeannot, E., Keahey, K., Kozuch, M., Margery, D., Neyron,
P., Nussbaum, L., Pérez, C., Richard, O., Smith, W., Von Laszewski, G., Vöckler,
J.: Supporting experimental computer science. In: Rapport de recherche RR-8035,
INRIA (2012). http://hal.inria.fr/hal-00722605

10. Frigo, M., Johnson, S.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005)

11. McIlroy, M.D.: Mass-produced software components. In: Proceedings NATO Con-
ference on Software Engineering, Garmisch, Germany (1968)

http://hal.inria.fr/hal-00911231
http://hal.inria.fr/hal-00692584
http://hal.inria.fr/hal-00692584
http://www.omg.org/cgi-bin/doc?formal/97-02-25
http://hal.inria.fr/hal-00722605


Towards Application Variability Handling with Component Models 773

12. Pekurovsky, D.: P3DFFT: a framework for parallel computations of fourier trans-
forms in three dimensions. SIAM J. Sci. Comput. 34(4), C411–C437 (2012).
http://dblp.uni-trier.de/db/journals/siamsc/siamsc34.html

13. Squyres, J.M., Lumsdaine, A.: The component architecture of open MPI enabling
third-party collective algorithms. In: Getov, V., Kielmann, T. (eds.) Component
Models and Systems for Grid Applications, pp. 167–185. Springer, Heidelberg
(2005)

14. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd
edn. Addison-Wesley Longman Publishing Co. Inc., Boston (2002)

15. Wang, N., Parameswaran, K., Kircher, M., Schmidt, D.C.: Applying reflective mid-
dleware techniques to optimize a QoS-enabled CORBA component model imple-
mentation. In: COMPSAC, pp. 492–499. IEEE Computer Society (2000). http://
dblp.uni-trier.de/db/conf/compsac/compsac2000.html

http://dblp.uni-trier.de/db/journals/siamsc/siamsc34.html
http://dblp.uni-trier.de/db/conf/compsac/compsac2000.html
http://dblp.uni-trier.de/db/conf/compsac/compsac2000.html

	Towards Application Variability Handling with Component Models: 3D-FFT Use Case Study
	1 Introduction
	2 Related Work
	3 Component Models
	3.1 Overview
	3.2 L2C Model

	4 Designing 3D-FFT Algorithms with L2C
	4.1 3D-FFT Parallel Computation Methods
	4.2 Basic Sequential Assembly
	4.3 Parallel Assembly for Distributed Architectures
	4.4 Assembly Adaptation

	5 Performance and Adaptability Evaluation
	5.1 Performance and Scalability Evaluation
	5.2 Adaptation and Reuse Evaluation

	6 Conclusion and Future Work
	References


