
A Simplified TDP with Large Tables

Yu Zhang(B)

Rechnerarchitektur, Fakultät Für Informatik,
Technische Universität Chemnitz, 09126 Chemnitz, Germany

zhayu@hrz.tu-chemnitz.de

Abstract. Among the performance bottlenecks for the virtual machine,
memory comes next to the I/O as the second major source of overhead to
be addressed. While the SPT and TDP have proved to be quite effective
and mature solutions in memory virtualization, it is not yet guaranteed
that they perform equally well for arbitrary kind of workloads, especially
considering that the performance of HPC workloads is more sensitive to
the virtual than to the native execution environment. We propose that
based on the current TDP design, modification could be made to reduce
the 2D page table walk with the help of large page table. By doing
this, not only the guest and host context switching due to guest page
fault could be avoided, but also the second dimension of paging could be
potentially simplified, which will lead to better performance.

1 Introduction

In the context of system virtualization, SPT (shadow page table) and TDP (two-
dimensional paging)1 are the two mature solutions for memory virtualization in
the current hypervisors. Both of them perform address translation transparently
from the guest to the host. In dealing with the translation chain from GVA
(guest virtual address) to HPA (host physical address), the SPT combines the
three intermediate steps for each GVA→HPA into a single entry, which contains
the wanted address and saves further efforts to walk through both of the guest
and host page tables as long as the cached entry is not invalidated in any form.
However, as SPT is a part of the hypervisor and must be kept as consistent as
possible with the guest page table, the processor had to exit from the guest to
host mode to update the SPT and make it accessible, during which a consider-
able number of CPU cycles could have been wasted. TDP comes as a remedy by
keeping GVA→GPA translation in the guest, while shifting GPA→HPA trans-
lation from the hypervisor to the processor. The expensive vmexit and vmentry
due to guest page fault are avoided by TDP. Unfortunately in case of TLB-miss
(translation look-aside block) the multi-level page table must still be walked
through to fetch the missing data from the memory. Because of this nature, the
TLB is not quite helpful in preventing page table from being walked when run-
ning workloads with poor temporal locality or cache access behavior. As a result,
1 TDP it is known as the AMD NPT and Intel EPT. For technical neutrality reason

TDP is used to refer to the paging mechanism with hardware assistance.

c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 789–801, 2015.
DOI: 10.1007/978-3-319-27308-2 63

790 Y. Zhang

the performance gain could be more or less offset by the overhead. We attempt
to combine the merits of the two methods and meanwhile avoid the downsides
of them by adapting the mmu code in the hypervisor.

For TLB contains a number of the most recently accessed GPA→HPA map-
pings, the more likely these entries will be needed in future, the more time could
be saved from the page table walk in subsequent operations. To the nature of
the paging methods themselves, the efficiency of both SPT and TDP rely on to
what extent the cached results of the previous page table walks could be reused.
Since the SPT cannot be maintained without interrupting the guest execution
and exit to the host kernel mode, there will be little chance other than reduc-
ing the occurrence of the page fault in the guest to improve the performance
of SPT. This, however, largely depends on the memory access behavior of the
individual workload and remains beyond the control of the hypervisor. TDP, on
the hand, bears the hope for performance improvement. Currently the TDP is
adopting the same paging mode as the host does, known as “multi-level page
table walk-through”. It is an N-ary tree structure [1], where N could be 1024 in
32-bit mode, or 512 in 64-bit or 32-bit PAE modes. In the 32-bit mode only 2
level page table are involved for walking through, which poses minor overhead.
However, the overhead grows quickly non-negligible as the paging level increases.
In spite of the various paging modes adopted in the guest, only two modes - the
64-bit and the 32-bit PAE modes are available for the TDP. In the worst case if
all TLB large missed, up to 24 memory accesses are possible for a single address
translation.

Though undesirable, this has presumably been done for two reasons: 1. com-
patibility between the host and guest paging modes, and more importantly, 2.
efficiency in memory utilization. However, as the TDP table is in the hypervi-
sor and invisible to the guest, it is actually up to the hypervisor to adopt the
paging mode without having to maintain this kind of compatibility [2]. For the
tree structure forms a hierarchy of the 1-to-many mappings, mappings could be
built in a “lazy” way only on demand, significant amount of memory space for
entries could be saved compared with the 1-to-1 mapping based structure, say,
an array. On the other hand, this structure also means more memory access and
time cost while looking up an element within it. As performance rather than
memory saving comes as the top concern, paging methods more efficient than
the current one may exist. One candidate is naturally a 1-to-1 mapping based
structure, such as an array, or a hash list. With more memory being invested
to save all the possible GPPFN (guest physical page frame number) to HPPFN
(host physical page frame number) mappings, fewer memory accesses suffice2

in the second dimension of the TDP. By doing this, the whole translation from
GVA to HPA is expected to be effectively simplified and accelerated due to a
reduced paging structure in TDP table. In addition, a simplified TDP method
combines the merits of both TDP and SPT - to avoid the vmexit as well as to
maintain the relatively short mapping chains from GVA to HPA. Until signif-
2 This is the case only if a single large table is used. In our design, however, due to

the limitation of memory chunk size in the kernel, multiple tables could be used.

A Simplified TDP with Large Tables 791

icant change is made available to the paging mode of the current processor, it
could be a better practice merely by modifying the current hypervisor software.

2 Related Work

Major work focusing on improving the memory virtualization could be sum-
marized as the following. To work around the unfavorable sides and combine
the best qualities of SPT and TDP, one attempt is to enable the hypervisor
to reconfigure its paging method at run-time as a response to the ever chang-
ing behavior of the workloads in memory accessing, which were implemented
in the past in a few hypervisors such as Xen and Palacios according to [3,4].
Although not all workloads could be benefited from this, overall performance
gain have been observed for the selected benchmarks. The downside, however,
is that it adds further complexity to the hypervisor with the methods of perfor-
mance metric sampling, paging method decision making, as well as the dynamic
switching logic. Furthermore, such activities in the kernel could also do harm to
the performance.

To reduce the overhead for walking through the multi-level page tables in
TDP, a hashed list is applied to provide direct address mapping for GPA [2].
In contrast with the O

(
n2

)
complexity of the conventional multi-level forward

page tables for both GVA→GPA and GPA→HPA translations, the hashed page
table has only one paging level and achieves a complexity of O

(
n
)

in theory. The
performance is at least not worse due to the reduced page table walk and cache
pressure, showed by the benchmark. Since the hash table is a data structure
more capable in searching, inserting and deleting etc., and relatively easier to
be implemented within the existing framework of the hardware and software,
current TDP design could be simplified by applying it for better performance.
As more reflections were cast on the current multi-level paging modes, a variety
of changes have been prompted for a simplified paging work. Theoretically, a
“flat nested page table” could be formed by combining the intermediate page
levels from 4 to 1, which results in an 8 memory access for the translation from
GVA to HPA, and a reduced overhead for 2D TDP walk [5]. By extending the
processor and hypervisor with the “direct segment” function, the memory access
for the GVA to HPA translation could even be further reduced to 4 or 0 [6].

For the TLB plays a critical role in reducing the address translation overhead
[7] and justifies the use of TDP, it becomes another concern besides the paging
level. Specific to the AMD processor, a way is suggested in [8] to accelerate the
TDP walk for guest by extending the existing page walk cache also to include the
nested dimension of the 2D page walk, caching the nested page table translations,
as well as skipping multiple page entry references. This technique has already
gained its application in some AMD processors. Not limited to virtual cases,
attention is paid in [9] to compare the effectiveness of five MMU cache organi-
zations, which shows that two of the newly introduced structures - the variants
of the translation outperform the existing structures in many situations.

792 Y. Zhang

3 Structures and Operation of the TDP

As a potential technical breakthrough, TDP is different from SPT in many
aspects. However, for compatibility reason, the main structure of SPT is still
reused by TDP. This, though at first may seem quite misleading, enables the
TDP to fit seamlessly into the current framework previously created for SPT.
As far as TDP feature is available in the hardware, it is preferred to SPT for
general better performance. While in the absence of TDP hardware feature, SPT
may serve as a fall-back way and the only choice for the hypervisor to perform
the guest-to-host address translation.

...
spt[511]

spt[0]

*spte[0]
*spte[1]
*spte[2]
*more

*spte[0]
*spte[1]
*spte[2]
*more

*spte[0]
*spte[1]
*spte[2]
*more

*spte[0]
*spte[1]
*spte[2]
*more

...

struct pte_list_desc

hash_link
link

gfn
role
*spt

*gfns
unsync

root_count
unsync_children

parent_ptes
mmu_valid_gen

unsync_child_bitmap
clear_spte_count

write_flooding_count

struct kvm_mmu_page

SPT Entries

**pprev
*first *next

**pprev
...*next

kvm−>arch.mmu_page_hash

mmu_page_hash[1023]

mmu_page_hash[0]

...

...
mmu_page_hash[i]

31 03

le
ve

l

cr
4_

pa
e

qu
ad

ra
nt

456

pa
d_

fo
r_

ni
ce

_

he
x_

ou
tp

ut

712

di
re

ct

1316

ac
ce

ss

in
va

lid

nx
e

cr
0_

w
p

sm
ep

_a
nd

no
t_

w
p

1718192021 14

kvm_mmu_page_role

Fig. 1. Data Structure for SPT reused by TDP in KVM

In KVM, SPT and TDP share the same data structure of the virtual MMU
and page tables (surprisingly, both are named as shadow page table). The shadow
page table is organized as shown by Fig. 1, of which kvm mmu page is the basic
unit gluing all information about the shadow pages together. For each level of
the shadow page table, a pageful of 64-bit sptes containing the translations for
this page are pointed to by *spt, whose role regarding the paging mode, dirty
and access bits, level etc. are defined by the corresponding bits in role. The page
pointed to by spt will have its page->private pointing back at the shadow page
structure. The sptes in spt point either at guest pages, or at lower-level shadow
pages [10]. As the sptes contained in a shadow page may be either one level of
the PML4, PDP, PD and PT, the pte parents provides the reverse mapping
for the pte/ptes pointing at the current page’s spt. The bit 0 of parent ptes
is used to differentiate this number from one to many. If bit 0 is zero, only one
spte points at this pages and parent ptes points at this single spte, otherwise,

A Simplified TDP with Large Tables 793

1 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2 {
3 struct vcpu_svm *svm = to_svm(vcpu);
4 svm->vmcb->control.nested cr3 = root;
5 mark_dirty(svm->vmcb, VMCB_TDP);
6 ...
7 svm_flush_tlb(vcpu);
8 }
9

10 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
11 {
12 struct kvm_mmu *context = vcpu->arch.walk_mmu;
13 ...
14 context->page_fault = tdp_page_fault;
15 ...
16 context->root hpa = INVALID PAGE;
17 context->direct_map = true;
18 context->set cr3 = kvm x86 ops->set tdp cr3;
19 ...
20 context->inject_page_fault = kvm_inject_page_fault;
21 ...
22 }
23
24 static void init_vmcb(struct vcpu_svm *svm)
25 {
26 struct vmcb_control_area *control = &svm->vmcb->control;
27 struct vmcb_save_area *save = &svm->vmcb->save;
28 ...
29 if (npt_enabled) {
30 /* Setup VMCB for Nested Paging */
31 control->nested_ctl = 1;
32 clr intercept(svm, INTERCEPT INVLPG);
33 clr exception intercept(svm, PF VECTOR);
34 clr cr intercept(svm, INTERCEPT CR3 READ);
35 clr cr intercept(svm, INTERCEPT CR3 WRITE);
36 save->g_pat = 0x0007040600070406ULL;
37 save->cr3 = 0;
38 save->cr4 = 0;
39 }
40 ...
41 }

Fig. 2. VMCB configuration for TDP

multiple sptes are pointing at this page and the parent ptes & 0x1 points at
a data structure with a list of parent ptes. spt array forms a directed acyclic
graph structure, with the shadow page as a node, and guest pages as leaves [10].

KVM MMU also maintains the minimal pieces of information to mark the
current state and keep the sptes up to date. unsync indicates if the trans-
lations in the current page are still consistent with the guest’s translation.
Inconsistence arises when the translation has been modified before the TLB
is flushed, which has been read by the guest. unsync children counts the sptes
in the page pointing at pages that are unsync or have unsynchronized children.
unsync child bitmap is a bitmap indicating which sptes in spt point (directly
or indirectly) at pages that may be unsynchronized. For more detailed descrip-
tion, the related Linux kernel documentation [10] is available for reference.

794 Y. Zhang

Multiple kvm mmu page instances are linked by an hlist node structure
headed by hlist head, which form the elements in the hash list - mmu page hash
pointed to by kvm->arch. Meanwhile it’s also linked to either the lists
active mmu pages or zapped obsolete pages in the kvm->arch, depending on
the current state of the entries contained by this page. Both SPT and TDP keep
their “shadow page table” entries and other related information in the same
structure. The major difference lies in the hypervisor configuration of the run-
time behaviors upon paging-fault-related events in the guest. While the SPT
relies on the mechanism of “guest page write-protecting” and “host kernel mode
trapping” upon guest page fault for keeping the SPT synchronized with the
guest page table, the TDP achieves the same result by a hardware mechanism.
As VMCB (virtual machine control block) by AMD or VMCS (virtual machine
control structure) by Intel is the basic hardware facility the TDP makes use of,
it’s the key thing making difference. Code snippet in Fig. 2 shows the configu-
ration of VMCB for TDP, and that the root address of the TDP page table is
kept in the VMCB structure. Meanwhile the guest is configured as exitless for
paging-fault exception, which means that the page fault events is handled by the
processor. With this configuration, guest is left running undisturbed when the
guest page fault occurs.

Besides, as SPT maps GVA to HPA, the spt entries are created and main-
tained in a per-process way, which leads to poor reusability hence higher memory
consumption. These are obvious downsides especially when multiple processes
are running in parallel. In contrast, the TDP maintains only the mappings from
GPA to HPA, which effectively eliminated such problems associated with SPT.
Guest page table is also accessed by the physical processor and forms the first
dimension of the entire page table walk. In this way the TDP can not only elim-
inate the cost for frequent switching between the host and guest modes due to
SPT synchronization, but also simplify the mappings and maintenance efforts
the “shadow page tables” needs.

Two stages are involved in the buildup of the TDP table, namely, the creation
of the virtual mmu, and the filling of TDP page tables upon guest page fault
during the execution of the guest. As Fig. 3 depicts, in the context of the function
kvm vm ioctl, the virtual mmu is created for the first time along with the guest
VCPU. It is also when the VMCB is configured. One thing to be noticed is that,
as the root address of the TDP page table, the root hpa of the kvm mmu is left
without to be allocated a page table, which is deferred to the second stage.

Figure 4 depicts the context function vcpu enter guest, in which operations
related to the second stage take place. This function serves as an interface for
the inner loop3 in the internal architecture of the QEMU-KVM, dealing with
host-guest mode switching. Before the guest mode is entered by the processor,
much preparation work needs to be done in this context, including the checking
and handling of many events, exceptions, requests as well as mmu reloading or
I/O emulation. The only thing needed for mmu reloading is to allocate a page

3 The outer loop is formed by ioctl commands issued by QEMU from the user-space,
dealing with user-space and host kernel-space switching.

A Simplified TDP with Large Tables 795

kv
m

_v
m

_i
oc

tl

kv
m

_v
m

_i
oc

tl_
cr

ea
te

_v
cp

u

kv
m

_a
rc

h_
vc

pu
_c

re
at

e

kv
m

_x
86

_o
ps

−
>

vc
pu

_c
re

at
e

kv
m

_v
cp

u_
in

it

kv
m

_a
rc

h_
vc

pu
_i

ni
t

kv
m

_m
m

u_
cr

ea
te

in
it_

vm
cb

kv
m

_s
et

_c
r0

kv
m

_x
86

_o
ps

−
>

se
t_

cr
0

kv
m

_a
rc

h_
vc

pu
_s

et
up

kv
m

_v
cp

u_
re

se
t

kv
m

_x
86

_o
ps

−
>

vc
pu

_r
es

et

in
it_

vm
cb

kv
m

_s
et

_c
r0

kv
m

_x
86

_o
ps

−
>

se
t_

cr
0

kv
m

_m
m

u_
se

tu
pkv

m
_m

m
u_

re
se

t_
co

nt
ex

t

kv
m

_m
m

u_
un

lo
ad

m
m

u_
fr

ee
_r

oo
ts

in
it_

kv
m

_m
m

u

co
nt

ro
l−

>
ne

st
ed

_c
tl

=
 1

in
it_

kv
m

_m
m

u

...

kv
m

_m
m

u_
re

se
t_

co
nt

ex
t

kv
m

_m
m

u_
un

lo
ad

m
m

u_
fr

ee
_r

oo
ts

in
it_

kv
m

_m
m

u

co
nt

ro
l−

>
ne

st
ed

_c
tl

=
 1

Fig. 3. Framework for virtual MMU creation in KVM

tr
y_

as
yn

c_
pf

kv
m

_m
m

u_
lo

ad
m

m
u_

to
pu

p_
m

em
or

y_
ca

ch
es

kv
m

_m
m

u_
re

lo
ad

...
vc

pu
_e

nt
er

_g
ue

st

m
m

u_
al

lo
c_

ro
ot

s

m
m

u_
al

lo
c_

di
re

ct
_r

oo
ts

m
ak

e_
m

m
u_

pa
ge

s_
av

ai
la

bl
e

sp
 =

 k
vm

_m
m

u_
ge

t_
pa

ge

m
m

u.
ro

ot
_h

pa
 =

 _
_p

a(
sp

−
>

sp
t)

vc
pu

−
>

ar
ch

.m
m

u.
se

t_
cr

3

kv
m

_m
m

u_
sy

nc
_r

oo
ts

m
m

u_
sy

nc
_r

oo
ts

m
m

u_
sy

nc
_c

hi
ld

re
n

kv
m

_s
yn

c_
pa

ge

kv
m

_m
m

u_
co

m
m

it_
za

p_
pa

ge

... ...kv
m

_x
86

_o
ps

−
>

ru
n

kv
m

_x
86

_o
ps

−
>

ha
nd

le
_e

xi
t

sv
m

_e
xi

t_
ha

nd
le

rs
[e

xi
t_

co
de

]
pf

_i
nt

er
ce

pt
io

n

kv
m

_m
m

u_
pa

ge
_f

au
lt

vc
pu

−
>

ar
ch

.m
m

u.
pa

ge
_f

au
lt

m
m

u_
to

pu
p_

m
em

or
y_

ca
ch

es

__
di

re
ct

_m
ap

m
m

u_
se

t_
sp

te

lin
k_

sh
ad

ow
_p

ag
e

m
m

u_
sp

te
_s

et

m
ak

e_
m

m
u_

pa
ge

s_
av

ai
la

bl
e

sp
 =

 k
vm

_m
m

u_
ge

t_
pa

ge

do
es

 n
ot

hi
ng

in
 N

PT
 c

as
e

Fig. 4. Framework for page fault handling in KVM

for the TDP table and make the starting address of it known to the root hpa
of the kvm mmu and the CR3 of the VCPU, which is performed by kvm mmu load.

Guest begins to execute until it can’t proceed any further due to some faulty
conditions. More often than not, control flow had to be returned to the hypervisor
or the host OS kernel to handle the events the guest encountered. Obviously too
much vmexit are an interference and grave source of overhead for the guest.
With TDP, however, guest is free from vmexit upon guest paging faults. As the
guest enters for the first time into execution, the paging mode is enabled and
the guest page tables are initialized, however, the TDP tables are still empty.
Any fresh access to a page by the guest will first trigger a guest page fault. After

796 Y. Zhang

try_async_pf

gfn_to_pfn_async gfn_to_pfn_prot
__gfn_to_pfn_memslot

__gfn_to_hva_many

__gfn_to_hva_memslot

slot−>userspace_addr +
(gfn−slot−>base_gfn)*PAGE_SIZE

hva_to_pfn

hva_to_pfn_slowhva_to_pfn_fast

find_vma_intersection

(addr−vma−>vm_start) >>PAGE_SHIFT
+ vma_pgoff

__direct_map

leaf page

mmu_set_spte

kvm_mmu_get_page

kvm_mmu_alloc_page

init_shadow_page_table

link_shadow_pageset_spte

set_mmio_spte

mark_mmio_spte

mmu_spte_set

mmu_spte_update

__update_clear_spte_fast

__update_clear_spte_slow

Y

N

*spte=new_spte

__set_spte

level = 4; level > 0; level −−

Fig. 5. pfn calculation for faulting address and the mapping into TDP tables

the fault is fixed by the guest, another page fault in the second dimension of the
TDP is triggered due to the missing entry in TDP table.

tdp page fault is the page fault handler in this case. As illustrated by Fig. 5,
first the host page frame number - pfn is calculated for the faulting address
through a chain of functions in try async pf. The pfn is then mapped one level
after another into the corresponding positions of the TDP tables by the function
direct map. In a predefined format, the entry for a faulting address is split

into pieces of PML4E, PDPE, PDE, PTE as well as offset in a page. During the loop,
iterator - an instance of the structure kvm shadow walk iterator is used to
retrieve the latest physical, virtual addresses and position in the TDP tables for
a given address, of which iterator.level determines the number of times for
the mapping process.

4 Design and Implementation of the Simplified TDP

Although the conventional TDP shown in Fig. 6 is mature and the default con-
figuration for better performance, for a certain kind of workloads the limitation
is still obvious. They may suffer large overhead due to walking into the second
dimension of multi-level page table upon heavy TLB-miss. It is ideal to have
a “flat” TDP table by which the wanted pfn can be obtained with a single
lookup. Unfortunately, there has long been a problem to allocate large chunk
of physically continuous memory in the kernel space. Three functions, namely
vmalloc(), kmalloc() and get free pages are used to allocate memory in
the current Linux Kernel. The first allocates memory continuous only in virtual
address, which is easier to perform but not desired dealing with performance.
The second and the third allocate memory chunk continuous in both virtual
and physical addresses, however, the maximum memory size allocated is quite
limited, thus tends to fall short of the expectation for this purpose. In addition,
kmalloc() is very likely to fail allocating large amount of memory, especially
in low-memory situations [11]. The amount of memory get free pages can
allocate is also limited within 2MAX ORDER−1, where MAX ORDER in the current
Linux Kernel for x86 is 11, which means that each time at most 4MB memory

A Simplified TDP with Large Tables 797

0

gCR3

Sign Extend

TLB

nCR3

PDPE PDE
PTE

HPA

Guest

VMM

GVA

PML4E

Fig. 6. The conventional TDP with 4 paging levels

can be obtained in the hypervisor. In this condition what we could do is to make
the TDP table as “flat” as possible, and to reduce the number of paging with it.
Here “flat” means large and physically continuous memory chunk for TDP table.
Instead of having thousands of TDP tables managed by their own kvm mmu page
instances, we want to merge as many TDP tables as possible into a larger table
managed by fewer kvm mmu page instances.

There could be various ways to implement this, depending on how the indices
of a page table entry are split. Two things are to be noticed for this: 1. to leave
the indices for paging as long as possible, and 2. to reuse the current source code
for KVM as much as we can.

Consequently, we come up with a quite straightforward design by merging
the bits for currently used indices within a guest page table entry. As Figs. 7
and 8 depict, the former PML4, PDP (higher 18 bits) could be combined as a
single index to the root of a TDP table segment, and similarly PD and PT (lower
18 bits) as the index for a physical page. By filling the TDP table entries in a
linear ascend order for the GPPFN, the HPPFN could be obtained conveniently
by a single lookup into the table. As a result, for the currently used maximal
address space of a the 64-bit(48 bits effectively in use) guest, we may have
218 = 256K segments for the TDP tables, with the index of each segment ranging
from 0 to 218 − 1 to the host physical pages. The TDP table size is enlarged by
29 times, while the number of the table segments could be reduced to 1

29 of the
former.

This is actually a fundamental change to the current mmu implementation.
Several data structures and functions oriented to the operations upon 4KB∗29 =

798 Y. Zhang

2MB TDP page table must be adopted to the type upon 4KB ∗ 218 = 1GB.
For example, as depicted by Fig. 9, the data structure of kvm mmu page could be
modified as following to reflect the change: 1. since in a “flat” table, there is only
two levels and a single root table as parents, the parents-children relation is quite
obvious. Besides, all the first level pages have a common parent but no children at
all. Members such as unsync children, parent ptes and unsync child bitmap
are not necessary; 2. members as gfn, role, unsync etc. are multiplied by 512 to
hold the informations previously owned by an individual 4KB ∗29 = 2MB page
table; 3. spt points to a table segment covering an area of 4KB ∗ 218 = 1GB;
4. link is moved to a newly introduced structure - page entity to identify the
4KB ∗ 29 = 2MB pages that are either in the active or zapped obselete list. By
modifying it this way, the depth of the TDP table hierarchy could be reduced
from 4 to 2, while the width expanded from 29 to 218.

1 11 0 00001111111111111111

sign extend
00 1

pml4
000 00000 1

pdp pd
0 00 10 11 1 0 1111 01 0 010111 0 01 1 0 0

offsetpt

virtual address

PML4 PDP PTPD struct page physical page

struct mm_struct

pml4e
pml4e
pml4e
pml4e
pml4e
pml4e
pml4e
pml4e
pml4e
pml4e

pdpe
pdpe
pdpe
pdpe
pdpe
pdpe
pdpe
pdpe
pdpe
pdpe

pde
pde
pde
pde
pde
pde
pde
pde
pde
pde

pte
pte
pte
pte
pte
pte
pte
pte
pte
pte

Fig. 7. Paging mode in the second dimension of conventional TDP [12].

Since each kvm mmu page instance contains 218 table entries now, there will
be less kvm mmu page instances in use, which means that 218 rather than 29 sptes
need to be mapped to a single kvm mmu page instance. This could be achieved by
masking out the lower 30 bits of an address and setting the obtained page descrip-
tor’s private field to this kvm mmu page instance, as shown in Fig. 10. Other
major affected functions include 1. shadow walk init, 2. kvm mmu get page, 3.
direct map, 4. kvm mmu prepare zap page, 5. kvm mmu commit zap page and

6. mmu alloc direct roots.
Taken a guest commonly with 4GB memory as an example. A page contains

4KB/8B = 512 entries, and for the 4GB, 4GB/4KB = 220 entries are needed,
so 220/512 = 2048 pages of 4KB size should be used to save all the table entries.
All together it makes a space of about 4KB ∗ 2048 = 8MB size. Although this
may be far more than in the conventional TDP case, it is a modest demand and
acceptable compared with a host machine configured with dozens of GB RAM.

A Simplified TDP with Large Tables 799

0 00 10 11 1 0 1111 1 1 01 0 010111 0 01 1 0 0

offset
0 11111111111111111

sign extend

struct page physical page

sserddalautrivtcurts_mmtcurts

lower18
000 0000

higher18
1 0 000000 1

spte[2^18−1]
...

spte[j]
...

spte[0]

tdp_cr3

PAGE TABLE[i]
root[2^18−1]

...
root[i]

...

ROOT TABLE

root[0]

Fig. 8. Paging mode in the second dimension of simplified TDP.

1 struct kvm_mmu_page {
2 //struct list_head link;
3 struct hlist_node hash_link;
4 gfn_t gfn[512];
5 union kvm_mmu_page_role role[512];
6 u64 *spt;
7 gfn_t *gfns;
8 bool unsync[512];
9 int root_count[512];

10 //unsigned int unsync_children;
11 //unsigned long parent_ptes;
12 unsigned long mmu_valid_gen[512];
13 //DECLARE_BITMAP(unsync_child_bitmap, 512);
14 #ifdef CONFIG_X86_32
15 int clear_spte_count[512];
16 #endif
17 int write_flooding_count[512];
18 };

1 struct page_entity {
2 struct list_head link;
3 gfn_t gfn;
4 union kvm_mmu_page_role role;
5 bool unsync;
6 u64 spte;
7 int root_count;
8 };

Fig. 9. (a) modified kvm mmu page. (b) newly defined page entity as the new entity
for hash lists, as a replacement of the former kvm mmu page.

On the other hand, with the 2MB TDP large pages, only 4 kvm mmu page
instances are sufficient to cover the entire 4GB address space. Only 4 entries
are filled in the root table, which poses no pressure at all to the TLB. For an
arbitrary guest virtual address, at most 2 ∗ 5 + 4 = 14 (10 in hypervisor, 4 in
guest) memory accesses are enough to get the host physical address - far less
than that of the current translation scheme (20 in hypervisor, 4 in guest). With
a flatter TDP page table and reduced number of memory access, the KVM guest
is expected to be less sensitive to workloads and yield higher performance.

5 Conclusion and Further Work

We studied the current implementation of the SPT and TDP for the KVM,
and attempted to simplify the second dimension paging of the TDP based on a
change of the table structure and the related functions in the hypervisor. With

800 Y. Zhang

1 #define BASE_INDEX_MASK ~(u64)((1ULL << 30) - 1)
2 #define BASE_INDEX(addr) ((u64)(addr) & BASE_INDEX_MASK)
3 static inline struct kvm_mmu_page *page_header(hpa_t shadow_page)
4 {
5 struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
6 return (struct kvm_mmu_page *)page_private(page);
7 }
8
9 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)

10 {
11 struct kvm_mmu_page *sp;
12 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
13 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
14 if (!direct)
15 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
16 set_page_private(virt_to_page(BASE_INDEX(sp->spt)), (unsigned long)sp);
17 return sp;
18 }

Fig. 10. Way to map 230 addresses to a single kvm mmu page instance

this change on software, the current TDP paging level could be reduced and the
overall guest performance will be improved. We have implemented a part of this
design and found that, the large TDP page table could be allocated without
problem as long as the amount is less than 4MB. However, as it is a relative
radical change to the traditional mainstream KVM source code, many functions
within the mmu code are affected, an executable implementation as well as a
benchmark result are unfortunately not yet available. In future we will keep on
engaging with this task and work out a concrete solution based on this design.

References

1. Preiss, B.R., Eng, P.: Data Structures and Algorithms with Object-Oriented Design
Patterns in Java. Wiley, Chichester (1999)

2. Hoang, G., Bae, C., Lange, J., Zhang, L., Dinda, P., Joseph, R.: A case for alterna-
tive nested paging models for virtualized systems. Comput. Archit. Lett. 9, 17–20,
University of Michigan (2010)

3. Wang, X., Zang, J., Wang, Z., Luo, Y., Li, X.: Selective hardware/software mem-
ory virtualization, VEE 2011, Department of Computer Science and Technology,
Beijing University, March 2011

4. Bae, C.S., Lange, J.R., Dinda, P.A.: Enhancing virtualized application performance
through dynamic adaptive paging mode selection, Northwestern University and
University of Pittsburgh, ICAC 2011, June 2011

5. Ahn, J., Jin, S., Huh, J.: Revisiting hardware-assisted page walks for virtualized
systems. Computer Science Department, KAIST, ISCA 2012, April 2012

6. Gandhi, J., Basu, A., Hill, M.D., Swift, M.M.: Efficient memory virtualization.
University of Wisconsin-Madison and AMD Research, October 2014

7. Adavanced Micro Devices Inc, AMD-V Nested Paging White Paper. Adavanced
Micro Devices, July 2008

A Simplified TDP with Large Tables 801

8. Bhargave, R., Serebin, B., Spadini, F., Manne, S.: Accelerating two-dimensional
page walks for virtualized systems. Computing Solutions Group and Advanced
Architecture & Technology Lab, March 2008

9. Barr, T.W., Cox, A.L., Rixner, S.: Translation Caching: Skip, Don’t Walk (the
Page Table), Rice University, June 2010

10. Linux kernel Documentation about MMU in KVM. https://www.kernel.org/doc/
Documentation/virtual/kvm/mmu.txt

11. Johnson, M.K.: Memory allocation. Linux Journal, issue 16, August 1995. http://
www.linuxjournal.com/article/1133

12. Rubini, A., Corbet, J.: Linux Device Drivers, 2nd edn, June 2014. http://www.
xml.com/ldd/chapter/book/ch13.html

https://www.kernel.org/doc/Documentation/virtual/kvm/mmu.txt
https://www.kernel.org/doc/Documentation/virtual/kvm/mmu.txt
http://www.linuxjournal.com/article/1133
http://www.linuxjournal.com/article/1133
http://www.xml.com/ldd/chapter/book/ch13.html
http://www.xml.com/ldd/chapter/book/ch13.html

	A Simplified TDP with Large Tables
	1 Introduction
	2 Related Work
	3 Structures and Operation of the TDP
	4 Design and Implementation of the Simplified TDP
	5 Conclusion and Further Work
	References

