
Teaching Heart Modeling and Simulation
on Parallel Computing Systems

Andrey Sozykin1,2(B), Mikhail Chernoskutov1,2, Anton Koshelev1,2,
Vladimir Zverev1,2, Konstantin Ushenin1,2, and Olga Solovyova1,2,3

1 Institute of Mathematics and Mechanics UrB RAS, Ekaterinburg, Russia
2 Ural Federal University, Ekaterinburg, Russia

Andrej.Sozykin@urfu.ru
3 Institute of Immunology and Physiology UrB RAS, Ekaterinburg, Russia

Abstract. High Performance Computing (HPC) is an interdisciplinary
field of study, which requires learning a number of topics, including not
only parallel programming, but also numerical methods and domain sci-
ence. Stand-alone parallel computing courses are insufficient for thor-
ough HPC education. We present an interdisciplinary track of coherent
courses devoted to modeling and simulation of the heart on parallel com-
puting systems for master students at the Ural Federal University. The
track consists of three modules: parallel and distributed computing, heart
modeling, and numerical methods. Knowledge of numerical methods and
heart modeling provides the students with the ability to acquire pro-
found parallel programming skills by working out on the comprehensive
programming assignment and complex heart modeling projects. Interdis-
ciplinary approach also increases students’ motivation and involvement.

Keywords: High performance computing · Distributed computing ·
HPC education · Heart simulation · Living system simulation

1 Introduction

High Performance Computing (HPC) is an interdisciplinary field of study, which
requires learning a number of topics. To be able to solve state-of-the-art scientific
and engineering problems on parallel computing systems, students have to study
not only parallel programming, but also applied mathematics, numerical meth-
ods, and domain science. Therefore, stand-alone parallel computing courses are
insufficient for thorough HPC education. Instead, the interdisciplinary training
programs for various domain sciences are needed.

We present an interdisciplinary track of courses devoted to modeling and
simulation of the heart on parallel computing systems. The track consists of
the following modules: parallel and distributed computing, heart modeling, and
numerical methods. Each module includes both theoretical and hands-on courses.

The course track is primarily aimed at master students in Computer Science,
but it is also available for other students. The courses are taught by the Insti-
tute of Mathematics and Computer Sciences of the Ural Federal University in
c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 102–113, 2015.
DOI: 10.1007/978-3-319-27308-2 9



Teaching Heart Modeling and Simulation on Parallel Computing Systems 103

cooperation with the Institute of Immunology and Physiology UrB RAS, and
the Institute of Mathematics and Mechanics UrB RAS.

The initiative of creating the track was promoted by the scientific laboratory
“Modeling of living systems on supercomputers”, which carries out research
on cardiac modeling [9,14–16]. At present, computer simulations in living sys-
tems have become an essential instrument of the medical science and practice,
pharmacy, and education. As a part of the global international projects the
Physiome [6] and the Virtual Physiological Human [10], the computer models
of various systems, organs, and tissues are developed. The HPC is required to
tackle biomedical problems due to the complexity of living system models, the
enormous amount of input data, and the number of computational operations.

The important goal of the course track is to cultivate student interest in
computational modeling and simulation using HPC, and to involve them into
research work.

2 Related Work

Nowadays, the interdisciplinary HPC courses, workshops, and educational pro-
grams are beginning to emerge. In summer 2011, the City University of New York
conducted a three week workshop on cardiac electrophysiology modeling [3]. The
workshop combined lectures, hands-on lab experiments, and simulation on the
graphics processor units (GPU). Students studied initiation of the spiral waves
of electrical activity in the heart and the effect of various parameter values on
the dynamics of these reentrant waves. The lecture topics included the current
research in cardiac modeling, numerical methods, and tutorial on the compute
unified device architecture (CUDA) programming. During the last week of the
workshop, the in-depth lectures on GPU implementation of an electrophysiologi-
cal model of a cardiac cell [5] was presented. The students successfully completed
the workshop program and provided positive feedback. Some students continued
to work with the researchers who conducted the workshop during the summer.

The interdisciplinary course “Finite Element Methods in Scientific Comput-
ing” [18] has been developed at the Texas A&M University. This project-based
course covers parallel computing topics (pthreads, MPI), software engineering
topics (using compilers, build tools, version control, debugging, etc.), and prac-
tical applications of the finite element method (FEM). The distinctive feature
of the course is the usage of the flipped classroom format. The course authors
recorded video lectures and posted them on YouTube [2]; therefore, students
were able to watch the lectures outside the class. As a result, the teachers had
more time in the class for interaction with students and for providing assistance
to them on the projects. The flipped classroom format allows one to balance
effectively competitive needs to present new material and to provide feedback to
students.

At the University at Buffalo, an interdisciplinary computational and data-
enabled science and engineering Ph.D. program has been developed [4]. The
program included courses in three areas: applied mathematics and numerical



104 A. Sozykin et al.

methods, high performance and data intensive computing, and data science.
In addition, only students with master degree in any domain science, such as
engineering, computer science, and applied mathematics, are eligible for this
Ph.D. program. Deep knowledge of the domain science provides the context for
training and allows them to quickly apply acquired knowledge for profitable use.

3 The Course Track “Heart Modeling and Simulation on
Parallel Computing Systems”

3.1 General Course Track Description

To meet the need for interdisciplinary training in HPC, the course track “Heart
Modeling and Simulation on Parallel Computing Systems” has been developed at
the Institute of Mathematics and Computer Science of Ural Federal University.
The course track brings together researches from a variety of discipline, not only
from the Ural Federal University, but also from the Institute of Immunology and
Physiology UrB RAS, and the Institute of Mathematics and Mechanics UrB
RAS.

The course track includes three modules: parallel and distributed computing,
numerical methods, and heart modeling. The complete list of the courses is
presented in Table 1.

Table 1. The list of courses in the “Heart Modeling and Simulation on Parallel Com-
puting Systems” track

No Course name ECTS credits

1 Parallel and distributed computing module

1.1 Parallel and distributed computing 4

1.2 GPU programming 2

1.3 Xeon Phi programming 2

2 Numerical methods module

2.1 Parallel numerical methods 2

2.2 Science hackathon 4

3 Heart modeling module

3.1 Simulation of living systems 4

3.2 Modeling heart dynamics on parallel computing systems 2

4 Optional prerequisite courses

4.1 Scientific computing in C 2

4.2 Software performance optimization 2

The courses are primarily designed for master students in computer science,
but bachelor students and master students with other background are also eli-
gible. Typical class consists of 12–15 students.



Teaching Heart Modeling and Simulation on Parallel Computing Systems 105

Table 2. Recommended sequence of study for master students in computer science

Semester Course name

1 Parallel and distributed computing

Simulation of living systems

2 GPU programming

Modeling heart dynamics on parallel computing systems

Parallel numerical methods

3 Xeon Phi programming

Science Hackathon

The recommended sequence of study for Computer Science Master students
is presented in Table 2. Most of courses in the track are elective. Students are
not required to pass all the courses; they are able to choose ones according to
their individual needs and preferences.

3.2 Prerequisite Courses

In addition to three main modules, the course track also includes the optional
prerequisite courses: “Scientific computing in C” and “Software performance
optimization”. The courses are intended for students with non computer science
related bachelor degree and limited software development experience. The aim
of the module is to provide students with good skills for programming in C
language, which are required for parallel computing.

The “Scientific computing in C” is a hands-on course on software develop-
ment for science. It covers usage of compilers, build tools, mathematical libraries
(BLAS, FFTW, MKL, etc.), Linux command line, debugging, testing, version
control, and teamwork in software development.

The “Software performance optimization” course is devoted to sequential
program optimization. The course contributes significantly to the track because
parallelization of a poor performing sequential program is often useless and fre-
quently leads to performance degradation instead of improvement. For many
real-world applications, it is necessary to achieve maximum speedup for sequen-
tial program and only then proceed to parallelization. The course covers contem-
porary CPU architecture and key factors affecting CPU performance, tools for
performance analysis, optimizing compilers, and SIMD vectorization. The course
is presented in flipped format. We use the video lectures from the online course
“Application optimization using Intel compilers” provided by Intel [1]. During
the classroom sessions, students have programming assignments, do hands-on
laboratory classes and small team projects.

3.3 Computational Resources

Two parallel computing systems are available for students when working on
laboratory classes, doing home programming assignments, and projects. The first



106 A. Sozykin et al.

system is educational HPC cluster of the Ural Federal University. The cluster
has 12 nodes, 144 CPU cores, 12 Intel Xeon Phi 5110P accelerators, and 12 GPU
NVIDIA Tesla K20X. The second system is the “URAN” supercomputer of the
Institute of Mathematics and Mechanics UrB RAS. The supercomputer consists
of 54 nodes with 648 CPU cores and 370 GPU NVIDIA Tesla.

4 Parallel and Distributed Computing Module

4.1 Parallel and Distributed Computing

The “Parallel and Distributed Computing” is the introductory HPC course.
It consists of four parts: parallel computing theory, concurrency, parallel pro-
gramming, and distributed computing using MapReduce. The course includes
both lectures and laboratory classes on parallel computing systems. Students
are required to hand in six home assignments.

The first part of the course covers architecture of parallel computing systems,
theoretical limits to parallelization (Amdahl’s and Gustafson’s laws), approaches
to parallel algorithms design, and popular patterns for parallel programming [12].

The second part of the course is devoted to concurrency. Students study
multi-threaded programming for multicore and multiprocessor systems using
C++11 concurrency, which now is a part of the standard C++ library. The
C++ was used as a programing language for the first time in the spring of 2015.
Earlier, the Java was used to study concurrency. During this part of the course,
students also examine various pitfalls of concurrent and parallel programming:
non-deterministic behavior, race conditions, deadlocks, livelocks, etc. Topics of
home programming assignments for this part of the course are Dining Philoso-
phers Problem and multi-threaded web crawler.

During the third part of the course, parallel programming using OpenMP
and MPI is considered. The C was used as a programming language. Home
programming assignments are k-means clustering using OpenMP and Conways
Game of life using MPI.

The last part on the distributed computing has been recently added to the
course. It is devoted to BigData, which is becoming popular nowadays. Students
learn the MapReduce programming model, its implementation in the Apache
Hadoop, and various tools from Hadoop ecosystem (Hive, Pig, Mahout, etc.). In
addition, other popular frameworks for distributed data processing are consid-
ered, such as Apache Spark for fast distributed in-memory data processing and
Apache Storm for streaming data processing. Home programming assignments
for this part of course are analysis of Twitter graph using Hadoop and comput-
ing the term frequency-inverse document frequency (TF-IDFs) for Wikipedia
articles using Spark.

4.2 GPU Programming

The “GPU Programming” is the advanced HPC course. The GPU offers to its
users tremendous computational resources compared to CPU. However, efficient



Teaching Heart Modeling and Simulation on Parallel Computing Systems 107

usage of such computational power requires advanced skills from the developers.
The course “GPU programming” was developed to meet this problem and to
provide students with the basic principles of parallel software development on
the CUDA platform.

The course begins with basics of GPU architecture and “hello world” on the
CUDA platform. Then, students are introduced to the CUDA memory hierar-
chy, principles of building grids with blocks of threads. Other topics of specific
GPU features and tips for its efficient usage to get maximum performance from
underlying hardware are also studied. Another crucial topic within the course
is multi-GPU programming using OpenMP and MPI. Students have to under-
stand that even contemporary GPUs have limited memory resources in compar-
ison with CPU RAM. Therefore, they should be able to get profit from using
multiple GPUs for solving big real-world computational tasks that require large
amount of memory. The course ends with such interesting and complicated topics
like performance profiling, optimization, and using various libraries for scientific
computing.

The course includes a series of short lectures and a considerable amount of
practice with the CUDA software. Participants gain experience in parallel pro-
gramming by completing GPU programming assignments, which include matrix
multiplication, parallel reduction, and multi-GPU sorting.

4.3 Xeon Phi Programming

The second advanced HPC course is devoted to the Intel Xeon Phi programming,
which is another popular type of computational accelerators. As well as GPU,
the Xeon Phi provides large computational resources, which are difficult to use
efficiently. However, Xeon Phi architecture and programming tools differ from
GPU ones significantly.

The course covers Xeon Phi architecture, programming models (native,
offload, and MPI), and software development tools and techniques. Special
attention is paid to Xeon Phi SIMD vectorization capabilities as a crucial
tool to achieve the best accelerator performance. Students learn about vari-
ous approaches to use vectorization: auto-vectorization by compiler, Intel Cilk
Plus (array notation and elemental functions), and OpenMP simd directive. The
techniques for performance profiling, tuning, and optimization for the Xeon Phi
are considered. In addition, students explore libraries with the Xeon Phi support,
such as Intel MKL and MAGMA [7].

The course is organized in the same way as the “GPU programming” one.
It includes 20–30 min lectures, hands-on laboratory classes, and programming
assignments. The topics of home programming assignments are matrix multipli-
cation, European option pricing, and molecular dynamics simulation.



108 A. Sozykin et al.

5 Numerical Methods Module

5.1 Parallel Numerical Methods

The course “Parallel Numerical Methods” was developed to bridge the gap
between courses on various parallel programming technologies (such as Pthreads,
OpenMP, and MPI) and high level courses devoted to solving complex real-world
scientific problems on parallel computing systems. The course helps students to
understand which algorithmic building blocks they should use to build scalable
HPC applications. Students should realize that introducing parallelism into some
types of algorithms instead of overall performance improvement might lead to
its degradation.

The course consists of two parts devoted to using parallel computing for
solving compute-intensive and data-intensive tasks. Compute-intensive tasks are
bounded by amount of computations and use regular memory access pattern. The
examples of such tasks are various physical and mathematical simulations (such
as heart simulation). While data-intensive tasks need relatively small number of
computational operations and use irregular memory access pattern. Hence, such
tasks are bounded by input-output operations. The example of data-intensive
task is processing large amount of unstructured data, such as graph of social
network.

During the first part of the course, students work on various parallel versions
of numerical methods of linear algebra, numerical integration and differentiation,
as well as numerical solving of mathematical physics equations. The techniques of
effective parallelization of compute-intensive tasks, such as efficient cache usage,
data partitioning among the processes, and reducing the communication between
the processes are considered.

The second part of the course covers the data-intensive tasks. Special atten-
tion is paid to graph algorithms. The main obstacle to efficient parallel processing
of large graphs is their irregular structure. Hence, sequential graph algorithms
may often outperform their parallel versions. The course provides examples of
various parallel graph algorithms, and useful techniques and methods to improve
their performance.

The course consist of twelve lectures and three home programming assign-
ments. The programming assignments require not only implementation of the
parallel algorithms, but also carrying out the simple researches to investigate
their performance and scalability. Such assignments are aimed at providing the
students with experience of using various types of parallel algorithms and under-
standing how to choose the most efficient algorithms for solving real-world sci-
entific challenges.

5.2 Science Hackathon

The “Science Hackaton” is the project-oriented hands-on course on scientific
software development focused on HPC. The course is conducted on Saturdays
and lasts all the day. During the day, a group of students works on a project



Teaching Heart Modeling and Simulation on Parallel Computing Systems 109

under the guidance of a tutor. Usually, the goal of the projects is to produce
some usable software. However, some projects may have educational purpose,
such as examining the capabilities of particular parallel library or exploring the
parallel version of some numerical method.

The objective of the course is to provide students with opportunity to work
together with the tutor for a long time. Hackathon participants are able to
quickly gain an experience of successfully resolving the real-world scientific prob-
lems due to regular guidance from the tutor. Students obtain not only technical
knowledge, but also experience in team software development, problem solving
skills, and professional confidence.

The topics for Hackathon projects are chosen by students. The course pri-
marily aimed at topics from the heart modeling track, but students are free to
suggest other themes for projects. The examples of the spring 2015 projects are
working with computational cluster in command line, using auto-vectorization
for Xeon Phi, evaluating Intel VML performance on Xeon Phi, and simulat-
ing the muscle cube on parallel computing system using FEM and mass-spring
method.

6 Heart Modeling Module

6.1 Simulation of Living Systems

The “Simulation of living systems” is the interdisciplinary theoretical course
aimed at introducing students to the core concepts of biophysics, biomedical
engineering, and biology, which use methods of mathematical modeling and
bioinformatics [17]. Students study several classical mathematical models of bio-
logical process based on nonlinear theory of dynamic systems. These models
represent the characteristic features of biological process and demonstrate the
effectiveness of application of mathematical models application to understanding
the mechanisms of biological systems.

The course participants become familiar with a number of biological processes
(such as transport of substances, chemical kinetics, types of interaction in bio-
logical systems), mathematical concepts for describing these processes, a variety
of techniques for modeling complex biological systems, and methods of models
evaluation. Applications of various numerical schemes to living system simula-
tion are considered.

During the course, the heart modeling is discussed in details. The main func-
tion of the heart is to pump blood throughout the body using contractions.
Mechanical contraction of the heart is triggered by electrical activation of the
myocardium. This process is known as excitation-contraction coupling. In the
turn, the mechanical deformation influences the cardiac electrical activity. This
process is designated as cardiac mechano-electric feedback. Hereby, the func-
tional heart model consists of three main components: an anatomical model, an
electrophysiological model, and a mechanical one. Students study various heart
models [13] and the methods of integration of these models into one multiscale
model of the heart.



110 A. Sozykin et al.

An important advantage of the course is in examining the state-of-the-art
heart models developed at the Institute of Immunology and Physiology UrB
RAS. Such models include Ekaterinburg-Oxford electromechanical cell model
[9,15,16] and mathematical model of the anatomy and fibre orientation field of
the left ventricle (LV) of the heart [14].

The course consists of twelve lectures and twelve seminars. The prerequisite
courses are applied mathematics and numerical methods. No biology, chemistry,
or medicine courses are required.

6.2 Modeling Heart Dynamics on Parallel Computing Systems

The main objective of the course is to provide the students with the hands-on
introduction to the contemporary methods of mathematical modeling of com-
plex (multi-level) living systems. As an example of such task, the simulation of
electromechanical function of the cardiac LV of the mammal is used during the
course.

Application of FEM to multi-level (cell-tissue-organ) modeling of electro-
mechanical contraction of the heart LV is considered. Currently, the FEM is the
most widely used method of computer simulation of compound systems with
complex geometry.

The course consists of eight lectures, ten workshops, and home programming
assignments. During the lectures, the common approaches to the computer mod-
eling of living systems are described. As an example of the heart simulations,
the general sequence of computer simulation is demonstrated. Then the structure
and physiology of the mammal heart, particularly the LV, are briefly described.
Various methods and models of digital representation of the LV by magnetic res-
onance imaging and ultrasound are considered. The foundation of FEM meshing,
meshing quality criteria, and methods of anisotropy vector field construction are
presented. After that, FEM simulation of the electrodiffusion and mechanical
contraction of the heart LV is examined. Theoretical part of the course ends
with discussion of various tools for visualizations of simulation results.

The amount of time allotted for lectures certainly is not enough to present
the above-mentioned topics thoroughly, but it is not necessary. The course is
aimed at rapid transition from the basic theoretical knowledge to its practical
usage.

During the workshops, students build the model of LV using the tetrahedral
3D-network with the help of the “GMsh” library [8]. After that, students utilize
FEM implementation from the “FENICS” library [11] to simulate muscle cube
on the MPI clusters. Various techniques of optimization by the FEM application
on parallel computer systems are examined. To visualize the simulation results,
students use the “Paraview” software.

7 Discussion

Our experience demonstrates that teaching HPC in the interdisciplinary educa-
tion program is very effective. Knowledge of numerical methods and the heart



Teaching Heart Modeling and Simulation on Parallel Computing Systems 111

modeling provides the students with the ability to solve nontrivial tasks on
parallel computing systems. In turn, comprehensive programming assignments
force students to explore the most efficient way of parallel computing technolo-
gies usage. For example, the course “Parallel numerical methods” includes two
different assignments: numerical integration and single source shortest paths
(SSSP) graph problem. To parallelize numerical integration students can use sim-
ple “master-slave” or “point-to-point” communication schemes. In both cases,
they will achieve good speedup. At that point, many of students may think that
parallelization is quite an “easy” research topic: to get performance improve-
ment some MPI Send and MPI Recv functions must be inserted in the code
to the appropriate places. Situation changes when students encounter the SSSP
problem. Firstly students try to use well-known for them “point-to-point” paral-
lelization, but achieve rather small (or even no) speedup due to irregular memory
access pattern of the SSSP problem. Efficient solution requires usage of MPI col-
lective communications function MPI Allgather. Although the MPI Allgather is
heavyweight function and has big overhead, in this particular case of the SSSP
problem, the MPI Allgather allows balancing communications both across the
various communication processes within single iteration and across all iterations
of the entire SSSP algorithm. Thus, the MPI Allgather function usage make
possible performance speedup and scaling of SSSP graph problem.

Interdisciplinary approach also helps to increase students’ motivation. It is
very interesting for students to use parallel computing system not only for simple
programming assignments, such as π calculation or matrix multiplication, but
also for the real-world problems of heart simulation, which are very intensive
in computations. Students willingly work on such tasks and try to squeeze last
drop of performance from the hardware to speed up the simulation.

8 Conclusion

The interdisciplinary track of coherent courses on using HPC for the heart sim-
ulation is presented. The track consists of three modules: parallel computing
technologies, heart modeling and simulation, and parallel numerical methods.
Now, the track is conducted at the Ural Federal University.

The interdisciplinary approach allows students to gain deep knowledge in
HPC by working on nontrivial programming assignments and participation in
complex heart simulation projects. In addition, such approach increased stu-
dents’ motivation.

Several students decided to continue working on the heart modeling and
obtained research positions at the laboratory “Modeling of living systems on
supercomputers”. Hence, the goal of involving students in research is achieved.

In the future, we plan to increase application of video lectures and flipped
classroom format in hands-on courses. Another important direction of future
works is designing interdisciplinary educational tracks for other domains, such
as data science.



112 A. Sozykin et al.

Acknowledgments. The work is supported by the Programme of Presidium of RAS
no. II.4P (PI O.Solovyova). Our study was performed using the “Uran” supercomputer
from Institute of Mathematics and Mechanics UrB RAS.

References

1. Anuferenko, A., Idrisov, R., Kasyanov, V., Vladimirovich, N.: Intel academy. Appli-
cation optimization using intel compilers. http://www.intuit.ru/studies/courses/
660/516/info

2. Bangerth, W.: 48 video lectures on computational science (2013). http://www.
math.tamu.edu/∼bangerth/videos.html

3. Bartocci, E., Singh, R., von Stein, F.B., Amedome, A., Caceres, A.J.J.,
Castillo, J., Closser, E., Deards, G., Goltsev, A., Ines, R.S., Isbilir, C., Marc,
J.K., Moore, D., Pardi, D., Sadhu, S., Sanchez, S., Sharma, P., Singh, A.,
Rogers, J., Wolinetz, A., Grosso-Applewhite, T., Zhao, K., Filipski, A.B.,
Gilmour, Jr., R.F., Grosu, R., Glimm, J., Smolka, S.A., Cherry, E.M.,
Clarke, E.M., Griffeth, N., Fenton, F.H.: Teaching cardiac electrophysiology mod-
eling to undergraduate students: laboratory exercises and gpu programming for
the study of arrhythmias and spiral wave dynamics. Adv. Physiol. Educ. 35(4),
427–437 (2011). http://dx.doi.org/10.1152/advan.00034.2011

4. Bauman, P.T., Chandola, V., Patra, A., Jones, M.: Development of a computa-
tional and data-enabled science and engineering Ph.d. program. In: Proceedings
of the Workshop on Education for High-Performance Computing, EduHPC 2014,
pp. 21–26. IEEE Press, Piscataway (2014). http://dx.doi.org/10.1109/EduHPC.
2014.8

5. Bueno-Orovioa, A., Cherryb, E.M., Fenton, F.H.: Minimal model for human ven-
tricular action potentials in tissue. J. Theoret. Biol. 263(3), 544–560 (2008).
http://dx.doi.org/10.1016/j.jtbi.2008.03.029

6. Crampin, E.J., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., Tawhai,
M.: Computational physiology and the physiome project. Exp. Physiol. 89(1), 1–26
(2004). http://dx.doi.org/10.1113/expphysiol.2003.026740

7. Dongarra, J., Gates, M., Haidar, A., Jia, Y., Kabir, K., Luszczek, P., Tomov,
S.: Portable HPC programming on intel many-integrated-core hardware with
MAGMA port to Xeon Phi. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp. 571–581. Springer,
Heidelberg (2014)

8. Geuzaine, C., Remacle, J.F.: GMSH: a 3-d finite element mesh generator with built-
in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331
(2009). http://dx.doi.org/10.1002/nme.2579

9. Katsnelson, L.B., Vikulova, N.A., Kursanov, A.G., Solovyova, O.E., Markhasin,
V.S.: Electro-mechanical coupling in a one-dimensional model of heart muscle fiber.
Russ. J. Numer. Anal. Math. Modell. 29(5), 275–284 (2014)

10. Kohl, P., Noble, D.: Systems biology and the virtual physiological human. Mol.
Syst. Biol. 5(1), 292 (2009). http://dx.doi.org/10.1038/msb.2009.51

11. Logg, A., Mardal, K.A., Wells, G.N.: Automated Solution of Differential Equa-
tions by the Finite Element Method. Lecture Notes in Computational Science and
Engineering, vol. 84. Springer, Heidelberg (2012)

12. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns
for Efficient Computation. Elsevier, Waltham (2012)

http://www.intuit.ru/studies/courses/660/516/info
http://www.intuit.ru/studies/courses/660/516/info
http://www.math.tamu.edu/~bangerth/videos.html
http://www.math.tamu.edu/~bangerth/videos.html
http://dx.doi.org/10.1152/advan.00034.2011
http://dx.doi.org/10.1109/EduHPC.2014.8
http://dx.doi.org/10.1109/EduHPC.2014.8
http://dx.doi.org/10.1016/j.jtbi.2008.03.029
http://dx.doi.org/10.1113/expphysiol.2003.026740
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1038/msb.2009.51


Teaching Heart Modeling and Simulation on Parallel Computing Systems 113

13. Pfeiffer, E.R., Tangney, J.R., Omens, J.H., McCulloch, A.D.: Biomechanics of car-
diac electromechanical coupling and mechanoelectric feedback. J. Biomech. Eng.
136(2), 021007 (2014)

14. Pravdin, S., Berdyshev, V., Panfilov, A., Katsnelson, L., Solovyova, O.,
Markhasin, V.: Mathematical model of the anatomy and fibre orientation field
of the left ventricle of the heart. BioMed. Eng. Online 12(1), 54 (2013).
http://www.biomedical-engineering-online.com/content/12/1/54

15. Pravdin, S.F., Dierckx, H., Katsnelson, L.B., Solovyova, O., Markhasin, V.S.,
Panfilov, A.V.: Electrical wave propagation in an anisotropic model of the left
ventricle based on analytical description of cardiac architecture. PLoS ONE 9(5),
e93617 (2014). http://dx.doi.org/10.1371/journal.pone.0093617

16. Solovyova, O., Katsnelson, L., Konovalov, P., Kursanov, A., Vikulova, N.,
Kohl, P., Markhasin, V.: The cardiac muscle duplex as a method to study
myocardial heterogeneity. Prog. Biophys. Mol. Biol. 115(23), 115–128 (2014).
http://www.sciencedirect.com/science/article/pii/S007961071400073X. Novel
Technologies as Drivers of Progress in Cardiac Biophysics

17. Solovyova, O.E., Markhasin, V.S., Katsnelson, L.B., Sulman, T.B., Vasilyeva, A.D.,
Kursanov, A.G.: Mathematical Modeling of Living Systems. Urals University Press,
Ekaterinburg (2013)

18. Zarestky, J., Bangerth, W.: Teaching high performance computing: Lessons from a
flipped classroom, project-based course on finite element methods. In: Proceedings
of the Workshop on Education for High-Performance Computing, EduHPC 2014,
pp. 34–41. IEEE Press, Piscataway (2014). http://dx.doi.org/10.1109/EduHPC.
2014.10

http://www.biomedical-engineering-online.com/content/12/1/54
http://dx.doi.org/10.1371/journal.pone.0093617
http://www.sciencedirect.com/science/article/pii/S007961071400073X
http://dx.doi.org/10.1109/EduHPC.2014.10
http://dx.doi.org/10.1109/EduHPC.2014.10

	Teaching Heart Modeling and Simulation on Parallel Computing Systems
	1 Introduction
	2 Related Work
	3 The Course Track ``Heart Modeling and Simulation on Parallel Computing Systems''
	3.1 General Course Track Description
	3.2 Prerequisite Courses
	3.3 Computational Resources

	4 Parallel and Distributed Computing Module
	4.1 Parallel and Distributed Computing
	4.2 GPU Programming
	4.3 Xeon Phi Programming

	5 Numerical Methods Module
	5.1 Parallel Numerical Methods
	5.2 Science Hackathon

	6 Heart Modeling Module
	6.1 Simulation of Living Systems
	6.2 Modeling Heart Dynamics on Parallel Computing Systems

	7 Discussion
	8 Conclusion
	References


