Universiteit
Antwerpen

This item is the archived peer-reviewed author-version of:

The bike request scheduling problem

Reference:

Sérensen Kenneth, Vergeylen Nicholas.- The bike request scheduling problem

Computer Aided Systems Theory : EUROCAST 2015, 15th International Conference, Las Palmas de Gran Canaria, Spain,
February 8-13, 2015, revised selected papers / Moreno-Diaz, Roberto [edit.]; et al. - ISSN 0302-9743 - Cham, Springer int
publishing ag, 9520(2015), p. 294-301

Full text (Publishers DOI): http://dx.doi.org/doi:10.1007/978-3-319-27340-2_37

To cite this reference: http://hdl.handle.net/10067/1320760151162165141

/“-
— uantwerpen be

Institutional repository IRUA

http://anet.uantwerpen.be/irua

The bike request scheduling problem

Kenneth Soérensen Nicholas Vergeylen

March 29, 2016

Abstract

In this paper we introduce the bike request scheduling problem, a new
approach to city bike repositioning problems. The rationale behind this
approach is explained, and a mixed-integer programming formulation is
given. We prove that the bike request scheduling problem is NP-hard and
formulate recommendations for future research.

1 Introduction: The bike request scheduling prob-
lem

Bicycle sharing systems (BSSs) are popping up in cities all over the world. These
initiatives allow individuals to rent a bike from an automated rental station, use
it for a short period of time, and return it to any other rental station in the city.
A 2011 report of the Commission on Sustainable Development of the United
Nations Department of Economic and Social Affairs (Midgley [2011]) put the
number of BSSs at 375, using around 236,000 bikes, and there is very little
doubt that these numbers have only increased since. Clearly, “bikesharing” has
evolved from an interesting experiment to a viable addition to the modal mix
of public passenger transport, even in large cities. For a historical perspective
on BSSs, as well as some future trends we refer to DeMaio [2009).

Demand and supply at specific rental stations are rarely balanced, and fluc-
tuations in supply and demand in the long or the short term might cause stations
to fill up or deplete, preventing users from collecting or returning bikes. BSSs
therefore typically use a fleet of light vehicles to transfer bikes between stations,
attempting to rebalance the system. The vehicles are in constant contact with
the dispatching station, where the current inventory of each station is monitored,
and from where the repositioning activities are directed.

In the literature, several contributions have tackled the problem of deter-
mining the optimal routing of the repositioning vehicles. The family of related
optimization problems solved in these papers is generally referred to as the bike
repositioning problem (BRP). The static BRP (SBRP) is applicable when use
of the BSS is negligible (i.e., at night). Examples of papers that tackle this
problem are Benchimol et al. [2011], Chemla et al. [2012], Erdogan et al. [2013],
Raviv et al. [2012], Rainer-Harbach et al. [2014]. Other authors , like Contardo

et al. [2012], Kloimllner et al. [2014], focus on the dynamic BRP (DBRP), in
which demand and supply at each station during the day is taken into account.
Their objective is to minimize the total unmet demand (which is expressed as
the number of users who tried to collect bikes from empty stations or to bring
back bikes to full stations).

A large majority of approaches in the literature combine two distinct prob-
lems into one single optimization problem: (1) deciding how many bikes to load
or unload at the different stations throughout the day, and (2) the vehicle rout-
ing problem of the repositioning vehicles. This forces them to either model user
demand and supply of bikes at the various stations as zero (the static BRP) or as
a highly simplified process (the dynamic BRP). In reality, however, determining
the expected demand and supply of bikes at each station and deriving from this
information the number of bikes to load or unload at the different stations, as
well as the best moment to do so, is a difficult problem that deserves attention
in its own right. Ignoring the stochastic nature of this problem may lead to
solutions that are not implementable. Moreover, it is unlikely that the process
of determining the number of bikes to load and unload can and should be always
fully automated: the complexity of the real-life situation will most likely call for
some human interaction in the planning process. For these reasons, we propose
an alternative modelling approach, which we call the bike request scheduling
problem (BRSP) is a better alternative.

The remainder of this article is organized as follows. Our methodology for
tackling repositioning problems is explained in section 2. A mathematical model
of the BRSP is presented in section 3. In section 4 a proof is given that the
BRSP is NP-hard. Finally, conclusions and recommendations for further work
are given in section 5.

2 Methodology

We propose a novel approach that tackles the bicycle repositioning problem by
decomposing it into two distinct subproblems: (1) the generation of loading or
unloading requests (essentially an order to pick up or drop off a certain number of
bikes at a certain station within a certain time window), and (2) the (dynamic)
assignment of these requests to vehicles and the scheduling of requests within
each vehicle. In this contribution we focus on the latter problem, which has been
called the bike request scheduling problem (BRSP). This approach differs from
the traditional approaches (using the BRP) in that it explicitly separates the
process of determining the demand and supply of bikes at the different stations
from the problem of routing the repositioning vehicles. The objective of the
BRSP is to determine the assignment and sequencing of requests to vehicles
that minimizes the priority-weighted number of unscheduled requests, subject
to the time windows of the requests, as well as the capacities of the replenishment
vehicles.

Decomposing the problem of request generation and the problem of schedul-
ing those requests into two distinct subproblems requires that an information

Table 1: Attributes of a request

Name Explanation

Issue time The time at which the request is issued

Type Pick-up (load) or deliver (unload)

Quantity Number of bikes to load or unload

Station Identity of the station at which to load or unload bikes
Priority A weight that indicates the relative importance of the request

Earliest time Start of the time window during which the request can be fulfilled
Latest time Expiration time of the request
Drop time Time required to execute the request

exchange protocol is established between both subproblems. At the core of the
boundary are the so-called requests. They encapsulate the necessary informa-
tion for the scheduling algorithm to create a set of vehicle routes such that
preferably all requests are handled. The attributes of a request are defined in
Table 1.

All common taxonomies of vehicle routing problems distinguish between
static and dynamic vehicle routing problems (Pillac et al. [2013]), which differ
in the availability of all information at the start of the planning period (static
problems) or not (dynamic problems). Both static and dynamic variants of the
BRSP can be defined through the issue time of the requests. The static BRSP
will be agnostic of future requests, which is equivalent to all requests having
an issue time of zero (assuming that the planning period starts at time zero or
after). The dynamic BRSP can introduce positive issue times that fall within
the interval defined by the start and end of the planning period. The rest of
this paper will discuss the static BRSP, although dynamic variants of the BRSP
will be investigated in future research.

3 Problem definition and mathematical model

Given a set of requests, the objective of the (static) BRSP is to minimize the
priority-weighted number of unscheduled requests. To this end, requests can be
scheduled on a (given) set of vehicles, each having identical capacity. Executing
a request requires a vehicle to visit the station where this request occurs. Travel
times between stations are assumed to be known. Each request has a time
window (earliest and latest time), and the request can only be executed during
this time. Executing a request takes a certain amount of time, which needs to
be spent before the vehicle can start traveling towards the station at which its
next request occurs. Vehicles are allowed to wait before starting service if they
arrive before the earliest time of the request. It is assumed that a vehicle can
always start executing their first request at its earliest time and return to the
depot after the latest time of their last request. This makes it unnecessary to
model a depot in the mathematical model. Each request requires a number of

Table 2: Parameters of the static BRSP

I set of requests
N set of positions within a vehicle tour
K set of vehicles
b; number of bikes picked up or delivered at request ¢ (> 0 — delivery,
< 0 — pick-up)
w; weight of request 4
0o; working time at request 4
ai earliest arrival time at request ¢
al latest arrival time at request i
t;; travel time from request i to request j
C' capacity of the vehicles
Table 3: Decision variables of the static BRSP
xk 1 if request i is served as the n-th request of vehicle k, 0 otherwise
Yi 1 if request ¢ is not served, 0 otherwise
a; arrival time at request ¢
zij 1if request j is visited immediately after request 7 by the same vehicle

bikes to be either picked up or dropped off. The number of bikes on a vehicle
after each pick-up or drop-off can never fall below zero or exceed the vehicle’s
capacity. Each request has a priority, and the priority of all requests that have
not been assigned to a vehicle, are added to the objective function.

In this section a mixed-integer programming model is developed for the
(static) BRSP. The parameters used in the model are shown in Table 2. The
decision variables can be found in Table 3.

Using this notation, the problem can be written as follows.

minz Yiw; (1)

s.t.

o> b =1 Viel (2)
k n

zij > @b g, — 1 Vi,jel,ke K,n€ N (3)
fo(”_i_l) < szn Vke K,ne N (4)
mengl Vn e N, ke K (5)
A

o> abb<c VneNke K (6)

i n'<n

SO abbi >0 Vne N ke K (7)

i n'<n

a; > a;+0;+t; — (11— z5)M Vi, jel (8)
afﬁaigaé Viel (9)
a¥ 2,y € (0,1) Viel,ke K,ne N (10)
a; >0 Viel (11)

The objective function (1) minimizes the total weight of all unscheduled re-
quests. Constraints (2) ensure that each request is not served more than once.
Constraints (3) link the decision variables z;; and x%, so that z;; is forced to
be equal to 1 if a vehicle serves request j immediately after request i. Con-
straints (4) ensure that a contiguous set of adjacent positions in the vehicle is
used, starting from the first position. Constraints (5) force each position in the
vehicle to be used only once. For a vehicle moving between requests ¢ and j,
constraints (8) ensure that the vehicle can only serve request j after its arrival
time at ¢ plus its drop time at ¢ plus the time it takes to travel between ¢ and j.
Constraints (6) and (7) ensure that the number of bikes on a vehicle never ex-
ceed the vehicles’ capacity or goes below zero respectively. Constraints (9) force
the arrival time at request ¢ to be between its earliest and latest arrival time.
Finally, constraints (10) to (11) define the domains of the decision variables.

4 NP hardness of the BRSP

In this section we show that the BRSP is NP-hard by demonstrating that a
subset of BRSP instances are knapsack problems which are studied in Martello
and Toth [1990] and Dasgupta et al. [2008]. A subset of BRSP instances can
be transformed to 0-1 knapsack problems and any 0-1 knapsack problem can
be transformed into a BRSP instance. Solving the BRSP implies solving the
knapsack problem. Therefore the BRSP is at least as hard as the knapsack
problem, or, in other words, the BRSP is NP-hard.

Instances of the BRSP that can be modeled as knapsack problems are those
where (1) only one vehicle is used, (2) every request has a positive quantity of
bicycles, and (3) time windows are non-constraining. The latter will be the case
when all early time limits are zero and all late time limits are at least as late
as the length of the longest vehicle trip, which we denote T,,,. This means the
time windows, as enforced by constraints 3 and 8 - 9 are always satisfied. To
see this, notice the arrival time for any request in any instance will necessarily
be between these bounds:

af=0<a;<Ty,=aViel (12)
This means we can leave those constraints explicitly out of consideration when
solving the subproblem.

All b; are positive. This means we can drop constraints 7 explicitly as well.
It also means that vehicle load will increase monotonously with the request
sequence in constraints 6:

Zmebi—ZixiwbiJrZ 2": Tinb; <C, YneN,1<n' <n

i 1 w=n'+1

So

ZmebigC’éznszbiSC, YneN,1<n <n
n w=1

7 7

This means we can only consider the constraint where n is the position of the
last scheduled request. For a certain schedule, we can permute the requests
without changing the left hand side of the constraint. This means the order of
the schedule becomes irrelevant in terms of the capacity constraints and the time
window constraints. It was already irrelevant in terms of the objective function.
Therefore we can now remove order information from the model together with
constraints (4) and (5) as they become redundant.

The remaining model minimizes the priority-weighted number of unsched-
uled requests. The decision variables x; are the complement of the y; variables:
x;+y; = 1,Vi € I. This means we can further simplify the model by removing y;
and expressing the model only in terms of z;. This removes the need to express
constraints (2) explicitly, but changes the sense of the objective function. The
resulting model after applying the simplifications is given by:

max P;-z; (13)
s.t.

z; € {0,1} Vi (15)

This is exactly the formulation of the 0-1 knapsack problem with profits P; and
weigths b;. We can therefore conclude that the highly restricted case of the
BRSP we consider here is identical to the knapsack problem.

On the other hand, every knapsack problem can be transformed to a special
case of the BRSP. This can be done as follows. Given a set I of items, each with
a profit P/ and a weight b}, a request is created with the following attributes:

o by=0b,Viel
o w; =P/ Viel

Further, a set of stations should exists, to which requests may be assigned in
any possible way. Travel times between stations are irrelevant, as are working
times for each requests. Further, a single vehicle is defined with the same

capacity as the knapsack. Time windows for each request are set to zero for the
earliest time and an arbitrarily large number of the latest time. The optimal
solution of the BRSP with these characteristics is the same as the optimal
solution of the original knapsack problem.

We set up experiments to verify how the model scales when implemented in
a general purpose solver (Gurobi). Without going into much detail, we report
that the presented model is prone to combinatorial explosion, even for small
instances. When enforcing a time limit of 3600 seconds, we see that the number
of time constraint violations increases exponentially ranging from 3 for 9 requests
to 189 for 12 requests. Notice that an instance of 12 requests is extremely small
when looking at real life situations where we have more than 100 stations in
networks of medium size.

5 Conclusion

In this contribution we have described the problem of bicycle repositioning and
highlighted the problems of the approaches that exist today. We have proposed
a new approach to tackle this problem, that separates the process of determining
the number of bikes and the time window within which to pick them up or deliver
them at each station, and the vehicle routing of the repositioning vehicles. The
concept of a request was introduced as the core communication between both
subproblems. We have proven that the static version of the bike repositioning
problem is NP-hard and developed a mixed-integer programming model.

One possible avenue for future research is an improvement of the exact
model, including strategies to reduce computational effort such as introduc-
ing problem-specific cutting planes, an intelligent column generation strategy,
or the use of lazy constraints. The aim of this line of research would be to
solve realistic instances in a more acceptable time limit. The empirical analysis
presented in this contribution could then be extended to these cases, yielding
results of more practical significance.

Another path for further research will focus on the development of heuristic
solution algorithms to obtain a better ratio of resource consumption to objec-
tive value. In practice, for example, the unpredictable calculation time of the
exact model will be unacceptable, especially in a dynamic situations where the
changing list of requests requires a constant re-evaluation of the current solu-
tion. Heuristics are the only alternative in this case. This research path could
also focus on matheuristics, trying to combine the best from the exact models
and heuristics.

Future research also will consider the request generation algorithm. Requests
should be generated to reflect patterns found in user behavior. Modeling usage
behavior could be of great value for the research on the BRSP as well, as it will
allow to generate more realistic test cases compared to the extended Solomon
cases used in this research.

References

M. Benchimol, P. Benchimol, B. Chappert, A.D.L. Taille, F. Laroche, F. Meu-
nier, and L. Robinet. balancing the stations of a self service bike hire system.
RAIRO - Operations Research, 45(1):37-61, 2011.

D. Chemla, F. Meunier, and R. Wolfler Calvo. Bike sharing system: solving
the static rebalancing problem. Discrete Optimization, 2012. Accepted for
publication in Discrete Optimization.

C. Contardo, C. Morency, and L.-M. Rousseau. Balancing a dynamic public
bike-sharing system. Centre Interuniversitaire de Recherche sur les Réseaux
d’entreprise, la Logistique et le Transport, 2012.

S. Dasgupta, C. H. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill,
Inc., New York, NY, USA, 1 edition, 2008.

P. DeMaio. Bike-sharing: History, impacts, models of provision, and future.
Journal of Public Transportation, 12(4):41-56, 2009.

G. Erdogan, G. Laporte, and R. Wolfler Calvo. The one-commodity pickup and
delivery traveling salesman problem with demand intervals. Submitted for
publication to Transportation Science, 2013.

C. Kloimllner, P. Papazek, B. Hu, , and G.R. Raidl. Balancing bicycle sharing
systems: An approach for the dynamic case. In C. Blum and G. Ochoa,
editors, FEvolutionary Computation in Combinatorial Optimization, volume
8600 of Lecture Notes in Computer Science, pages 73-84, Berlin Heidelberg,
2014. Springer.

S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Imple-
mentations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

P. Midgley. Bicycle sharing schemes: enhancing sustainable mobility in urban
areas. Background Paper CSD19/2011/BP 8, United Nations Department of
Economic and Social Affairs, Commission on Sustainable Development, 2011.

V. Pillac, M. Gendreau, C. Guret, and A. L. Medaglia. A review of dynamic

vehicle routing problems. European Journal of Operational Research, 255(1):
1-11, 2013.

M. Rainer-Harbach, P. Papazek, G.R. Raidl, B. Hu, and C. Kloimllner. Pilot,
grasp, and vns approaches for the static balancing of bicycle sharing systems.
Journal of Global Optimization, pages 1-33, 2014.

T. Raviv, M. Tzur, and I.A. Forma. Static repositioning in a bike-sharing
system: models and solution approaches. FURO Journal on Transportation
and Logistics, pages 1-43, 2012.

