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Abstract. Multi-objective symbolic regression has the advantage that
while the accuracy of the learned models is maximized, the complexity
is automatically adapted and need not be specified a-priori. The result
of the optimization is not a single solution anymore, but a whole Pareto-
front describing the trade-off between accuracy and complexity.
In this contribution we study which complexity measures are most ap-
propriately used in symbolic regression when performing multi-objective
optimization with NSGA-II. Furthermore, we present a novel complexity
measure that includes semantic information based on the function sym-
bols occurring in the models and test its effects on several benchmark
datasets. Results comparing multiple complexity measures are presented
in terms of the achieved accuracy and model length to illustrate how the
search direction of the algorithm is affected.
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1 Introduction

Symbolic regression is a data-based machine learning method, where the relation
between several independent and one dependent variable is modeled. Contrary
to other modeling methods the structure of the learned model is not specified
a-priori, but determined during the algorithm execution. Symbolic regression
problems are commonly solved by genetic programming (GP) [6], because the
variable-length encoding used in GP is particularly suited for the evolution of the
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model structure. An expression tree encoding is frequently used in GP for sym-
bolic regression, where every leaf node represent either a variable or a numeric
constant and every internal node a mathematical function. Thus, every expres-
sion tree represents a mathematical formula that can be interpreted, validated
and easily incorporated in other programs [1].

The phenomenon of bloat in GP [7] (an increase in the average size of the
individuals without an corresponding increase in fitness), overly complex and
large individuals, or the excessive use of variables reduce the interpretability of
symbolic regression methods. As bloat and introns are not specific to symbolic
regression, but rather occur when using arbitrary-sized representations in evolu-
tionary computation [8], several methods to limit the growth of GP individuals
and to counteract bloat have been suggested previously. One approach is to
specify static size and depth limits for the symbolic expression trees used in GP
[10] that must not be exceeded. However, these two limits are highly problem-
dependent, cannot be known a-priori and must be adapted for each problem so
that the trees can grow large enough to model the data accurately while unnec-
essary complexity is avoided. Other methods of controlling the tree size range
from dynamic size limits [11] or parsimony pressure methods [9] to controlling
the distribution of tree sizes [3].

The previously mentioned methods have been developed to limit the growth
of symbolic expression trees in GP and do not include any semantic information
about the mathematical formulas represented by the expression trees when per-
forming symbolic regression. Although complexity is to some extent correlated to
size, it is not necessarily the case that the complexity of a formula is reflected in
its size. For example the formula f(x) = esin

√

x consists of three operations, one
variable, and one constant, while f(x) = 7x2+3x+5 consists of five operations,
two variable, and three constants and is intuitively less complex.

A different approach for managing complexity and model size in symbolic
regression is to use multi-objective optimization, where while maximizing the
prediction accuracy the complexity is minimized [12,8]. Hence, no size limits or
other complexity related parameters must be configured and the optimization
algorithm is expected to automatically evolve solutions of appropriate length and
complexity. In this contribution we compare the effects on algorithm performance
of several complexity and size related quality criteria for multi-objective symbolic
regression on benchmark problems.

2 Multi-objective Symbolic Regression

The nondominant sorting genetic algorithm II (NSGA-II) [2] is one of the most
prominent algorithms for multi-objective optimization. It uses a novel selection
mechanism based on the nondomination rank and crowding distance for selection
to build a uniformly spread Pareto-optimal front. In the case of multi-objective
symbolic regression the objectives to be optimized are the prediction accuracy
and the complexity of the learned models. The prediction accuracy can be ex-
pressed by any error or correlation measure such as the coefficient of determina-



tion R2, the mean squared error, or the mean absolute percentage error between
the estimated and observed values.

The complexity of a symbolic regression model can be calculated as the tree

length or the expressional complexity (visitation length) [12,5]. More sophisti-
cated measures that also include semantics of the evolved models range from the
number of included variables, or the order of nonlinearity [14] to the functional

complexity [13]. While the order of nonlinearity and the functional complexity

express the complexity of a symbolic regression model rather accurately, they
are computationally expensive to calculate. On the other hand, measures such
as the tree length or the expressional complexity are efficiently calculated, but
do not include any information except the shape of the symbolic expression tree
encoding the model.

We propose a new complexity measure that is easy to calculate and includes
semantics about the regression model, so that the search direction of the multi-
objective algorithm is altered towards simple and parsimonious models. The
measure is calculated by recursive iteration over the symbolic expression tree
and accumulates the individual complexity values for each subtree while taking
into account different complexity values for the encountered function symbols.
The mathematical definition for the calculation of this new complexity measure
is given in Equation 1, where n denotes a tree node and c a direct child node of
n. The complexity of the whole symbolic expression tree encoding the regression
model can then be calculated by recursive application of Equation 1 starting at
the root node.
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1 if n ≡ constant

2 if n ≡ variable
∑

Complexity(c) if n ∈ (+,−)
∏

Complexity(c) + 1 if n ∈ (∗, /)

Complexity(c)2 if n ≡ square

Complexity(c)3 if n ≡ squareroot

2Complexity(c) if n ∈ (sin, cos, tan, exp, log)

(1)

In the following we explore the complexity differences of two exemplary mod-
els, f1(x) = esin

√

x and f2(x) = 7x2 + 3x + 5. The corresponding symbolic ex-
pression trees representing these formulas are illustrated in Figure 1. The tree
length for f1(x) is 4 and 9 for f2(x), which indicates that representation of f1(x)
is more compact. However, Figure 1 also shows the calculation steps for the new
complexity measure according to Equation 1, which is iteratively applied start-
ing at the leaf nodes. The complexity measure results in 65536 for f1(x) and 17
for f2(x), which reflects our intuition that f2(x) is less complex and easier to
interpret than f1(x), whereas according to the tree length the contrary is true.



Fig. 1. Symbolic expression tree representation of f1(x) = esin
√

x and f2(x) = 7x2 +
3x + 5, where the calculation steps for the complexity measure are indicated next to
the arcs.

3 Experiments

We used an NSGA-II algorithm to test the effects of different complexity mea-
sures for multi-objective symbolic regression. The first objective for the algo-
rithm is the Pearson’s R2 correlation describing the model accuracy. Varying
complexity measures such as the number of used variables (Variables), the model
length (Tree Length), the expressional complexity (Visitation Length) and the
new complexity measure (Complexity) described in Equation 1 have been used
as second optimization objective. Despite maximizing the Pearson’s R2, the re-
sults regarding accuracy are presented in terms of the normalized mean squared
error (NMSE), so that for both measures smaller values are better.

NSGA-II was configured to evolve models with a maximum tree length of 100
that are allowed to include arithmetic (+,−, ∗, /), trigonometric (sin, cos, tan),
power(2,

√
) and exponential (exp, log) symbols and stops when the termination

criterion of 200, 000 model evaluations has been reached. The benchmark prob-
lems used for testing have been selected from [15,4] and the generating formulas
are listed in Table 1.

Table 1. Definition of benchmark problems.

Name Function

Keijzer-5 f(x1, x2, x3) = 30x1x3/[(x1 − 10)x2
2]

Vladislavleva-1 f(x1, x2) = e−(x1−1)2)/[1.2 + (x2 − 2.5)2]

Vladislavleva-2 f(x1) = e−x1x3
1 cos(x) sin(x)(cos(x) sin

2(x)− 1)

Vladislavleva-7 f(x1, x2) = (x1 − 3)(x2 − 3) + 2 sin((x1 − 4)(x2 − 4))

Pagie-1 f(x1, x2) = 1/[1 + x−4
1 ] + 1/[1 + x−4

2 ]

Poly-10 f(x1 − x10) = x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10

Friedman-1 f(x1 − x10) = 0.1e4x1 + 4/[1 + e−20x2 + 10] + 3x3 + 2x2 + x5 +N

Friedman-2 f(x1 − x10) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +N

Tower Real world data



When switching from single to multi-objective algorithms the result of an
algorithm execution is not a single solution any more, but rather a Pareto-
front showing the trade-off between accuracy and complexity of the models. An
example of a Pareto-front generated by the NSGA-II is shown in Figure 2, where
besides the training qualities the models’ accuracies on the test set are shown to
evaluate their generalization capabilities. However, whole Pareto-fronts are hard
to compare, especially in the case of symbolic regression where a high training
quality doesn’t necessary indicate a good model due to overfitting reasons (for
example the largest models in Figure 2 whose test NMSEs exceeds 1.0 and are
not displayed at all). Hence, we used only single models of a Pareto-front for
algorithm comparison and used the model with the highest training accuracy. A
better way for model selection would be, if an additional validation partition is
defined, to use the model with the highest accuracy on this partition.
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Fig. 2. Exemplary Pareto-front evolved by NSGA-II showing the trade-off between
accuracy in terms of the NMSE and the model length. Every model contributes to two
data points, one for training and one for test evaluation (if no test evaluation is shown,
the NMSE exceeds 1.0). The best model, which is rather small but still accurate, is
encircled.

4 Results

We have performed 50 repetitions of each NSGA-II configuration to account for
the stochastic nature of the algorithm. We extracted the most accurate models,
at the same time the most complex ones, from each generated Pareto-front and
compared them against each other. In Table 2 the average and standard devia-
tion of those models are displayed. Although for most of the problems the results
are quite similar, there are some differences. The Complexity configuration ob-
tains by far the best results with the smallest variation on the Poly-10 problem.
The Variables configuration works best on the Friedman-2 problem and both
configuration perfrom well on the Pagie-1 problem.



Table 2. Average and standard deviation (µ± σ) of the training qualities (NMSE) of
the best individual for 50 repetitions of NSGA-II with varying complexity measures.

Problem Variables Tree Length Visitation Length Complexity

Keijzer-5 0.000 ± 0.000 0.003± 0.003 0.002 ± 0.003 0.000± 0.000
Vladislavleva-1 0.002 ± 0.002 0.005± 0.011 0.004 ± 0.004 0.002± 0.002
Vladislavleva-2 0.022 ± 0.020 0.018± 0.016 0.014 ± 0.012 0.016± 0.013
Vladislavleva-7 0.111 ± 0.020 0.147± 0.077 0.116 ± 0.027 0.115± 0.027
Pagie-1 0.001 ± 0.003 0.011± 0.017 0.012 ± 0.018 0.007± 0.003
Poly-10 0.294 ± 0.126 0.356± 0.165 0.341 ± 0.168 0.202± 0.079
Friedman-1 0.140 ± 0.004 0.157± 0.019 0.163 ± 0.023 0.175± 0.021
Friedman-2 0.081 ± 0.031 0.134± 0.050 0.146 ± 0.038 0.143± 0.049
Tower 0.148 ± 0.025 0.148± 0.020 0.146 ± 0.016 0.140± 0.018

The generalization capabilities of the best models have been evaluated on
a separate test partition and those results are shown in Table 3. Every con-
figuration produces, at least on some problems, overfit models, which is indi-
cate by an high average normalized squared error and high standard deviations.
The Tree Length and Visitation Length perform equally well with the exception
of the Vladislavleva-1 and Pagie-1 problem. It still holds that the Complexity

and Variables algorithm runs produced the best models on the Poly-10 and
Friedman-2 problem respectively. An interesting observation is that excluding
Vladislavleva-1 and Vladislavleva-2 the Complexity measure as second objective
performs either better or equally well as the other configurations. A reason for
this might be that those two problems consist of complicated formulas that have
to be discovered and the algorithm is not able to build that complicated yet
accurate formulas. The other complexity measure that do not include semantic
information about the models, have no such limitations as long as the models
are compact enough.

Table 3. Average and standard deviation (µ ± σ) of the quality of the best train-
ing individual evaluated on the test partition for 50 repetitions of the multi-objective
symbolic regression algorithm with varying complexity measures.

Problem Variables Tree Length Visitation Length Complexity

Keijzer-5 0.000 ± 0.000 0.004± 0.003 0.002 ± 0.003 0.000± 0.000
Vladislavleva-1 1.568 ± 1.568 0.047± 0.062 1.460 ± 8.291 5.509± 12.00
Vladislavleva-2 0.112 ± 0.587 0.023± 0.022 0.019 ± 0.014 0.823± 3.193
Vladislavleva-7 0.529 ± 2.753 0.168± 0.099 0.138 ± 0.037 0.138± 0.125
Pagie-1 0.015 ± 2.174 0.445± 1.737 0.061 ± 0.087 0.028± 0.046
Poly-10 0.457 ± 0.211 0.558± 1.188 0.510 ± 0.626 0.301± 0.129
Friedman-1 0.150 ± 0.000 0.156± 0.019 0.169 ± 0.024 0.175± 0.021
Friedman-2 0.083 ± 0.032 0.143± 0.054 0.149 ± 0.039 0.140± 0.049
Tower 0.138 ± 0.026 0.144± 0.020 0.144 ± 0.019 0.138± 0.018



Next to the accuracy of the models their interpretability is of importance,
because model interpretability is one of the major reasons to use symbolic regres-
sion. The lengths of the models generated by NSGA-II with varying complexity
measures have been compared and the results are stated in Table 4. It is clear
that the Variables configuration, which just counts the variable occurrences,
generates by far the largest models as no selection pressure towards more par-
simonious ones is applied. The Tree Length and Visitation Length produce the
smallest models and no significant differences could be found between these two
variations. Although no explicit parsimony pressure is applied to models created
by NSGA-II with the new complexity measure, these are smaller than the ones
produced by Variables, but still larger than those using explicitly the tree and
visitation length for optimization.

Table 4. Average and standard deviation (µ ± σ) of the length of the best training
individuals for 50 repetitions of NSGA-II with varying complexity measures.

Problem Variables Tree Length Visitation Length Complexity

Keijzer-5 86.3± 19.34 21.2± 13.30 22.7 ± 15.75 47.0± 18.59
Vladislavleva-1 91.8± 15.27 44.6± 22.72 41.7 ± 24.71 85.7± 22.22
Vladislavleva-2 88.7± 16.81 42.6± 23.47 37.7 ± 21.21 79.8± 21.77
Vladislavleva-7 94.4± 10.93 44.0± 29.41 48.4 ± 29.98 81.3± 24.08
Pagie-1 91.7± 16.50 51.7± 28.88 40.6 ± 23.34 72.4± 28.01
Poly-10 96.8± 7.320 53.0± 30.79 54.8 ± 30.06 72.7± 24.70
Friedman-1 90.5± 12.96 61.0± 26.81 55.1 ± 29.74 69.2± 26.53
Friedman-2 91.4± 12.00 47.1± 28.60 40.8 ± 25.30 68.3± 25.54
Tower 94.4± 8.860 59.8± 29.30 58.9 ± 27.02 78.2± 21.07

5 Conclusion

In this publication we have investigated the effects of different complexity mea-
sures on multi-objective symbolic regression. Furthermore, we have presented a
novel complexity measure based on the mathematical symbols occurring in the
formulas. The differences with respect to the accuracies of the models on the
tested benchmark problems were in most cases not significant. An exception is
the new complexity measure that performs best on problems with simpler data
generating formulas, but on the other hand fails to evolve well-fitting models on
the most complex problems.

When comparing the length of the evolved models to give an indication of
their interpretability, the algorithm configurations explicitly using the tree length
as an optimization objective generated the most parsimonious models. As pre-
viously argued and used as motivation for the development of the new com-
plexity measure, the length is only to some extend correlated to simplicity and
interpretability and more research to illustrate the differences of the complexity
measures has to be performed.
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