
A Typed Language for Events

Sandra Alves1?, Sabine Broda2??, and Maribel Fernández3

1 CRACS/INESCTEC, Faculty of Sciences, University of Porto
2 CMUP, Faculty of Sciences, University of Porto

3 Dept. of Informatics, King’s College London

Abstract. We define a general typed language to deal with the notion
of event in the context of access control systems. We distinguish between
generic events, which represent the kind of actions that can occur in a
system, and specific events, which represent actual occurrences of those
kinds of actions. A relation is given associating specific to generic events,
as well as a method for obtaining intervals from a history of events. We
describe applications in access control systems with obligations.

Key Words: Event, Event Type, Access Control, Obligation, Rewriting

1 Introduction

The notion of event, as a particular action or happening taking place in a system,
is a pervasive notion in today’s computing (and real life) systems. Events can take
up many forms, from messages exchanged over a network, to actions performed
by users of the system, to occurrences of physical phenomena such as a disk error
or a fire alarm.

In the context of access control policies, there are many situations when
granting or denying access to certain resources depends on the occurrence of
particular events. For example, in a hospital environment, an access control pol-
icy may specify that any doctor in the ward should have access to a patient p’s
medical records, if patient p suffers a cardiac arrest. Several access control mod-
els have been designed to deal with policies defined in terms of events (see, for
example, [8, 3]). From the semantic point of view, the notions of action and event
were extensively studied by Davidson [10]. Representation of events inspired by
Davidson’s work and adapted from Kowalski and Sergot’s work on the event
calculus [17] have been used in literature [5, 1]. In particular, in [1], events were
used to define an abstract metamodel for access control and obligations. Obli-
gations differ from permissions in the sense that, although permissions can be
issued but not used, an obligation usually is associated with some mandatory ac-
tion, which must be performed at a time defined by some temporal constraints

? Partially funded by FCT, Portuguese Foundation for Science and Technology within
project UID/EEA/50014/2013.

?? Partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT
(Portugal) with national (MEC) and European structural funds through the pro-
grams FEDER, under the partnership agreement PT2020.

or by the occurrence of events. Therefore, effectively dealing with events is a
key issue when reasoning about systems with obligations. The model described
in [1] is an extension of Barker’s category-based metamodel for access control [4]
(CBAC): a notion of event adapted from [17] is used to describe a set of core
axioms for defining obligations in an abstract way, without making any specific
assumptions on the components of the system. In fact, two notions of events are
defined in [1]: generic and specific. Generic events are used to represent the kind
of events that can occur in a particular system, and specific events correspond
to particular occurrences of events in a run of the system. The axiomatisation of
the notion of obligation given in [1] relies on an event typing relation (associating
specific events with generic events), and an event interval relation, which defines
a link between an event that triggers a specific behaviour, and the event that
terminates it. For example, the event associated to a fire alarm going off may
start an emergency interval, which will be closed by the event associated to a
call to the fire department.

In this paper we provide a general term-based language for events, and for-
mally define the notions of event typing and event interval, to deal with event
classification in a uniform way. Events are presented as typed-terms, built from a
user-defined signature, that is, a particular set of typed function symbols that are
specific to the system modelled. For each system we also define how to compute
the events that close intervals initiated by previous events, based on a system
specific function on generic events. This function allows us to extract intervals
from a particular history (which is a sequence of events that have occurred in a
system). Both event classification and interval computation have applications in
access control and obligation management systems.

To summarise, the main contributions of the paper are the following:

– A general typed-language for events, and a typing relation associating spe-
cific and generic events;

– A general method for extracting event-intervals from a history;
– An implementation of this general method in Prolog together with methods

for dealing with obligations, and an application of these methods in the
context of obligation policies.

Overview: In Section 2, we recall some basic notions on term rewriting as well
as the CBAC metamodel. In Section 3 we introduce a typed term language
for representing events, and in Section 4 we recall the notion of event history
and define an algorithm to extract event intervals from a history. Section 5
presents details of an implementation in Prolog of the relation between specific
and generic events, the computation of intervals from history, as well as how this
can be used in the obligation model. In Section 6 we discuss related work and
finally, in Section 7, conclusions are drawn and further work is suggested.

2 Preliminaries

In this section we recall some basic notions and notations for term rewriting and
access control policies involving obligations (see [2] and [1] for more details).

2

Term rewriting Term rewriting systems can be seen as programming or spec-
ification languages, or as formulae manipulating systems. We recall briefly the
definition of first-order terms and term rewriting systems [2].

A signature F is a finite set of function symbols together with their (fixed)
arity, where constants a are function symbols of arity zero. X denotes a denu-
merable set of variables X1, X2 . . . , and T (F ,X) denotes the set of terms built
up from F and X . Terms are identified with finite labeled trees. Positions are
strings of positive integers. The subterm of t at position p is denoted by t|p and
the result of replacing t|p with u at position p in t is denoted by t[u]p. V(t)
denotes the set of variables occurring in t. A term is ground (closed) if V(t) = ∅.
Substitutions are written θ = {t1/X1, . . . , tn/Xn} where ti is assumed to be
different from the variable Xi and dom(θ) = {X1, . . . , Xn}. We use Greek letters
for substitutions and postfix notation for their application.

Given a signature F , a term rewrite system on F is a set of rewrite rules
R = {li → ri}i∈I , where li, ri ∈ T (F ,X), li 6∈ X , and V(ri) ⊆ V(li). A term t
rewrites to a term u at position p with the rule l → r and the substitution σ,
written t→l→r,σ

p u, or simply t→R u, if t|p = lσ and u = t[rσ]p. Such a term t
is called reducible. Irreducible terms are said to be in normal form. We denote
by →+

R (resp. →∗R) the transitive (resp. transitive and reflexive) closure of →R.
The subindex R will be omitted when it is clear from the context.

Access Control and Obligations The Category-Based Access Control (CBAC)
metamodel [4] is an abstract framework for the definition of access control poli-
cies, which can be instantiated to derive well-known access control models, such
as Role-Based Access Control [11], Bell-La Padula’s model [6], and dynamic
models [8, 3]. The latter permit the definition of access control policies where
users’ rights depend on their actions, or more generally, on events that hap-
pened in the system. In this paper, we present an event language and show how
it can be applied in access control and obligation models. More precisely, we
consider the extension of the CBAC metamodel that incorporates obligations,
which in the following will be referred to as CBACO [1].

The CBAC metamodel is defined using a basic set of primitive, abstract
notions: principals (which are the users of the system), resources (which are the
objects that should be protected) and actions (which are the operations that
users can perform on resources). These entities can be grouped into categories
(in access control models we mostly consider categories of users). A category is
a class of entities that share some property. Classic types of groupings used in
access control, like a role, a security clearance, a discrete measure of trust, etc.,
are particular instances of the more general notion of category. Permissions, that
is, pairs of action and resource, are assigned to categories of users rather than to
individual users. Categories can be defined on the basis of e.g., user attributes,
geographical constraints, resource attributes. In this way, permissions change in
a dynamic and autonomous way (e.g., when a registered user has a birthday),
unlike, e.g., role-based access control models, which require the intervention of
a security administrator. Then, the axiomatic specification of the model allows
us to derive, at any point, the rights of a principal by computing the principal’s

3

category and checking the permissions associated to it. In this way, an access
request can be evaluated to decide whether it should be granted or denied. In
CBACO, in addition to the basic notion of permissions available in CBAC, there
are also two abstract notions of obligations, defined as follows.

Definition 1 (Obligation). A generic obligation is a tuple (a, r, ge1, ge2), where
a is an action, r a resource, and ge1, ge2 two event types (ge1 triggers the obli-
gation, and ge2 ends it). If there is no starting event (resp., no ending event) we
write (a, r,⊥, ge) (resp., (a, r, ge,⊥)), meaning that the action on the resource
must be performed at any point before an event of type ge (resp. at any point
after an event of type ge).

Example 1. Assume that in an organisation, the members of the security team
must call the fire-department if a fire alarm is activated, and this must be done
before they de-activate the alarm. This obligation could be represented by the
tuple (call, firedept, alarmON, alarmOFF).

Definition 2 (Duty). A duty is a tuple (p, a, r, e1, e2, h), where p is a principal,
a an action, r a resource, e1, e2 are two events and h is an event history that
includes an interval opened by e1 and closed by e2. We replace e1 (resp. e2) with
⊥ if there is no starting (resp. closing) event.

Unlike access control models, which do not need to check whether the autho-
rised actions are performed or not by the principals, obligation models need to
include mechanisms to check whether duties were discharged or not. Specifically,
obligation models distinguish four possible states for duties: invalid (when the
duty is issued after the completion point); fulfilled (when carried out within the
associated interval); violated (when not carried out within the associated inter-
val, although issued with a valid interval) and pending (when has not yet been
carried, but the interval is still valid). We refer the reader to [1] for the axiomatic
and operational semantics of obligation policies in CBACO.

3 Events as Typed Terms

In this section we present a typed term language to represent events. We consider
events as particular actions or happenings occurring at a particular time. Types
are used to restrict the terms that correspond to events in our language.

In this section, and in the rest of the paper, we will present examples con-
sidering a hospital scenario, where several types of events can occur: patients
can be triaged, admitted, receive consultation, be discharged, submitted to ex-
ams/procedures, etc. Sporadically there can also occur events such as fire alarms
that can lead to the hospital evacuation, etc.

3.1 Types and Terms

Let b range over a finite set B of base types, and l over a finite set L of labels.
The set B will always contain the types Tm and Ev, which are the types for time
and event expressions respectively.

4

Definition 3 (Type). The set T of types is built from B:

τ ∈ T ::= b | {l1 : τ1, . . . , ln : τn} | τ1 → τ2

Record types, of the form {l1 : τ1, . . . , ln : τn}, represent structures labelled with
l1, . . . , ln, with types τ1, . . . , τn respectively.

We consider a (system specific) function type : F → T, which assigns a
type to each function symbol in F . If f is a function symbol with arity n, then
type(f) = τ1 → · · · → τn → τ , for some τ1, . . . , τn, τ ∈ T.

Because terms in our language can contain free variable occurrences, type decla-
rations for variables must be taken into consideration when typing expressions.
As usual, an environment env, is a set of declarations of the form X : τ where
all the variables X are distinct.

We now present our language to model events. We consider event expressions
as terms that can be built from other event expressions, atomic actions or sets
of attributes (represented as labelled structures).

Definition 4 (Event Specification). Consider X ∈ X , τ ∈ T and f ∈ F ,
then values and specifications are defined in the following way:

ν ::= Xτ | f(ν1, . . . , νn), n ≥ 0
spec ::= {l1 = ν1, . . . , ln = νn}, n > 0

The value Xτ represents a term variable of type τ . An atomic value a is a partic-
ular case of a value of the form f(ν1, . . . , νn) where n = 0. The event specification
{l1 = ν1, . . . , ln = νn} represents the structure with labels l1, . . . , ln and values
ν1, . . . , νn respectively.

Definition 5 (Generic and Specific Events). A generic event, denoted by
ge(Xτ1

1 , . . . , X
τn
n) ∈ GE, is defined by an equation of the form:

ge(Xτ1
1 , . . . , X

τn
n) = {spec1, . . . , specm}C

where the variables Xτ1
1 , . . . , X

τn
n occur in the right-hand side of the equation.

The expression {spec1, . . . , specm}C represents the compound generic event, formed
from the generic event specifications spec1, . . . , specm. If m = 1, then just write
ge(Xτ1

1 , . . . , X
τn
n) = spec. Compound events represent sets of events that can oc-

cur separately in the history, but should be identified as a single event occurrence.
Specific events, denoted by e ∈ E, are defined in the following way, where

spec∅ denotes ground event specifications (see Definition 4):

e ::= {spec∅1 , . . . , spec∅n }C

As before, we write {spec∅}C as spec∅.

Example 2. We describe the action of a doctor P1 reading the medical record of
a patient P2, by the generic event gen read(PD1 , P

P
2), where D and P represent

the types for doctor and patient, respectively:

gen read(PD1 , P
P
2) = {act = read , doc = PD1 , obj = rec(PP2)}

5

We state that an order to evacuate the neurology ward was issued by Chief
Jones, with the specific event:

{act = evacuate, ward = neurology, principal = chief jones}

The compound event gen pregnD represents the events that must occur, before
a doctor can make a pregnancy diagnosis.

gen pregnD(XP) = { {act = lab test , pat = XP},
{act = ultrasound , obj = abdomen, pat = XP} }C

3.2 Typing Rules

We now assign types to values and event specifications, to ensure that we only
deal will well-typed entities (wrt. the type signature specific to each system). We
use record types to type labelled structures, with an implicit notion of subtyping
(inspired by Ohori’s system with polymorphic record types [20]). For the moment
we only consider (implicit) subtyping between record types, but this can later
be extended to general event types.

Definition 6 (Typing Rules for Values, Specifications and Events). A
typing judgement is a declaration of the form env ` ν : τ , env ` spec : τ , or
env ` ge(Xτ1

1 , . . . , X
τn
n) : Ev. We say that ν (resp. spec) has type τ given env,

and write env ` ν : τ (resp. env ` spec : τ), if the judgement can be derived using
the following axioms and rules:

env ` Xτ : τ, if X : τ ∈ env

type(f) = τ1 → · · · → τn → τ env ` ν1 : τ1 · · · env ` νn : τn
(n ≥ 0)

env ` f(ν1, . . . , νn) : τ

env ` ν1 : τ1 · · · env ` νn+k : τn+k

env ` {l1 = ν1, . . . , ln = νn} ∪ Γ : {l1 : τ1, . . . , ln : τn}
where, Γ = {ln+1 = νn+1, . . . , ln+k = νn+k}.

Given the rules above, a generic event expression ge(Xτ1
1 , . . . , X

τn
n) is well-

typed given env, if env ` ge(Xτ1
1 , . . . , X

τn
n) : Ev can be derived from:

ge(Xτ1
1 , . . . , X

τn
n) = {spec1, . . . , specm}C env ` speci : σi (i = 1, . . . ,m)

env ` ge(Xτ1
1 , . . . , X

τn
n) : Ev

Given the condition on variables in Definition 5, if env ` ge(Xτ1
1 , . . . , X

τn
n) : Ev

then env contains declarations X1 : τ1, . . . , Xn : τn.

Example 3. Using the fact that type(read) = A, type(dr . paul) = D, type(john) =
P, and type(rec) = P → R, we obtain

env ` {act = read , doc = PD1 , obj = rec(PP2)} : {act : A, doc : D, obj : R}

and, for env = {P1 : D, P2 : P}, env ` gen read(PD1 , P
P
2) : Ev using the definition

of gen read given in Example 2.

6

Because we have an implicit subtyping rule for typing records, types are not
unique. The event specification in the previous example, spec = {act = read , doc =
PD1 , obj = rec(PP2)}, can also be typed with {act : A, obj : R} and {obj : R}. In
fact any non-empty subset of {act : A, doc : D, obj : R} is a valid type for spec.
In this paper we are doing type-checking (and not type-inference), therefore we
do not focus on most general types for specifications. But this could be achieved
by using the notion of kinds of records as it is done in [20].

We now define an instance relation, associating ground values (denoted ν∅)
to values and specific event specifications to generic event specifications, under
a substitution.

Definition 7 (Instantiation). We define the relation `θ ν∅ :: ν (resp. `θ
spec∅ :: spec), where θ is a substitution, in the following way:

` ν∅ : τ

`{ν∅/X} ν
∅ :: Xτ

`θ1 ν∅1 :: ν1 · · · `θn ν∅n :: νn
(n ≥ 0)

`θ1∪···∪θn f(ν∅1 , . . . , ν
∅
n) :: f(ν1, . . . , νn)

`θ1 ν∅1 :: ν1 · · · `θn ν∅n :: νn

`θ1∪···∪θn {l1 = ν∅1 , . . . , ln = ν∅n } ∪ Γ :: {l1 = ν1, . . . , ln = νn}
where, Γ = {ln+1 = ν∅n+1, . . . , ln+k = ν∅n+k}. Whenever we write θ1 ∪ · · · ∪ θn,
we assume that θ1, . . . , θn are compatible substitutions, in the sense that they do
not assign different values to the same variable.

Definition 8 (Event Instance). The relation `θ e :: ge(
−→
X), extends the pre-

vious definition to event expressions in the following way:

ge(
−→
X) = {spec1, . . . , specn}C `θ1 spec∅1 :: spec1 · · · `θn spec∅n :: specn

`θ1∪···∪θn {spec∅1 , . . . , spec∅n }C :: ge(
−→
X)

Example 4. Recall gen read(PD1 , P
P
2), from Example 2. For the substitution θ =

{dr . paul/P1, john/P2}, we can derive

`θ {act = read , doc = dr . paul , obj = rec(john)} :: gen read(PD1 , P
P
2).

Proposition 1. If env ` ν : τ (resp. env ` spec : τ) and `θ ν∅ :: ν (resp. `θ
spec∅ :: spec), then:

1. θ = {ν∅1 /X1, . . . , ν
∅
n /Xn}, where {X1, . . . , Xn} = V(ν) (resp. V(spec)) and

` ν∅i : τi where Xi : τi ∈ env.
2. ` ν∅ : τ (resp. ` spec∅ : τ).

The instantiation relation defined in this section is syntactic (replacing vari-
ables by terms). Depending on the application and the kind of data used to
define events, instantiation may require some computation; we call it a semantic
instantiation in the latter case. Formally, semantic instantiation is defined in the
context of an equational theory. Although we leave a complete study on different
equational theories and its appropriateness for future work, in the next section
we will deal with semantic instantiation for time expressions.

7

4 Event History and Intervals

In this section we will define the notions of event history and intervals in history,
which are determined by events. We also show how the instance relation defined
in the previous section can be used to extract intervals from a history of events
that match two given generic events. A history of events corresponds to a specific
sequence of events that occur in a particular time frame. To deal with time frames
we need a language that appropriately deals with time.

4.1 Time Expressions and Time Constraints

In this subsection we define a language for expressions representing time and use
this to encode the approach for dealing with events in [1], in this setting.

Definition 9 (Time Expressions and Constraints). Let c range over a set
S, partially ordered by ≤ and closed under +. We define the set of time ex-
pressions and time constraints denoted t ∈ T and tc ∈ T C respectively, in the
following way:

t ::= c | XTm | t + c tc ::= t | t+ | t+c

Time constraints can be seen as intervals [t1, t2], where t1 = t2, if the time
constraint is a time expression; t2 =∞, if the time constraint is of the form t+1 ;
and t2 = t1 + c, if the time constraint is of the form t+c

1 .

Note that a constant time expression represents a specific instant in time, which
can be particular to each modelled system. In a time expression of the form t+c,
c can be seen as a duration. In the rest of the paper we will take S to be N, but
other constants can be considered (that is, we consider time constants as clock
ticks from a fixed point in time).

Definition 10. Let σ = {c1/X1, . . . , cn/Xn} be a substitution. We define J·Kσ
for time expressions and time constraints, as follows:

JcKσ = c Jt+Kσ = [JtKσ, ∞] Jt + cKσ = JtKσ + JcKσ
JXKσ = σ(X) Jt+cKσ = [JtKσ, JtKσ + JcKσ]

If V(t1) ∪ V(t2) ⊆ dom(σ), then t1 �σ t2 iff Jt1Kσ ≤ Jt2Kσ. If t1, t2 are both
ground we simply write t1 � t2 instead of t1 �∅ t2.

Another representation for events. Events in [1] are represented by finite
sets of arity-2 facts, containing at least two necessary facts, happens(e, t) and
act(e, a), where e is the identifier of the specific event, and t the time of its
happening. Generic events are defined similarly, but can contain variables (as is
the case in this paper), and in particular they always contain a variable (E) to
be instantiated with the identifier of a specific event. A specific event e is an

8

instance of a generic event ge, if there is a substitution σ such that geσ ⊆ e. For
example the events

e1 = {happens(e1, 12.25), act(e1, activate), obj(e1, alarm), subj(e1, john)}
e2 = {happens(e2, 12.45), act(e2, deactivate), obj(e2, alarm), subj(e2, tom)}

are instances, with respective substitutions σ1 = {e1/E, 12.25/T} and σ2 =
{e2/E, 12.25/T, tom/X}, of the generic events

alarmON = {happens(E, T), act(E, activate), obj(E, alarm)}
alarmOFF = {happens(E, T + 20), act(E, deactivate), obj(e, alarm), subj(E,X)}

This is an example where the instantiation relation requires some computation
(the instantiation of T + 20 with the substitution 12.25/T will produce 12.45 in
σ2). Note that the function in Definition 10 defines a semantic instantiation for
time expressions and time constraints.

The encoding of this event representation is straightforward. Given a par-
ticular event, a record spec is created containing an entry fact = exp for each
fact fact(e, exp), except for happens(e, t). The identifier e can, depending on
necessity, either be omitted or be included as a particular entry id = e. Finally,
the event will be represented by a pair (spec, t), where t is a time expression
(this notion will be formalised in the next section). The encoding of the events
above is:

({act = activate, obj = alarm, subj = john}, 12.25)
({act = deactivate, obj = alarm, subj = tom}, 12.45)
(alarmON = {act = activate, obj = alarm}, T)
(alarmOFF(X) = {act = deactivate, obj = alarm, subj = X)}, T)

4.2 History of Events

We will now consider a history of events and define how one can relate events in
a history to define appropriate intervals.

Definition 11 (History). An event history h ∈ H is a sequence of distinct spe-
cific events in time of the form [E1 = (e1, t1), . . . , En = (en, tn)], where t1, . . . , tn
are ground and such that for i < j, ti � tj. A subsequence of h is called an event
interval and it is represented as I = (Ei, Ej), where Ei, Ej are respectively the
first and the last event in the interval. We say that Ei opens the interval and Ej
closes it. We use the constant ⊥ to represent untimed events as a pair (e,⊥).

Example 5 (History).

h = [({act = enterHosp, patient = john}, 900),
({act = consult , patient = john, doc = dr . paul}, 1100),
({act = request , doc = dr . paul , patient = john, proc = x -ray}, 1110),
({act = perform, patient = john, doc = dr . mary , proc = x -ray}, 1125),
({act = read , doc = dr . paul , ward = neurology , obj = rec(john)}, 1300)

9

To compute intervals we will define a function that describes how events are
linked to subsequent events in history. Because we want to consider different
scenarios we will also consider different strategies to select intervals. A strategy
is a function strat : 2I → 2I , which will be used to select elements from a
set I of pairs of timed events (intervals). Examples of strategies can be select-
first, select-last, select-all, etc. We will use S to represent the set of available
strategies.

Definition 12. A closing function cl : GE × T C → 2GE×T ×S , is a mapping
associating to a pair (ge, tc), a set of triples of the form (ge′, t′, strat), which are
the generic events in time that are closed by the generic event ge provided that
some constraints on t′ and tc are satisfied, and selected by the function strat. In
the rest of the paper we will assume a select-first strategy, and omit strategies
from function cl.

Example 6. In our hospital scenario, consider:

– cl(exitHosp(P,W), T+)) = {(triage(P), T), (inWard(P,W), T)}
– cl(releaseCR(W), T+20)) = {(codeRED(W), T)}

For instance cl(releaseCR(W), T+20)) = {(codeRED(W), T)} indicates that the
specific event releaseCR(neurology) can close the event codeRED(neurology),
provided that the former occurs at most 20 instants after the latter.

Closed and open intervals are key notions when dealing with obligations, as
they allow us to determine the status of an obligation at a given point. In the
next section we will use the notions of closed and open intervals (Definitions 13
and 14 below) in the context of the CBACO metamodel.

Definition 13. Let h ∈ H, (ge, tc) ∈ GE × T C and (ge′, t) ∈ GE × T , then
closed(ge′, ge, h) is the set of event intervals of the form ((ei, ti), (ej , tj)) such
that, for some compatible substitutions θi, θj and a substitution on time variables
σ, one has: (ge′, t) ∈ cl((ge, tc)); `θi ei :: ge′ and `θj ej :: ge; ti = JtKσ and tj ∈
JtcKσ. Then the function interval(e1, e2, h) is true if, for some compatible sub-
stitutions θ1 and θ2: `θ1 e1 :: ge1, `θ2 e2 :: ge2 and (e1, e2) ∈ closed(ge1, ge2, h),
and false otherwise.

Definition 14. Let h ∈ H, (ge, tc) ∈ GE × T C and (ge′, t) ∈ GE × T , then
open(ge′, ge, h) is the set of event intervals of the form ((ei, ti),⊥) such that, for
some substitution θi and a substitution on time variables σ, one has: (ge′, t) ∈
cl((ge, tc)); `θi ei :: ge′; ti = JtKσ, but there is not an event (ej , tj), with ti � tj,
such that `θj ej :: ge, for a substitution θj compatible with θi and tj ∈ JtcKσ.

In the defininions above, we do not distinguish between single and compound
events, and assume that compound events appear in history. A more detailed
and realistic treatment of coumpound events in history is left for future work.

10

5 A Prolog Implementation

In this section we describe a prototype implementation of the previous definitions
in Prolog. Because Prolog programs are expressed in terms of relations, repre-
sented as facts and rules, Prolog is an ideal language to implement the notions
defined in this paper. Backtracking, unification and logical variables are also use-
ful features for our implementation (although in this prototype implementation
we treat substitutions explicitly, a more efficient implementation can make use
of Prolog’s logic variables and unification to implicitly propagate substitutions
and deal with compatibility of substitutions).

5.1 Defining Events, Event Typing and Intervals

For a particular system, the language of events is determined by the set of
functors F , its associated types given by function type, and the equations defining
generic events, which can be represented as Prolog facts. For example, we can
consider the following typed constants and functors for our hospital scenario:

type(neurology,ward).

type(dr_paul,doctor).

type(rec,arrow([patient],resource)).

ge(exitHosp,[var(P1,patient)], rec([lab(action,discharge),

lab(patient,var(P1,patient)),

lab(doc,var(P2,doctor))])).

cl((ge(exitHosp,[var(P,doctor),var(W,ward)]),plus(var(T,time))),

[(ge(triage,[var(P,doctor)]),var(T,time)),

(ge(inWard,[var(P,doctor),var(W,ward)]),var(T,time))]).

cl((ge(releaseCR,[var(W,ward)]),plus(var(T,time))),

[(ge(codeRED,[var(W,ward)]),var(T,time))]).

Below we present the predicate ty(Theta, E, GE) implementing the relation
`θ e :: ge from Definition 8.

ty([],A,A):- atomic(A).

ty([(X,Value)],Value,var(X,Type)):- typed([],Value,Type).

ty(Theta,fun(Name,CValues),fun(Name,Values)):- zip(CValues,Values,L),

tyList(Theta,L).

ty(Theta,lab(Name,CValue),lab(Name,Value)):- ty(Theta,CValue,Value).

ty(Theta,rec(CL),rec(L)):- permut(CL,PCL),

zip(CL,L,LRec),

tyList(Theta,LRec).

ty(Theta,CSpec,ge(Name,Lvar)):- ge(Name,Lvar,Spec), ty(Theta,CSpec,Spec).

ty(Theta,comp(CSpec),ge(Name,Vars)):- ge(Name,Vars,comp(LSpec)),

permut(CSpec,PCSpec),

zip(PCSpec,LSpec,Specs),

ty(Theta,Specs).

tyList([],[]).

tyList(Theta,[(CValue,Value)|L]):- ty(Theta1,CValue,Value),

tyList(Theta2,L),

compatible(Theta1,Theta2,Theta).

11

Where the predicate typed(Env, Value, Type) implements the typing relation
env ` ν : τ from Definition 6. The predicate compatible(Theta1, Theta2, Theta)
verifies if the two substitutions Theta1 and Theta2 are compatible, eliminating
duplicated declarations. The predicate zip(L1, L2, L3), succeeds if in the list of
pairs L3, each pair contains elements of lists L1 and L2 occurring at the same
position (similar to the Haskell zip function). The predicate permut(L1,L2)

succeeds if L2 is a permutation of L1.
The functions closed(ge′, ge, h) and open(ge′, ge, h) from Definition 13 can

be computed using the predicates cinterval(GE1,GE2,H,(E1,E2,Sigma)) and
ointerval(GE1,GE2,H,(E1,E2,Sigma)), respectively:

cinterval((ge(N1,V1),TC),(ge(N2,V2),T),H,((Ei,Ti),(Ej,Tj),Sigma)):-

cl((ge(N1,V1),TC),LGEs), member((ge(N2,V2),T),LGEs),

pick((Ei,Ti),H,RH), ty(Theta,Ei,ge(N2,Vs2)),

pick((Ej,Tj),RH,_), ty(Theta,Ej,ge(N1,Vs2)),

tsem(T,Sigma,Ti), tsem(TC,Sigma,Int), belongs(Tj,Int).

ointerval((ge(N1,V1),TC),(ge(N2,V2),T),H,((Ei,Ti),bot,Sigma)):-

cl((ge(N1,V1),TC),LGEs), member((ge(N2,V2),T),LGEs),

pick((Ei,Ti),H,RH), tsem(T,Sigma,Ti),ty(Theta,Ei,ge(N2,Vs2)),

not cinterval((ge(N1,V1),TC),(ge(N2,V2),T),H,((Ei,Ti),(_,_),Sigma)).

closed(GE1,GE2,H,L):- findall(E,cinterval(GE1,GE2,H,E),L).

open(GE1,GE2,H,L):- findall(E,ointerval(GE1,GE2,H,E),L).

The predicate tsem(T, Sigma, Ti) implements the semantic for time expres-
sions and time constraints. The predicate pick will pick an event from the history
and return the rest of the history after that event.

5.2 Application: Obligation Models

In this section, we consider the rewrite-based semantics of CBACO [1], where
the status of an obligation (a, r, ge1, ge2) (see Definition 1) for principal p in a
given history h is computed using the following rewrite rule:

eval-obligation(p, a, r, ge1, ge2, h)→ if opar(p, a, r, ge1, ge2) then
append(chk-cl∗(closed(ge1, ge2, h), p, a, r), chk-op∗(open(ge1, ge2, h), p, a, r))

else [not-applicable]

Here the function opar, specific to the system being modelled, is such that
opar(p, a, r, ge1, ge2) holds if principal p has the generic obligation (a, r, ge1, ge2);
append is a standard function that concatenates two lists; closed computes the
sublists of h that start and finish with events e1, e2, which are respectively in-
stances of ge1, ge2 (in this case e2 closes the interval for this obligation). Similarly
open returns the subhistories of h that start with an event e1 (instance of ge1)
and for which there is no instance of ge2 in h that closes the interval for this
obligation. The function chk-cl with inputs h′, p, a, r checks whether in the sub-
history h′ there is an event where the principal p has performed the action a on
the resource r, returning a result fulfilled if that is the case, and violated other-
wise. The function chk-op with inputs h′, p, a, r checks whether in the subhistory

12

h′ there is an event where the principal p has performed the action a on the re-
source r, returning a result fulfilled if that is the case, and pending otherwise. The
functions chk-cl∗ and chk-op∗ do the same but for each element of a list of sub-
histories, returning a list of results. Using the functions and relations defined in
the previous sections, we can evaluate obligations according to the above specifi-
cation. First, we give an alternative, equivalent specification for the evaluation of
obligations, which is closer to the logic-programming implementation discussed
in the previous subsection. Assuming that ty is the function that implements
the instance relation `θ on events (that is, ty(e) = {(ge, θ) | `θ e :: ge}), the
status of an obligation can be computed using the following rule, where the extra
variables in the right hand side are existentially quantified.

status(p, a, r, ge1, ge2, h)→ if opar(p, a, r, ge1, ge2)
then if ((e1, t1), (e2, t2)) ∈ closed(ge1, ge2, h)
and (e, t) ∈ h and (ge, θ) ∈ ty(e) and
ge θ = {principal = p, action = a, resource = r} then

if t1 ≺ t ≺ t2 then fulfilled else violated
elseif ((e1, t1),⊥) ∈ open(ge1, ge2, h)
and (e, t) ∈ h and (ge, θ) ∈ ty(e) and
ge θ = {principal = p, action = a, resource = r} and
t1 ≺ t then fulfilled else pending

else not-applicable

We are assuming that h contains all the events occurring in the system up to
the moment where we wish to check the status of the obligation.

We now give the Prolog implementation for the rule that computes the status
of an obligation. To deal with obligations we need Prolog facts/predicates to rep-
resent relations in CBACO. In particular, in order to implement assignment of
obligations to principals, we have a predicate opar(P,A,R,GE1,GE2). We assume
the existence of a generic event ge(par,[var(P,pl),var(A,act),var(R,res)])
with specification rec([lab(principal,var(P,pl)),lab(action,var(A,act)),
lab(resource,var(R,res))]), where pl,act,res are the types for principal,
actions and resources, respectively.

status(P,A,R,ge(N1,V1),ge(N2,V2),H,notapplicable):-

not opar(P,A,R,GE1,GE2),!.

status(P,A,R,ge(N1,V1),ge(N2,V2),H,S):- opar(P,A,R,GE1,GE2),

closed(GE1,GE2,H,CI), member((E1,E2),CI), event(P,A,R,H,(E,T)),

chktime(T,T1,T2,S).

status(P,A,R,ge(N1,V1),ge(N2,V2),H,fulfilled):- opar(P,A,R,GE1,GE2),

open(GE1,GE2,H,CI), member((E1,bot),CI), event(P,A,R,H,(E,T)),!,

tsem(T1,Theta,Time1) tsem(T,Theta,Time), Time>=Time1.

status(P,A,R,ge(N1,V1),ge(N2,V2),H,pending):- opar(P,A,R,GE1,GE2),

open(GE1,GE2,H,CI), member((E1,bot),CI).

event(P,A,R,H,(E,T)):- member((E,T),H),

ty(Theta,E,ge(par,[var(P1,pl),var(A1,act),var(R1,res)])),

member((P1,P),Theta), member((A1,A),Theta), member((R1,R),Theta).

checktime(Time,Time1,Time2,fulfilled):- tsem(Time1,Theta,T1),

tsem(Time2,Theta,T2),

13

tsem(Time,Theta,T), T>=T1,T2>=T.

checktime(Time,Time1,Time2,invalid):- tsem(Time1,Theta,T1),

tsem(Time2,Theta,T2),

tsem(Time,Theta,T), (T1>=T;T>=T2).

The rewrite-based specification of duties (see Definition 2) in CBACO [1]
relies on auxiliary functions interval, and type, which are also specific to the sys-
tem being modelled: interval(e1, e2, h) checks whether the event history includes
an interval opened by e1 and closed by e2, and type(e, h) computes the generic
event ge, of which e occurring in h is an instance (and that, in the rule below,
is assumed to be unique).

duty(p, a, r, e1, e2, h)→ opar(p, a, r, type(e1, h), type(e2, h)) and interval(e1, e2, h)

In [1] interval and type are assumed to be defined for each specific system, to re-
spectively implement the relations event interval and event typing. In this paper
we give general definitions/implementations of these relations. The implemen-
tation of a checker for duties in Prolog is straightforward, using the predicate
defined above to compute intervals, which takes into account the type relation
between events.

duty(P,A,R,E1,E2,H):- opar(P,A,R,GE1,GE2), cinterval(GE1,GE2,H,(E1,E2,_)).

6 Related Work

The notion of event has been treated in various settings in the literature, such
as logic-based frameworks, algebraic approaches and query languages, amongst
others. In the context of access control, Barker et al [5] have proposed a repre-
sentation for events as sets of binary predicates, partially motivated by David-
son’s view of events as action occurrences [10]. In this formalism, event descrip-
tions are given as finite sets of ground 2-place facts (atoms) that describe an
event, uniquely identified by ei, i ∈ N, and which includes three necessary facts:
happens(ei, tj), act(ei, al) and agent(ei, un), and n non-necessary facts. This was
later used in [1] to model obligations in the CBAC metamodel, but considering
only two necessary facts happens and act. This representation is claimed to be
more flexible than a term-based representation with a fixed set of attributes.
In our language, we do not fix necessary facts, although one can define them
as part of the set of typed-functors. Furthermore, event specifications are given
as records which may contain extra fields, so these sets of predicates can be
easily encoded in our language. A less flexible representation was used in [8], in
the context of distributed event-based access control. In this work, events are
ground terms of the form event(ei, u, a, t) where event is a data constructor of
arity four, ei(i ∈ N) denotes unique event identifiers, u identifies a user, a is an
action associated to the event, and t is the time when the event happened. When
it is sufficient to know the chronological order of events, then the history can be
ordered as to provide that information and the time parameter may be omitted.

The Obligation Specification Language (OSL) defined in [13], presents a lan-
guage for events to monitor and reason about data usage requirements. The

14

notions of obligational formulas/obligations defined in this paper are closely re-
lated to the notions of generic/concrete obligations in [1]. Therefore data usage
as specified in [13] can be encoded within the CBACO metamodel. The notion
of events presented in [13] is also similar to ours in some aspects, but where
logical expressions are used to deal with intervals. The paper also presents a
relation refinesEv, defining an instance relation between events. This relation
is based on a subset relation on labels, as the instance relation in [1]. In our
setting this instance relation between events is defined for parameterised generic
events (i.e. containing variables), by the implicit subtyping on records but more
generally using variable instantiation.

Still in the context of access control systems, Bertino et al.[7] proposed the
Temporal Role-Based Access Control Model (TRBAC), using events to activate
and deactivate roles. This was later used in [23, 22], to deal with security analysis
in the presence of static temporal role hierarchies in RBAC. The time models
used in these works also depend on the notion of time interval, but they use
a simpler notion of interval that can easily be encoded in our language. The
activation and de-activation of roles, as well as dealing with the so-called safety
problem (i.e., administrative actions that can lead to a policy in which a user
can acquire permissions that can compromise the security of the system), is not
the purpose of events in our work. Nevertheless, this can achieved, through the
assignment of users to categories in CBAC policies, based on some property
depending on a temporal constraint.

An important notion in the above formalisms, and in the language described
in this paper, is the notion of interval, which provides means to reason about
assignment of status in [5] and status of obligations in [1]. Intervals as sequences
that are initiated and terminated by events, and during which certain facts hold,
are also a key aspect in the event calculus [17, 18]. The initial motivation of the
event calculus was to deal with database updating, but it has been applied in
a variety of settings [15, 9, 12, 16]. Like in the event calculus, we also consider
intervals as being initiated and closed by events, however we do not reason (in
general) about facts that hold at a certain point.

Time intervals and time constraints have also been used to appropriately
deal with obligations in access control models [1, 14, 19, 21]. In most of these
models time intervals are not defined by events, but as fixed points in time,
which are easily represented in our language. Time constraints in [19] consider
sequences of time intervals, to enforce systematic repetition of obligations. We do
not consider this type of constraints, as repetition of obligations can be enforced
through the definition of the categories for obligations, but our representation
of time constraints could easily be adapted to consider sequences of intervals.

7 Conclusions

We have defined a language to represent events as typed-terms, built from a
user-defined signature, to formally deal with the notions of event typing and
event intervals in a uniform way, in the context of the CBACO metamodel. In a

15

given system, intervals can be automatically extracted from a history of events
by means of a relation that determines how events are closed in the system.
This approach allows us to adequately define general functions to implement
event typing and to compute event intervals, without having to know the exact
type of events that we are dealing with. As future work we would like to extend
this formalism to deal with notions such as conflicting events, and automatically
generated events. Furthermore, we believe that a type-system for events could be
useful in identifying patterns of events in history, which could lead to interesting
applications in the context of event processing. We believe that the notions of
intervals defined here could be useful in other contexts. In particular, it could be
used to infer intervals where a particular status is valid, which can be applied in
status-based access control models.

References

1. S. Alves, A. Degtyarev, and M. Fernández. Access Control and Obligations in
the Category-Based Metamodel: A Rewrite-Based Semantics. In Proceedings of
LOPSTR’14, volume 8981 of LNCS, pages 148–163. Springer, 2015.

2. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, Great Britain, 1998.

3. S. Barker. Action-status access control. In Proceedings of SACMAT’07, pages
195–204. ACM, 2007.

4. S. Barker. The next 700 access control models or a unifying meta-model? In
Proceedings of SACMAT’09, pages 187–196. ACM, 2009.

5. S. Barker, M. J. Sergot, and D. Wijesekera. Status-Based Access Control. ACM
Transactions on Information and System Security, 12(1):1:1–1:47, 2008.

6. D. E. Bell and L. J. Lapadula. Secure Computer System: Unified Exposition
and MULTICS Interpretation. Technical Report ESD-TR-75-306, The MITRE
Corporation, 1976.

7. E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A Temporal Role-based Access
Control Model. ACM Transactions on Information and System Security, 4(3):191–
233, Aug. 2001.

8. C. Bertolissi, M. Fernández, and S. Barker. Dynamic Event-Based Access Control
as Term Rewriting. In Proceedings of DBSEC’07, volume 4602 of LNCS, pages
195–210. Springer, 2007.

9. R. Craven, J. Lobo, J. Ma, A. Russo, E. Lupu, and A. Bandara. Expressive Policy
Analysis with Enhanced System Dynamicity. In Proceedings of ASIACCS’09, pages
239–250. ACM, 2009.

10. D. Davidson. Essays on Actions and Events. Oxford University Press, 2001.
11. D. Ferraiolo, R. Kuhn, and R. Chandramouli. Role-Based Access Control. Artech

House, 2003.
12. M. Gelfond and J. Lobo. Authorization and Obligation Policies in Dynamic Sys-

tems. In Proceedings of ICLP’08, volume 5366 of LNCS, pages 22–36. Springer,
2008.

13. M. Hilty, A. Pretschner, D. A. Basin, C. Schaefer, and T. Walter. A Policy Lan-
guage for Distributed Usage Control. In Proceedings of ESORICS’07, pages 531–
546, 2007.

14. K. Irwin, T. Yu, and W. H. Winsborough. On the Modeling and Analysis of
Obligations. In Proceedings of CCS’06, pages 134–143. ACM, 2006.

16

15. R. Kowalski. Database Updates in the Event Calculus. Journal of Logic Program-
ming, 12(1-2):121–146, Jan. 1992.

16. R. Kowalski and F. Sadri. A Logic-based Framework for Reactive Systems. In
Proceedings of RuleML’12, pages 1–15. Springer-Verlag, 2012.

17. R. Kowalski and M. Sergot. A Logic-based Calculus of Events. New Generation
Computing, 4(1):67–95, 1986.

18. R. Miller and M. Shanahan. The Event Calculus in Classical Logic - Alternative
Axiomatisations. Electronic Transactions on Artificial Intelligence, 3(A):77–105,
1999.

19. Q. Ni, E. Bertino, and J. Lobo. An Obligation Model Bridging Access Control
Policies and Privacy Policies. In Proceedings of SACMAT’08, pages 133–142. ACM,
2008.

20. Ohori. A Polymorphic Record Calculus and its Compilation. ACM Transactions
on Programming Languages and Systems, 17(6):844–895, Nov. 1995.

21. M. Pontual, O. Chowdhury, W. H. Winsborough, T. Yu, and K. Irwin. On the
Management of User Obligations. In Proceedings of SACMAT ’11, pages 175–184.
ACM, 2011.

22. S. Ranise, A. T. Truong, and A. Armando. Scalable and precise automated anal-
ysis of administrative temporal role-based access control. In Proceedings of SAC-
MAT’14, pages 103–114, 2014.

23. S. Ranise, A. T. Truong, and L. Viganò. Automated analysis of RBAC policies
with temporal constraints and static role hierarchies. In Proceedings of SAC’15,
pages 2177–2184, 2015.

17

