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Abstract. Wet-lab experiments, in which the dynamics within living cells are
observed, are usually costly and time consuming. This is particularly true if
single-cell measurements are obtained using experimental techniques such as
flow-cytometry or fluorescence microscopy. It is therefore important to optimize
experiments with respect to the information they provide about the system. In
this paper we make a priori predictions of the amount of information that can be
obtained from measurements. We focus on the case where the measurements are
made to estimate parameters of a stochastic model of the underlying biochemical
reactions. We propose a numerical scheme to approximate the Fisher information
of future experiments at different observation time points and determine optimal
observation time points. To illustrate the usefulness of our approach, we apply
our method to two interesting case studies.

1 Introduction
The successful calibration of mathematical models of biological processes is usually
achieved by the interplay between computer simulations and wet-lab experiments. While
both approaches are typically very time consuming, wet-lab experiments are costly
compared to computer simulations, which is particularly true for single-molecule tech-
niques such as flow cytometry or fluorescence microscopy. To keep the effort and costs
as low as possible and to employ wet-lab resources to have maximal gain, it is possible
to run computer simulations before measurements have been done in order to maxi-
mize the amount of information provided by the measurements. If the plan is to use
the measurements for the estimation of unknown model parameters, then it is common
practice to approach the optimal experimental design problem by considering the Fisher
information. The Fisher information provides an approximation of the accuracy of pa-
rameter estimates and if the information is maximal so is the (approximated) accuracy
of the estimators. While classical parameter estimation techniques compute the Fisher
information of parameter values estimated based on certain observations of the system,
it is also possible to do this computation before any observations are made. Thus, it is
possible to compare the amount of information that a certain hypothetical experiment
provides w.r.t. an unknown parameter.

Here, we focus on stochastic models of biochemical reaction networks, for which
the optimal experimental design problem has been addressed rarely in the past. We
assume that the kinetic constants of the chemical reactions have to be estimated and
that flow cytometry measurements are possible. Our goal is to find the optimal times at
which measurements should be made to maximize the amount of information provided

ar
X

iv
:1

41
2.

54
39

v1
  [

q-
bi

o.
C

B
] 

 1
7 

D
ec

 2
01

4



by the observations. Note that such observations are not correlated over time, thus, the
results are independent single-cell measurements. We do not optimize over other exper-
iment design criteria such as the choice between the chemical species to observe. The
reason is that the latter problem is, compared to the optimal observation time points
problem, much simpler since we only have to compare the Fisher information for all
possible combinations of observed species. Finding optimal observation times, how-
ever, is a challenging problem since the computation of the Fisher information relies
on a transient solution of the model. It is therefore very costly and can usually not be
done for a very large number of time points. Thus, a sophisticated numerical procedure
is necessary to efficiently determine optimal observation times. Another problem is that
the Fisher information depends not only on the time points the observations are made,
but also on the unknown parameters value. We therefore assume that prior knowledge
about the unknown parameters is available in the form of a prior distribution. Given
such a prior and a stochastic model with unknown kinetic constants, we determine those
observation time points at which the expected Fisher information is maximal.

There are two previous approaches to the optimal experimental design problem for
stochastic chemical kinetics. Both of them provide approximations of the Fisher infor-
mation and focus on systems for which a direct numerical computation of the transient
solution is too expensive. Komorowski et al. propose an approach that is based on the
linear noise approximation, which assumes that molecules are present in sufficiently
high copy numbers [7]. However, many systems involve species present in small copy
numbers leading to highly skewed distributions [15]. In such cases the linear noise ap-
proximation yields poor approximations and the underlying master equation has to be
solved directly. Ruess et al. propose an approximation of the Fisher information based
on the moments of the underlying probability distribution. Assuming that the number
of observed cells is large, they derive an expression for the Fisher information that only
involves moments up to order four [15]. This derivation is based on the fact that sample
mean and sample variance of the observations are approximately normally distributed.
However, it turns out that the information provided by the sample mean and the sam-
ple variance do not suffice for the characterization of skewed or bimodal distributions.
In this paper we use a method based on the direct approximation of the underlying
probability distribution since we found approximation errors up to 40% when using the
approach of Ruess et al. We combine this approximation with a gradient-descent based
optimization scheme in which we, after sampling from the prior distribution, have to
solve the underlying master equation only once over time. The latter is achieved by a
direct numerical approximation where the large state space of the model is truncated
dynamically. This approach is a modification of an earlier method developed for the
estimation of parameters [1].

After introducing the stochastic model in Section 2, we give the mathematical back-
ground for the estimation of unknown parameters and explain how the Fisher informa-
tion and its time-derivatives are computed in Section 3. In Section 4 we present the op-
timal experiment design problem and propose a numerical method for finding optimal
observation times. Finally, we report on experimental results for two reaction networks
(Section 5) and conclude with a discussion of the results in Section 6.



2 Discrete-state Stochastic Model

According to Gillespie’s theory of stochastic chemical kinetics, a well-stirred mixture
of n molecular species in a volume with fixed size and fixed temperature can be repre-
sented as a continuous-time Markov chain {Xt, t ≥ 0} [5]. The random vector Xt de-
scribes the chemical populations at time t, i.e., the i-th entry is the number of molecules
of type i ∈ {1, . . . , n} at time t. Thus, the state space of X is Zn+ = {0, 1, . . .}n. The
state changes of X are triggered by the occurrences of chemical reactions, which are
of m different types. For j ∈ {1, . . . ,m} let the row vector vj ∈ Zn be the nonzero
change vector of the j-th reaction type, that is, vj = v−j + v+

j where v−j contains
only non-positive entries, which specify how many molecules of each species are con-
sumed (reactants) if an instance of the reaction occurs. The vector v+

j contains only
non-negative entries, which specify how many molecules of each species are produced
(products). Thus, if Xt = x for some x ∈ Zn+ with x + v−j being non-negative, then
Xt+dt = x + vj is the state of the system after the occurrence of the j-th reaction
within the infinitesimal time interval [t, t+ dt).

Each reaction type has an associated propensity function, denoted by α1, . . . , αm,
which is such that αj(x) ·dt is the probability that, given Xt = x, one instance of the j-
th reaction occurs within [t, t+ dt). Often the value αj(x) is chosen proportional to the
number of distinct reactant combinations in state x, known as the law of mass action.
However, for many reactions the proportionality constant θj is unknown and has to be
estimated based on measurements. For instance, if we have two (distinct) reactants (i.e.
v−j = −ei−e`) then αj(x) = θj ·xi ·x` where xi and x` are the corresponding entries
of x, i 6= `, θj > 0, and ei is the vector with the i-th entry 1 and all other entries 0.
In the sequel we do not restrict the form of αj but only assume that its derivative w.r.t.
some unknown parameter θj exists. Sometimes we will make the dependence of αj on
θj explicit by writing αj(x, θj) instead of αj(x).

Example 1. We consider a simple crystallization process that involves four chemical
species, namely A, B, C and D. Thus, the entries of the random vector Xt give the
numbers of molecules of types A, B, C and D at time t. The two possible reactions
are 2A → B and A + C → D. Thus, v1 = (−2, 1, 0, 0), v2 = (−1, 0,−1, 1). For
a state x = (xA, xB , xC , xD), the propensity functions are α1(x) = θ1 ·

(
xA

2

)
and

α2(x) = θ2 · xA · xC . Note that given an initial state x0 the set of reachable states is a
finite subset of N4.

In general, the reaction rate constants θj refer to the probability that a randomly
selected pair of reactants collides and undergoes the j-th chemical reaction. It depends
on the volume and the temperature of the system as well as on the microphysical prop-
erties of the reactant species. Since reactions of higher order (requiring more than two
reactants) are usually the result of several successive lower order reactions, we do not
consider the case of more than two reactants.

The Chemical Master Equation. For x ∈ Zn+ and t ≥ 0, let pt(x) denote the
probability Pr(Xt = x). Given v−1 , . . . ,v

−
m, v+

1 , . . . ,v
+
m, α1, . . . , αm, and some ini-

tial distribution p0, the Markov chain X is uniquely specified and its evolution is given



by the chemical master equation (CME)

d
dtpt(x) =

∑
j:x−v−

j ≥0

αj(x− vj)pt(x− vj)− αj(x)pt(x). (1)

If we use pt to denote the row vector with entries pt(x), then the vector form of the
CME becomes

d
dtpt = ptQ, (2)

whereQ is the infinitesimal generator matrix of X withQ(x,y) = αj(x) if y = x+vj
and x + v−j ≥ 0. Note that, in order to simplify our presentation, we assume here that
all vectors vj are distinct. All remaining entries of Q are zero except for the diagonal
entries which are equal to the negative row sum. The ordinary first-order differential
equation in (2) is a direct consequence of the Kolmogorov forward equation. Since X
is a regular Markov process, (2) has the general solution pt = p0 · eQt, where eA is the
matrix exponential of a matrix A. If the state space of X is infinite, then we can only
compute approximations of pt. But even if Q is finite, its size is often large because it
grows exponentially with the number of state variables. Therefore standard numerical
solution techniques for systems of first-order linear equations of the form of (2) are
infeasible. The reason is that the number of nonzero entries in Q often exceeds the
available memory capacity for systems of realistic size. If the populations of all species
remain small (at most a few hundreds) then the CME can be efficiently approximated
using projection methods [6,12,4] or fast uniformization methods [10,16]. The idea of
these methods is to avoid an exhaustive state space exploration and, depending on a
certain time interval, restrict the analysis of the system to a subset of states.

Here, we are also interested in the partial derivatives of pt w.r.t. the reaction rate
constants θ = (θ1, . . . , θm). In the sequel we will write pt(θ) instead of pt to make
the dependency on θ explicit and the entry of pt(θ) that corresponds to state x will
be denoted by pt(x; θ). Moreover, we define the row vectors sjt (θ) as the derivative of
pt(θ) w.r.t. θj , i.e.,

sjt (θ) =
∂pt(θ)
∂θj

= lim∆h→0
pt(θ+∆h(j))−pt(θ)

∆h ,

where the vector ∆h(j) is zero everywhere except for the j-th position that is equal to
∆h. We denote the entry in sjt (θ) that corresponds to state x by sjt (x, θ). Derivating
(2), we find that sjt (θ) is the unique solution of the following linear system of ODEs

d
dts

j
t (θ) = sjt (θ)Q+ pt(θ)

∂
∂θj

Q, (3)

where j ∈ {1, . . . ,m}. The initial condition is sj0(x, θ) = 0 for all x and θ since
p0(x; θ) is independent of θj .

3 Observations and Fisher Information

Following the notation in [14], we assume that observations of a biochemical network
are made at time instances t1, . . . , tR ∈ R≥0, where t1 ≤ . . . ≤ tR. The entries



of the random vector Otk ∈ Rn describe the molecule numbers observed at time tk
for k ∈ {1, . . . , R}. Since these observations are typically subject to measurement
errors, we may assume that Otk = Xtk + εtk , where the entries of the error terms
εtk are independent and identically normally distributed with mean zero and standard
deviation σ. Note that Xtk is the true population vector at time tk. Clearly, this implies
that, conditional on Xtk , the random vector Otk is independent of all other observations
as well as independent of the history of X before time tk.

Let f denote the joint density of Ot1 , . . . ,OtR and assume that o1, . . . ,oR ∈ Rn.
Then the likelihood of the observation sequence ot1 , . . . ,otR is

L = f (Ot1 = o1, . . . ,OtR = oR)

=
∑

x1
. . .
∑

xR
f (Ot1 = o1, . . . ,OtR = oR | Xt1 = x1, . . . ,XtR = xR)

Pr(Xt1 = x1, . . . ,XtR = xR) .

(4)

We assume that for the unobserved process X we do not know the values of the rate
constants θ = (θ1, . . . , θm) and our aim is to estimate these constants.

In the sequel, in order to keep the notation simpler, we assume no measurement
errors in our observations. Nevertheless, it is straightforward to extend our proposed
optimal design procedure to the case where the measurements are not exact. As shown
in [1] this only introduces additional weights during the calculation of the likelihood.
In this case, also, one can consider the standard deviation of the error terms, σ, as
an unknown parameter and apply the proposed design. Here, though, we assume that
Otk = Xtk for all k and for a concrete observation sequence x1, . . . ,xR ∈ Nn the
likelihood becomes

L = Pr(Xt1 = x1, . . . ,XtR = xR) . (5)

Of course, L depends on the chosen rate parameters θ since the probability measure
Pr(·) does. When necessary, we will make this dependence explicit by writing L(θ)
instead of L. Since our observations are equal to the true state Xtk at time tk, we write
L(X; θ) where with some abuse of notation X now refers to the sequence Xt1 , . . . ,XtR .
We now seek constants θ∗ such that

θ∗ = argmaxθ L(X; θ), (6)

where the maximum is taken over all vectors θ with all components strictly positive.
This optimization problem is known as the maximum likelihood problem [8]. Note that
θ∗ is a random variable, in the sense it depends on the (random) observations X =
(Xt1 , . . . ,XtR).

The maximum likelihood estimator θ∗ is known to be asymptotically normally dis-
tributed and its covariance matrix approaches the Cramér-Rao bound IX(θ)−1, where
IX(θ) is the Fisher information matrix (FIM). Note that this bound is a lower bound
on the estimator’s covariance matrix. It is commonly used to derive confidence inter-
vals for the estimated values of the parameters. Previous experimental results show that
the variances approximated based on the FIM are close to the variances approximated
based on many repetitions of the experiments and the estimation procedure [1]. Thus,



in order to have an accurate estimation of the parameters the (co-)variances should be
as small as possible, i.e., IX(θ) should be large to achieve tight confidence intervals for
θ∗.

Given an observation sequence, X of the process, the entry of the FIM that corre-
sponds to the unknown parameters θi and θj , 1 ≤ i, j ≤ m is defined as

(
IX(θ)

)
i,j

= EX

[(
∂
∂θi

log L(X; θ)
)(

∂
∂θj

log L(X; θ)
)]
. (7)

Note that the expectation is taken w.r.t. the observation sequence X = (Xt1 , . . . ,XtR).
Under certain (mild) regularity conditions that hold for the likelihoods we consider here,
Eq. (7) can be equivalently written as [17]

(
IX(θ)

)
i,j

= −EX

[
∂2

∂θi∂θj
log L(X; θ)

]
= −

∑
x1,...,xR

Pr(Xt1 = x1, . . . ,XtR = xR; θ)

∂2

∂θi∂θj
logPr(Xt1 = x1, . . . ,XtR = xR; θ) .

(8)

Note that if the observations Xt1 , . . . ,XtR are independent observations then the (i, j)th
entry of the FIM is such that

(
IX(θ)

)
i,j

=

R∑
k=1

(
IXtk

(θ)
)
i,j

(9)

where IXtk
(θ) is the Fisher information matrix of a single observation Xtk at time tk.

The above means that the information of a sequence of R independent observations is
simply the sum of the information of each. This makes the computation of the total
information easier than in the dependent case since it is enough to solve the CME along
with the partial derivatives sjt (θ), for all j, until time point tR. This can be easily seen
by exploiting (7) for Xtk .

(
IXtk

(θ)
)
i,j

= EXtk

[(
∂
∂θi

log Pr(Xtk ; θ)
)(

∂
∂θj

log Pr(Xtk ; θ)
)]

=
∑
xk

( ∂

∂θi
log ptk(xk; θ)

)( ∂

∂θj
log ptk(xk; θ)

)
ptk(xk; θ)

=
∑
xk

1

ptk(xk; θ)

∂

∂θi
ptk(xk; θ)

∂

∂θj
ptk(xk; θ),

(10)

where the sums run over all possible states xk that can be observed at time tk. Using
the notation of the previous section, we get

(
IXtk

(θ)
)
i,j

=
∑
xk

sitk(xk; θ) s
j
tk
(xk; θ)

ptk(xk; θ)
. (11)



Derivating (11) we can also compute the derivative of the FIM w.r.t. the time point tk.

∂
∂t

(
IXtk

(θ)
)
i,j

=
∑
xk

∂
∂ts

i
tk
(xk; θ) s

j
tk
(xk; θ) + sitk(xk; θ)

∂
∂ts

j
tk
(xk; θ)

ptk(xk; θ)

−
∑
xk

sitk(xk; θ) s
j
tk
(xk; θ)

∂
∂tptk(xk; θ)

ptk(xk; θ)
2

.

(12)

The time derivative of the FIM is particularly useful for an efficient gradient-based
optimization scheme to find the time points that provide the maximum information
which is the main goal of the next section.

4 Optimal Observation Time Points

Assume now that an experiment is planned where the system is observed at time points
t1, . . . , tR and that the observations will be independent (e.g. if the chosen measure-
ment technique is flow cytometry). We want to find the optimal time points to take our
observations, i.e. those which yield the maximum information for the system parame-
ters θ. However, the intrinsic problem in experiment design is that the parameter values
θ are, of course, unknown before the experiment is set up. Here, the chosen approach
to overcome this obstacle is to search for the observation time points that maximize the
determinant of the expected FIM when one assumes a prior distribution for the unknown
parameters as suggested, for instance, in [11]. In other words our goal is to find

t∗ = argmax
t=(t1,...,tR)

det
(
Eθ[I(t, θ)]

)
. (13)

This criterion is known to be robust because it incorporates a prior belief for θ. Note that
in the sequel we write I(t, θ) instead of IX(θ) to explicitly indicate that the information
is a function of the sequence of time points, t, at which the observations are to be taken.
Also, remember that in the previous section we showed that I(t, θ) =

∑R
k=1 I(tk, θ),

when we assume that the observations are independent.
It is worth mentioning that sometimes not all reaction rate constants are of interest,

in which case we partition the parameter vector θ = [θ(1), θ(2)] in parameters of interest
θ(1) and nuisance parameters θ(2). Then, for a specific time point t, I(t, θ) is replaced
by the matrix Is(t, θ) which is defined as

Is(t, θ) = I11(t, θ)− I12(t, θ) I −122 (t, θ) I ᵀ
12(t, θ),where

I(t, θ) =

[
I11(t, θ) I12(t, θ)
I ᵀ
12(t, θ) I

−1
22 (t, θ)

]
.

(14)

Here, subscript s indicates that we only consider derivatives of the parameters of inter-
est, i.e., the matrices I11(t, θ), I22(t, θ) contain information about the variance of θ(1)
and θ(2), respectively, while I12(t, θ) approximates the covariance matrix of θ(1) and
θ(2). Hence, given a prior of θ and having computed the matrices I(tk, θ) for all θ and
all k, it is straightforward to compute the matrix Eθ[Is(t, θ)] and then det

(
Eθ[Is(t, θ)]

)
.



Similarly, if we have, in addition, ∂
∂tI(t, θ) for all θ and all t ∈ {t1, . . . , tR} we can

also compute ∂
∂tdet

(
Eθ[Is(t, θ)]

)
as follows. From Jacobi’s formula it holds that for

any square matrix A
∂
∂tdet(A) = tr(adj(A)) ∂∂tA, (15)

where tr(A) is defined as the sum of the elements of the main diagonal ofA and adj(A)
is the adjoint matrix of A. Here, A = Eθ[Is(t, θ)] and, derivating Eq. (14), we can
compute ∂

∂tEθ[Is(t, θ)] by exploiting known matrix calculus identities.

∂
∂tEθ[Is(t, θ)] = Eθ[ ∂∂tI11(t, θ)−

∂
∂tI12(t, θ) I

−1
22 (t, θ) I ᵀ

12(t, θ)

−I12(t, θ) ∂
∂tI

−1
22 (θ) I ᵀ

12(t, θ)

−I12(t, θ) I −122 (t, θ) ∂
∂tI

ᵀ
12(t, θ)],

(16)

where the derivative of the inverse is computed as

∂
∂tI

−1
22 (t, θ) = −I −122 (t, θ) ∂

∂tI22(t, θ) I
−1
22 (t, θ).

The main computational effort in the search for the optimal experiment is that for find-
ing t∗ as defined in Eq. (13), we have to solve the CME after sampling from the prior
of θ. It is generally not possible to find t∗ from a single solution of the CME since we
need to average over all possible values for θ = (θ1, . . . , θm). Therefore, we propose
the following gradient descent based procedure to approximate local maxima of the
determinant of the expected FIM:

1. Given a prior µθ for the distribution of θ, sample values θ(1), . . . , θ(N) ∼ µθ.

2. Choose a sequence tnext = (t1, . . . , tR) of time points and for each sample of θ(i)

compute Is(tnext, θ(i)) and ∂
∂tIs(tnext, θ

(i)) for t ∈ {t1, . . . , tR}.

3. Return approximations of det
(
Eθ[Is(t, θ)]

)
and ∂

∂tdet
(
Eθ[Is(t, θ)]

)
by averaging

over the results for i = 1, . . . , N .

4. Following the gradient choose tnext = (t′1, . . . , t
′
R) and repeat from 2 until you

find a local maximum.

Clearly, an approximation of the global maximum is found by starting the local gradient
based search from multiple initial points. The initial points used in the second step can
be chosen randomly or according to some heuristics as it is usual for global optimization
methods. A technical but computationally important detail is that there is no need to
solve the CME for every sequence of time points that is considered in the optimization
algorithm. We can solve the CME once and keep the values of the Fisher information
matrix and its derivatives over time and recall it for every new sequence of time points
(up to a chosen discretization). Consequently, the total computational effort of the above
optimization procedure is to solve once the CME until time point equal to the maximal
value of tR encountered during the optimization.

Certainly, the above optimality criterion is by no means the only possible choice. A
slightly different approach, for instance, would be to maximize the expected determi-
nant of FIM [13]. Alternatively, if no prior is available, it is also possible to consider



maxt minθ det
(
Is(t, θ)

)
to make sure that for any choice of θ the experiment provides

maximal information. Here, we assume that a prior is available because, most probably,
one experiment has been already done in order to acquire some prior knowledge for the
parameters. At last, an additional advantage of a robust optimal design is that in case
there is the option to perform more than two experiments in total, the above procedure
can be used in iterations alternating between experiments and the update of the prior of
θ via parameter estimation from the real observations.

5 Experimental Results

We consider two biochemical reaction networks to which we apply our experiment
design procedure, namely the crystallization model, described in Example 1, and the
so-called exclusive switch model [9]. The crystallization model is a very simple ex-
ample because it has a finite state space and the CME can be integrated directly if the
initial molecule numbers are not particularly large. However, for large initial conditions
a transient solution is only possible if the state space is dynamically truncated as sug-
gested in [10] (see also [2]). The second example is infinite in two dimensions and its
distribution is bimodal. Thus, for this system we solved the CME using a dynamic trun-
cation of the state space whenever necessary. We chose the truncation threshold e−20

and the dynamic truncation of the states are based on the ratio in Eq. (11), rather than
only on the value of pt(x; θ). More precisely, a state x is considered as significant at
time t whenever this ratio is greater than the truncation threshold while in [10] it is only
the current probability that determines whether a state is considered or not at time t.

5.1 Crystallization

Recall the simple crystallization process
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Fig. 1. Approximated Fisher information of
the crystallization example for different val-
ues of θ2.

given by the two chemical reactions

2A
θ1−→ B,

A+ C
θ2−→ D.

Let us initially assume that the value of
θ1 = 4 is known and we have a prior for
θ2 ∼ U(0.05, 0.1) where U(a, b) refers
to the continuous uniform distribution be-
tween a and b. For the initial state (xA,
xB , xC , xD) = (4, 0, 2, 0) the number
of reachable states is 7 and no sophis-
ticated truncation method is necessary to
integrate the CME. Our goal is to find
the best time points to take an observa-
tion for estimating θ2. In this case, the
Fisher information is just a scalar and in

Figure 1 it is shown as a function of both θ2 and time. The different colors correspond
to different values of I(t, θ2) (see colorbar). The time point for the maximum expected
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Fig. 2. Approximated determinant of the expected FIM over time for the crystallization
example.

information is t∗ = 20.64. Note that in case of one unknown parameter the extension
to the R time points optimization problem is straightforward because of the linearity of
(9). The solution simply consists of R replications of t∗.

Next, we assume that both, θ1 and θ2 are unknown parameters of interest. Then the
Fisher information is a 2× 2 matrix. In Figure 2(a) the evolution of the determinant of
the expected FIM is shown for θ1 ∼ U(0.05, 0.5) and θ2 ∼ U(0.01, 0.1). From the plot
it is clear that if there is only one observation possible this has to be done quite early in
time. Indeed, our optimal design scheme returns that the optimal time point to take an
observation is at t = 4.625 assuming that both parameters have to be estimated.

Now, we consider the case that we are able to take a second measurement t2 ≥ t1.
The determinant of the average FIM is shown in Figure 2(b). The plot suggests that one
obtains the maximum information for the estimation of both parameters if both observa-
tions take place early in the experiment. Our optimization procedure returned the opti-
mal time points t1 = t2 = 4.625. One notes that combining an early observation with a
later seems also a good choice. On the other hand, taking two late observations provides
significantly less information leading possibly to parameter identifiability problems.

Generalizing the above observations for the case of R time points we verify from
our experiments untilR = 5 that for this particular model and this choice of parameters
the optimal experiment persistently consists of taking as many as possible observations
at the same early time point. We expect the same to hold for any R ≥ 2.

5.2 Exclusive Switch

The exclusive switch is a gene regulatory network that consists of two genes with a
common promotor region as shown in Figure 3. The system involves five chemical
species DNA, P1, P2, DNA.P1, DNA.P2. At each time point the system can be in
one of the following three configurations: a) The promotor region is free, b) P1 binds
to the promotor region or c) P2 binds to the promotor region. Each of the two gene
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Fig. 4. Approximated determinant of the expected FIM for the exclusive switch example
(case 1).

products P1 and P2 inhibits the expression of the other product if a molecule is bound
to the promotor region. More precisely, in configuration a) (promotor region is free),
molecules of both types P1 and P2 are produced. If a molecule of type P1(P2) is bound
to the promotor region (case b) and c)), only molecules of type P1(P2) are produced,
respectively. The chemical reactions with the corresponding constant rates are shown
below for j = {1, 2}.

DNA
λj−→ DNA+ Pj production

Pj
δj−→ ∅ degradation

DNA+ Pj
βj−→ DNA.Pj binding

DNA.Pj
νj−→ DNA+ Pj unbinding

DNA.Pj
λj−→ DNA.Pj + Pj bound production

Depending on the chosen parameters, the prob-

Fig. 3. Exclusive Switch Network

ability distribution of the exclusive switch is bistable,
i.e. most of the probability mass concentrates on
two distinct regions of the state space. In particu-
lar, if binding to the promotor is likely, then these
two regions correspond to the two configurations
b) and c) where either the production of P1 or the
production of P2 is inhibited.

For the purpose of our experiments we fixed
the initial state of the system such that no proteins are present in the system and one
DNA molecule with a free promotor region. We set up optimal experiments for the fol-
lowing case: The unknown parameters are the production and the degradation constants
of P1, λ1 and δ1 respectively, while the rest of the parameter values are known.
We assume that for j = {1, 2}



λ1 ∼ U(0.01, 0.1), δ1 ∼ U(0.0001, 0.001),
λ2 = 0.05, δ2 = 0.0005, βj = 0.001 and νj = 0.008.

In Figure 4(a) the information is shown over time. From the plot it is evident that in
the case of a single observation time point one should take the measurement as late as
possible in the interval [0, 50], if we restrict until time t = 50. This most probably arises
from the fact that the chosen binding rates, β1, β2 are rather small, i.e., binding to the
promotor is not so likely and there is a delay until the binding influences the dynamics
of production and degradation of the corresponding proteins.

In Figure 4(b) the information of a possible experimental setup for two time points
is being presented. From the plot we can observe that the most informative experiment,
now, is given by two different time points. The second measurement is at 50 time units,
as previously, but the first one should be taken at 16.75. Intuitively, this could mean
that for estimating multiple parameters of this model we need to observe the process at
more than one time points, if possible.

Setting up optimal experiments for R time points we observe, as in the first model,
a replication of the optimal p time points, where p is the number of the unknown param-
eters. For R = 3 and R = 4 we get (t1, t2, t3) = (16.75, 50, 50) and (t1, t2, t3, t4) =
(16.75, 16.75, 50, 50), respectively.

6 Discussion and Future Work

Given a stochastic model of a chemical reaction network, we computed the Fisher in-
formation of different experimental designs and determined optimal observation times.
The optimality criterion that we considered was the determinant of the expected Fisher
information where the expectation was taken w.r.t. some prior distribution over the un-
known parameters.

Our experimental results give rise to the conjecture that the n optimal time points for
a system with p unknown parameters are equal replications of the p optimal time points.
E.g. if we have two unknown parameters, but, say, four possible observation time points,
we get only two distinct times at which the Fisher information becomes maximal w.r.t.
the time points. A similar result has been proven by Box for deterministic chemical
kinetics [3]. We conjecture that his result carries over to the stochastic setting. This
would make experiment design for stochastic chemical kinetics a much less expensive
procedure since the dimension of the optimization search space reduces to the number
of unknown parameters.

Other plans for future work include that we consider equidistant observation time
points and optimize the time interval between two successive observations. We also
plan to consider other ways of approximating the FIM, e.g. by using moment closure
techniques and exploiting the information of a sufficiently large number of moments.
Additionally, we will work on the case of dependent observations and develop an itera-
tive procedure where after each optimization step experimental results become available
and the next optimal observation time is computed given these results.
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