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AbstractFrom contactless payments to remote car unlocking, many applications are vulnerable to relay attacks. Distance bound-
ing protocols are the main practical countermeasure against these attacks. In this paper, we present a formal analysis of SKI,
which recently emerged as the first family of lightweight and provably secure distance bounding protocols. More precisely, we
explicate a general formalism for distance-bounding protocols, which lead to this practical and provably secure class of proto-
cols (and it could lead to others). We prove that SKI and its variants are provably secure, even under the real-life setting of noisy
communications, against the main types of relay attacks: distance-fraud and generalised versions of mafia- and terrorist-fraud.
To attain resistance to terrorist-fraud, we reinforce the idea of using secret sharing, combined with the new notion of a leakage
scheme. In view of resistance to generalised mafia-frauds (and terrorist-frauds), we present the notion of circular-keying for
pseudorandom functions (PRFs); this notion models the employment of a PRF, with possible linear reuse of the key. We also
identify the need of PRF masking to fix common mistakes in existing security proofs/claims. Finally, we enhance our design to
guarantee resistance to terrorist-fraud in the presence of noise.
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1. Introduction

Cryptography sees many applications in the world of smart-cards, from the more and more sophisti-

cated NFC bankcards to the simpler RFID access cards. But the security protocols implied (e.g., proto-
cols for ATM systems) are vulnerable to relay attacks or to more general forms of man-in-the-middle

attacks. Relay attacks have already been mounted against bankcards [21]. In access control applications,

it is not guaranteed that the card computing the responses to the reader’s challenges is indeed the one
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requiring access [30]. Similarly, car manufacturers use RFID protocols to unlock and even start their

vehicles (see, e.g., [25]). However, these protocols may unfortunately be compromised by relaying [26].

The most interesting cryptographic solution to these threats seems to be based on distance-bounding [21].

In [12], Brands and Chaum introduced distance-bounding (DB) protocols, based on some original

idea by Beth and Desmedt [6]. They are employed so that a prover may demonstrate his proximity to a

verifier as well as authenticate this honest prover to the verifier.1 In the literature covering such protocols,

three main types of possible attacks have been distinguished. The first is distance-fraud, in which a

prover tries to convince the verifier that he is closer than he really is. The second type of attack is mafia-

fraud and involves three entities: an honest prover, an honest verifier, and an adversary. The adversary

communicates with both the prover and the verifier and tries to demonstrate to the verifier that the prover

is in the verifier’s proximity although the prover is in reality far away from the verifier. Finally, the third

type of attack is denoted as terrorist-fraud.2 Here, the adversary has the same goal as in the mafia-fraud

attack, but in this case the prover is dishonest and colludes with the adversary up to the non-disclosure of

essential information, e.g., (parts of) secret keys, that may facilitate later impersonations of this prover.

Ad-hoc countermeasures protecting against one or several such attacks have sometimes been pro-

vided [1]. It has also been claimed [33] that DB protocols in their commonly known form cannot protect

against all three frauds at a time. Unfortunately, these frauds have become even more dangerous through

recent generalisations [18,22]. Nonetheless, DB protocols will most probably soon be implemented by

car manufacturers or bank payment companies in their products, as platforms for such deployments

arise [38]. In these contexts, security proofs and clear, solid security models become of paramount impor-

tance. However, unitary security models and respective compelling security proofs have not yet been for-

mulated with respect to this class of protocols. In the following, we endeavour in overcoming this short-

coming, providing a comprehensive security model for distance-bounding protocols and constructing

practical and provably secure protocols in the model herein.

More precisely, in this paper we provide a formal analysis, for SKI the first family of lightweight and

provably secure distance bounding protocols3 that was initially introduced in [10,11]. We give a detailed

description of the employed formal communication model for distance-bounding protocols. We define

formally what a distance-bounding protocol is and we provide formal definitions for the resistance of a

distance bounding protocol against the main types of attacks: distance-fraud and generalised versions of

mafia- and terrorist-fraud. Furthermore, we describe in detail SKI and its variants. We also provide a

detailed design and security assessment that includes the formal proofs for SKI’s resistance against the

main relay attacks. We should point out here that in papers [10,11] were SKI was initially introduced the

definitions provided were informal while the security proofs were sketched.

1In this paper, we consider authenticated distance-bounding. Namely: protocols where both participants use a pre-established
secret.

2The terms “mafia-fraud” and “terrorist-fraud” were introduced in 1988 by Desmedt [19]. Although confusion-prone, these
are the ones still used in the literature.

3The SKI protocols were first presented at FSE’13. The name “SKI” comes from the first names of the authors: Serge,
Katerina, Ioana.
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2. Related Work & State-of-the-Art

2.1. Distance Bounding – Informal and Semi-formal Approaches

In this section we provide details on the practical requirements (i.e. tolerance to noisy conditions) for

secure distance bounding protocols, review the related work in distance bounding and finally discuss its

connection to location based cryptography.

Tolerance to Noise. Since distance-bounding protocols operate under time-critical constraints and with

rapid-bit exchanges, they are likely to be subject to noise, i.e., to noisy communication channels. So, these

protocols often tolerate a few faulty iterations, in such a way that honest executions would succeed with

high probability. Of course, noisy, rapid-bit exchanges are a reality of applied cryptographic protocols.

However, many research results on DB assume noiseless conditions [1,45,17,13]. In this paper, noise

will be taken into consideration in our security assessments.

DB Protocols and Attacks Amendments. Many DB protocols [32,34,39,46] consist of a data agreement

phase or initialisation phase and a distance-bounding phase. The distance-bounding phase is time-critical

and it normally imposes very fast computation, typically of less than a single clock cycle per round.

(Light travels one meter within about three nanoseconds. So, every bit must be treated on the fly, upon

arrival, with no delay, and there is no part for any time-consuming computation.) Nevertheless, even if

the time-of-flight is critical, some DB protocols are not secure against terrorist-fraud: an attacker can

find ingenious ways to collude with provers, defeating DB; an example of the sort is the terrorist-fraud,

recently shown against the Bussard and Bagga [13,14]. Hancke and Kuhn [29], Munilla and Peinado [35],

Kim and Avoine [33], and Reid et al. [39] proposed follow-ups of each others’ schemes, addressing

either a better protection against terrorist-fraud or mafia-fraud, or a better suitability to practice, or a

more formal description, etc. In general, attempts to construct secure distance-bounding protocols such

as [34,43,46] have been proven flawed [37,36]. In fact, Kim et al. state [33] that there is no DB protocol,

which has one-bit challenges/responses per iteration in the distance-bounding phase, resisting all three

attacks (i.e., distance-, mafia-, and terrorist-frauds) with a significant probability. In [11,10, Table 1],

the popular distance-bounding protocols and their vulnerabilities as best-known up to that point (2013)

are reported. That table shows a dire situation, so the question of provable security against all frauds

mounted has been standing prominently. Since, two (classes of) protocols (one class in [10] and one

protocol in [24]) which are provably secure have been published.

Moreover, more general attacks have been recently described. In [18], Cremers et al. described

distance-hijacking as an extension of distance-fraud, yet as an attack that is close to terrorist-fraud at

the same time; the fraud involves one dishonest, far-away prover and several honest provers, without the

latter colluding with the former. Impersonation (a type of man-in-the-middle) is presented in [22]. In the

current work, our threat model also incorporates these latter, powerful attacks.

In [2], a targeted protocol-analysis is carried on the TDB protocol by Avoine et al. They especially

address the protection against terrorist-fraud for the Hancke and Kuhn protocol, using secret sharing

schemes. However, [2] does not state the sound, (necessary and) sufficient assumptions for combating

terrorist-fraud. This will be amended and taken further in this paper; we generalise the underlying idea

of using a secret sharing scheme [2] and introduce a taxonomy of security-enforcing conditions (some of

which are linked to secret sharing).

Recently, Hancke [28] observed that terrorist-frauds could also be mounted, by simply abusing the

aforementioned, noise-tolerance property required from DB. Basically, a malicious prover could help an
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adversary to answer most challenges and not leak to this adversary the secret key but only a noisy version

of the secret key. Also, this leaked information is such that it does not give the adversary any significant

advantage in later attacks onto the scheme, i.e., the coerced prover mounts a valid terrorist-fraud. Similar

to TDB and the protocols herein, there is the recent protocol in [49]; however, unlike the protocols herein,

the protocol in [49] does not resist these new terrorist-frauds in noisy conditions by Hancke [28]. As a

matter of fact, all but two protocols allegedly resisting the classical terrorist-frauds as they were known

before Hancke’s observation would now collapse under terrorist-frauds executed in this new scenario of

Hancke’s (at least, cnf. to [11,10, Table 1]). The protocols left standing in front of this attack are the SKI

protocols [11,10] to be studied herein and the Fischlin-Onete protocol [24].

Position-based cryptography & distance bounding. Position-based cryptography (PBC) [15] becomes

possible through secure positioning (SP), which involves a set of verifiers ensuring that a given prover is

indeed at some claimed position. In other words, in PBC a verifier within the network not only estimates

the distance to another device but is also helped by, e.g., trusted base-stations that offer position-data for

coordinate-triangulation in his final decisions. In SP, this assistance by, e.g., base-stations can happen

repeatedly, to defend against malicious behaviour. This is not the case in DB, where the verifier is on

his own, with his much simpler measurements at hand. However, distance-bounding protocols could

potentially be used as building blocks for SP.

The model needed to achieve PBC bears similarities with the one to follow, yet distance-bounding is

a weaker requirement than secure positioning. DB informally implies one prover proving to one verifier

only that the former is close enough to the latter, using the time-of-flight of their exchanges. Thus, while

the “geometry” needed for achieving distance-bounding is much simpler, the notion of time is of greater

importance for distance-bounding.

2.2. State-of-the-art: Towards Provable DB Security

DB Formalisations. In [1], Avoine et al. give a complete but rather informal model for distance-

bounding. Herein, we will refer to this line as to the ABKLM model. They define distance-bounding as

the combination of authentication and distance-checking. They further carry on a tentative analysis of

the Munilla-Peinado protocol [35]. As we will further discuss below, [1] does not clearly state the exact

assumptions needed on the underlying primitives in order to achieve the alleged security.

So far, the most promising model for distance-bounding was presented recently by Dürholz et al.

in [22]. We refer to it as the DFKO model. This model does not provide a clear communication model

and its notions of time or distance are only implicit. It requires to specify protocols by explicitly distin-

guishing a lazy phase and a time-critical one. The DFKO model formalises the three classical types of

frauds and an extra notion of impersonation fraud. The attackers are very specific, presented in terms

of protocol session interleaving. Maybe due to this specificity or to their requirements which may be

too strict, the model is too strong, fact admitted by its authors in [23]. In this model, certain insecurities

(impersonation or terrorist-fraud) are hard-to-defend claims, leading to no convincing attack. Fischlin

and Onete later proposed a secure protocol, proven secure in a new, clearer, game-based security model

advanced at the same time. This recent protocol is discussed and compared with SKI in [48]; therein, it

was observed that the resistance of [24] to terrorist fraud lowered the resistance to mafia fraud.

Security shortcomings in DB. Practical DB should also be attack-proof. But, from the above, one can

conclude that provably secure DB is still in the making. When security is rarely attained/proved against

one fraud, another resistance is diminished [48]. But, more seriously, some of the literature on distance-
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bounding uses either unsupported claims of the form “if f is a PRF, then this protocol is secure against...”.

In fact, in the line of Boureanu et al. [7], it was proven, by the technique of PRF programming, that

if PRFs exist, then these results are incorrect. When employed with some specific PRFs, the TDB [2]

protocol, an enhancement of the Kim-Avoine protocol [22], Hancke and Kuhn’s [29] protocol, Avoine

and Tchamkerten’s [3], Reid’s et al. [39] protocol, and the Swiss-Knife [34] protocol, they were all shown

to be indeed vulnerable to distance-fraud and/or man-in-the-middle attacks. The DB security claims

recently disproven by Boureanu et al. [7] seem to come from a mis-use of PRF techniques: replacing a

PRF (in security arguments) by a random function at a place where the adversary has access to the PRF

key or at a place where the PRF key is simultaneously used at other places in the protocol. In a parallel

line, [34] proved that many existing distance-bounding protocols are also subject to mafia-fraud. And,

in [4], it is revealed that public-key techniques do not necessarily protect against terrorist-fraud. Also

therein, a family of protocols is exposed to generalised mafia-fraud attacks. Finally, Hancke [28] shows

that noisy communications and tolerance to them must also be addressed in the security analysis. So, the

technicalities of the model to be presented herein, to assure a solid provable security framework, are of

utmost importance.

2.3. Contributions

In the context of the shortcomings above, our main contribution is three-fold:

1. We present a formalism for distance-bounding, which includes a sound communication and adver-

sarial model. In these latter models, we incorporate the notion of time-of-flight for distance-based

communication.4 We further formalise security against distance-fraud, man-in-the-middle (MiM)

generalising mafia-frauds, and an enhanced version of terrorist-fraud that we call collusion-fraud.

As practice dictates, our formalisations take noisy communications into account.

2. Mainly in the context of security against generalised mafia-frauds (when TF-resistance is also en-

forced), we introduce the concept of circular-keying security to extend the security of a pseudo-

random function (PRF) f to its possible uses in maps of the form y 7→ L(x)+ fx(y), for a secret

key x and a transformation L. We also introduce a leakage scheme, to resist to collusion frauds,

and a PRF masking technique to address distance-fraud issues. These formal mechanisms come to

counteract mistakes like those in proofs based on PRF-constructions, errors of the kind exposed

by Boureanu et al. in [7], and by Hancke in [28].

3. We analyse variants of the SKI protocol [11,10], leading us to a provably secure, practical class

of distance-bounding protocols. On the way to this, we formalise the DB-driven requirements of

the SKI protocols’ components. In addition to enjoying provable security, the SKI protocols offer

competitive performance and practical security. Especially in terms of suitability to practice, SKI

is one of the two DB protocols that resist terrorist-frauds in the presence of noise.

Note: The SKI contribution was first presented at FSE’13 [11] and then at LIGHTSEC’13 [10]. On

these both occasions, the protocols were presented without details on a formal model and without their

corresponding security proofs. For instance, to justify some security bounds on the classical DB threats,

the authors used reasoning related to the best conceivable attacks, but no provable security argument

was included. Recently, at ISC’13 [9], a partial security model for SKI and partially developed security

4Since every send/receive action in our model is subject to a maximal transmission speed, there is no distinction between a
lazy phase and a time-critical one as in the DFKO model [22,23].
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proofs were included. In turn, this present article comes with the full, formal security model, full security

proofs for all the SKI protocols, as well as all the details on the tight, provable bounds of SKI’s security.

With respect to a somewhat similar manuscript [8], we add that the present article contains significant

improvements and updates, both on the proofs and on the tightness of the security bounds. We put together

and also complete all the pieces needed for the full picture of SKI and its provable security; in this way,

this is also the first complete document to provide a recipe on how to design provably secure DB and/or

how to (dis)prove the security of existing ones.

3. Model for Distance-Bounding Protocols

We consider a multiparty setting where each participant U is modelled by a polynomially bounded

interactive Turing machine (ITM), has a location locU , and where communication messages from a loca-

tion to another take some time, depending on the distance to travel. Some participants may be corrupted.

Some are set up with a pre-shared key. All algorithms are bounded to probabilistic polynomial-time (ppt).

As aforementioned, we model a generic two-party communication protocol by the interactive system

run by ITMs [27]; we now fix the notations.5 Consider two honest participants P and V , each running

a predefined algorithm denoting its side of the interaction to take place. Along standard lines, a general

communication is formalised via an experiment, generically denoted exp=(P(x;rP)←→V (y;rV )), where

r〈·〉 are the random coins of the participants and x is an input of P and y is the input of V . In some cases,

x = y denoting a long-term shared secret. The experiment above can be “enlarged” with an adversary A0

who interferes in the communication, up to his abilities (which will be described below). This “enlarge-

ment” is hereby denoted as (P(x;rP)←→ A0(rA )←→V (y;rV )). At the end of each experiment, partici-

pant V has an output, denoted, OutV . The view of a participant on an experiment is the collection of all its

initial inputs (including coins) and his incoming messages, i.e., the view of A0 above subsumes his “com-

munication” with P and his “communication” with V . In the notation (P(. . .)←→A(. . .)←→V (. . .)), we

may group several participants under the same symbolic name; e.g., we may group several (colluding)

malicious participants encapsulated under a single A denomination.

Bound on the Distance. To our modelling, we add a fixed integer constant B denoting the distance-

bound. It defines what it means to be “close-enough” to a verifier V . Hence, the output of a verifier is

1 if the responses authenticate the prover and his estimated6 location is not further than B in the metric

space.

3.1. The Crux of the DB model

The crux of proving the security of DB protocols lies in Lemma 3.1, stated below.

Informal Formulation of Lemma 3.1. By Lemma 3.1 below, we informally mean the following: if

V sends a challenge c, then the answer r from a close-by participant A is locally computed by A it-

self. In other words, to compute r, the close-by A cannot get any online, real-time help dependent on

the challenge c, not from any far-away participant. This is logical: getting distant help dependent on c

5We use standard notations for ITMs. Namely, random coins are separated from other inputs by a semicolon or omitted for
simplicity. Inputs consist of the initial input and the variable number of incoming messages.

6This estimation is based on round-trip time, i.e., each response ought to be received before V has 2B standby actions.
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Figure 1. Adversarial Communication Flow Over Time

would mean that this challenge c travelled to that distant location, which in turn would mean failing the

time/distance bound.

In more details, in computing such an answer, A would use two parts: 1). its own view gathered up

to the arrival of c inclusively; 2). possible material that A may receive before A sends r out; all such

material must be independent from c and from all the messages sent to A thereafter, even if it may come

from far-away participants B .

The Use of Lemma 3.1. We will use this lemma every time when a too-long-distance has an implication

on the data-flow. We believe such a clear-cut formalisation eases the proofs. For instance, in the DFKO

model [22], the implicitness of timed communications requires an effective distinction between a lazy

and a time-critical phase in the runs of the protocols, which may in turn hinder the construction of clear

security proofs. The DFKO model also requires to define exhaustively which data flows are allowed (the

tainted sessions) for each security notion.

Another way to go about this would have been to introduce a full model in which such a lemma holds;

in fact, we do so in Appendix A. Or, yet another way would have been to simply state the text of the

lemma and take it axiomatically. Instead, we took the approach of enunciating it formally and proving it.

Lemma 3.1. Assume an experiment B(z;rB)↔ A(u;rA )↔V (y;rV ) in which the verifier V plays a two-

round protocol where he broadcasts a message c, then V receives a response r, and V accepts if r took at

most time 2B to arrive. In the experiment, A is the set of all participants which are within a distance up

to B to V , and B is the set of all other participants. For each user U, we consider his partial view ViewU

which includes all his input until just before the time when U can see the broadcast message c. We say

that a message by U is independent from c if it is computed by U before this time (equivalently: if it is

the result of applying U on ViewU , or a prefix of it). There exists an algorithm A and a list w of messages

independent from c such that if V accepts, then r = A(ViewA ,c,w), where ViewA is the list of all ViewA,

A ∈ A .

w.r.t. the model in Appendix A. We first assume a single participant in A . Fig. 1 illustrates the communi-

cation flow. Let (p;rA ) be the partial view such that r = A(p;rA ). Clearly, p can be written p = (v,c,w)
with (v;rA ) =ViewA and a list w of messages from B participants. If w includes a message m not inde-

pendent from c, there is time for c to arrive to B , to compute m, sent it to A , compute r and sent it to V .

Due to the distance between B and V , this is not the case. So, all messages in w are independent from c.

This means that, in due time, A cannot get any help from B to answer to c.
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With several participants in A , there is one A ∈ A for which r = A(vA,c,wA;rA) and messages in wA

are either A messages, and can be written the same (recursively), or B messages which are independent

from c.

3.2. Formal Distance-Bounding

When modelling distance-bounding protocols, we consider provers, denoted by P and verifiers, de-

noted by V . We let A denote the adversary and P∗ generally denote dishonest provers. We assume that

provers have no output and verifiers output one bit OutV denoting acceptance, i.e. OutV = 1, or rejection,

i.e., OutV = 0 (e.g., privileges are granted or not). We proceed with the definition of a DB protocol.

Definition 3.1 (Distance-Bounding Protocols). A distance-bounding (DB) protocol is defined by a tuple

(Gen,P,V,B), where: 1. Gen is a randomised, key-generation algorithm such that (x,y) is the output7 of

Gen(1s;rk), where rk are the random coins of Gen and s is a security parameter; 2. P(x;rP) is a ppt. ITM

running the algorithm of the prover with input x and random input rP; 3. V (y;rV ) is a ppt. ITM running

the algorithm of the verifier with input y, and random input rV ; 4. B is a distance-bound. They must be

such that the following two facts hold:

– Termination: (∀s)(∀R)(∀rk,rV )(∀locV ) if (·,y)← Gen(1s;rk) and (R←→V (y;rV )) model the exe-

cution, it is the case that V halts in Poly(s) computational steps, where R is any set of (unbounded)

algorithms;8

– p-Completeness: (∀s) (∀locV , locP such that d(locV , locP)≤ B) we have

Pr
rk,rP,rV

[

OutV = 1 :
(x,y)← Gen(1s;rk)
P(x;rP)←→V (y;rV )

]

≥ p.

Throughout, “Prr [event : experiment]” denotes the probability that an event takes place after the ex-

periment has happened, taken on the set of random coins r underlying the experiment. The random vari-

able associated to the event is defined via the experiment. Hence, we are not referring here to two events

conditioning one another, but just to an experiment leading to the description of a random variable.

DB Concurrency. Our model implicitly assumes concurrency involving participants not sharing the

secret inputs amongst them. In security definitions, these extra participants are implicitly universally

quantified. When several provers using the same input x appear in experiments, they will be explicitly

mentioned. I.e., several instances of the same participant at different location and/or time.

3.3. DB Threats

The security requirements of DB protocols, i.e., the resistance to the different DB threats, are for-

malised in the definitions to follow. The parameters used therein, α,β,γ,γ are real numbers in the interval

[0,1].

7We denote this output as (x,y)←Gen(1s;rk). For all protocols in this paper, there is just one common input, i.e., we assume
x = y.

8In the above, only the termination of V is of interest, since it is only the verifier who has a meaningful output.
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3.3.1. (Generalised) Distance-Fraud

Definition 3.2 (α-resistance to distance-fraud). (∀s) (∀P∗) (∀locV such that d(locV , locP∗) > B) (∀rk),
we have

Pr
rV

[

OutV = 1 :
(x,y)← Gen(1s;rk)
P∗(x)←→V (y;rV )

]

≤ α

where P∗ is any (unbounded) dishonest prover. In a concurrent setting, we implicitly allow a polynomially

bounded number of honest P(x′) and V (y′) close to V (y) with independent (x′,y′).

Informal Explanation of Def. 3.2. The above definition states, in our modelling, the notion of resisting

to distance-fraud: i.e., a participant P∗ that is situated somewhere beyond the distance-bound should not

succeed in making the verifier accept but with a very low probability hereby denoted by α.

Relation with Other Formalisms. In a 2-party setting, the above definition corresponds to the one of

the ABKLM model [1]. When α is negligible, our security notion becomes equivalent to the one in the

DFKO model [22].

Relation with Distance Hijacking [18]. Due to our concurrent setting, Def. 3.2 captures the notion of

distance hijacking in [18], i.e., an experiment in which a dishonest far-away prover P∗ may use several

provers to get authenticated as one, honest P that is close to the verifier.

3.3.2. (Generalised) Mafia-Fraud

Definition 3.3 (β-resistance to MiM). (∀s)(∀m, ℓ,z) polynomially bounded, (∀A1,A2) polynomially

bounded, for all locations such that d(locPj
, locV )> B, where j ∈ {m+1, . . . , ℓ}, we have

Pr



OutV = 1 :

(x,y)← Gen(1s)
P1(x), . . . ,Pm(x)←→ A1←→V1(y), . . . ,Vz(y)
Pm+1(x), . . . ,Pℓ(x)←→ A2(ViewA1

)←→V (y)



≤ β

over all random coins, where ViewA1
is the final view of A1. In a concurrent setting, we implicitly allow

a polynomially bounded number of P(x′), P∗(x′), and V (y′) with independent (x′,y′), anywhere.

Informal Explanation of Def. 3.3. In man-in-the-middle (MiM) attacks or generalised mafia-frauds as

above, we consider that during a learning phase, the attacker interacts, in parallel, with m ≥ 0 provers

and z≥ 0 verifiers. Then —in the attack phase— the adversary tries to win in an experiment in front of a

verifier which is far-away from ℓ−m≥ 0 provers. (Using the notation A1 for the learning phase and A2

for the attack phase is just to show that the adversarial behaviours in these phases might be different. As

the reader can notice, the attacker A2 shares the view/knowledge of A1.)

By the learning phase, Def. 3.3 models practical threats. For instance, an attacker would have cloned

several tags and would make them interact with several readers with which they are registered. From

such a multi-party communication, the attacker can get potentially more benefits, in a shorter period of
time. Of course, an attacker can in fact set up this learning phase as he pleases, to increase his gains. So,

we can even imagine that he places prover-tags close to verifier-readers, even if being an active adversary
between two neighbouring P and V is technically more challenging than interfering between two far-away

parties. E.g., in this scenario, the adversary could interfere with the initial frequency synchronisation

phase so that the P↔ A and A ↔ V channels would become different (e.g., using different frequency
bands) and P and V would not even be aware of the existence of the other channel.
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In any case, note that the learning phase is not obligatory in our setting (m and z can be 0). Indeed, we

further consider mafia-frauds as a specialisation of the above, where no learning phase is present. But, if
and when a non-trivial learning phase is present, it renders a stronger threat model and proven resistance
to such attacks entails better security.

Relations with Mafia-fraud and Other Frauds. The classical notion of mafia-fraud (the one from the
ABKLM model [1]) corresponds to m = z = 0 (i.e., no learning phase), and ℓ= 1.

The classical notion of impersonation for identification schemes corresponds to ℓ= m (i.e., there is no

prover in the attack phase).
Relation with Other Formalisms. The DFKO model [22] of mafia-fraud already includes the above

general extension since concurrent settings are implicit in the DFKO model.

Non-narrow Attackers. We will now describe a special type of (MiM) attackers, following a notion
introduced in [47]. Thereby, a (MiM) attacker is non-narrow if he can learn the bit that the verifier outputs.

A way in which this can be trivially formalised is by adding a return channel to the communication, here
denoting that the verifier V sends OutV as a final message, just before V halts. In real life this is the case,

e.g., there is a LED on a door turning green denoting “access-granted” and turning red otherwise.
It is pertinent to formalise such an attacker: intruders learn obviously more information by looking

also at whether the run was successful or not. Indeed, in the generalised MF presented in [4], it is this

sort of return channel that facilitates the attacks. To avoid defining a new class of attacks (as done in the
literature [47]), we define this as a property of the protocol.

Definition 3.4 (Non-narrow MiM). A distance-bounding protocol is called non-narrow if it terminates

by V sending OutV to P as his final message.

3.3.3. (Generalised) Terrorist-Fraud

Definition 3.5 ((γ,γ′)-resistance to collusion-fraud). (∀s)(∀P∗) (∀locV0
such that d(locV0

, locP∗) > B)
(∀A

CF ppt.) such that

Pr

[

OutV0
= 1 :

(x,y)← Gen(1s)
P∗(x)←→ A

CF←→V0(y)

]

≥ γ

over all random coins, there exists a (kind of)9 MiM attack m, ℓ,z,A1,A2,Pi,Pj,Vi′ using P and P∗ in the

learning phase, such that

Pr



OutV = 1 :

(x,y)← Gen(1s)

P
(∗)
1 (x), . . . ,P

(∗)
m (x)←→ A1←→V1(y), . . . ,Vz(y)

Pm+1(x), . . . ,Pℓ(x)←→ A2(ViewA1
)←→V (y)



≥ γ′

where P∗ is any (unbounded) dishonest prover and P(∗) runs either P or P∗. Following the MiM require-

ments, d(locPj
, locV ) > B, for all j ∈ {m+ 1, ℓ}. In a concurrent setting, we implicitly allow a polyno-

mially bounded number of P(x′), P∗(x′), and V (y′) with independent (x′,y′), but no honest participant

close to V0.

9Def. 3.3 defines MiM attacks as using an honest P(x). Here, we deviate a bit by introducing P∗(x) as well.
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Informal Explanation of Def. 3.5. Definition 3.5 expresses the following. Consider a prover P∗, situated

far-away from V0, who can help an adversary A
CF located closer to V0 pass a distance-bounding protocol.

Then, a malicious adversary denoted as (A1,A2) could run a successful MiM attack10, “playing" with

possibly multiple instances of P∗(x) in the learning phase. In other words, a dishonest prover P∗ cannot

successfully collude with A
CF without leaking some private information.

Note that collusion frauds are non-falsifiable. However, this is inherent to terrorist frauds.

Relation with Terrorist-fraud. Collusion-frauds are more general than terrorist-frauds. The classical

notion of terrorist-fraud corresponds to a specialised case of Def. 3.5: the one where m = z = ℓ= 1 and

A1 runs just A
CF in the learning phase. Put simply, in the classical terrorist-fraud, A

CF gets information

to directly impersonate the prover, whereas in Def. 3.5 we formalise the means to get this information via

a learning phase.

Relation with Other Formalisms. In the ABKLM or DFKO models, only the specialised case of collu-

sion frauds mentioned above, i.e., the traditional terrorist-fraud, is considered. In the DFKO model [22],

the formalisation of terrorist-fraud further considers pA = Pr[OutV0
= 1], and pS = Pr[OutV = 1|OutV0

=
1]. Following some results from [23], a protocol resists to terrorist-fraud if for every A

CF there is a A2

such that pA ≤ pS. However, we think that illustrating some A
CF such that pA is negligible but for no

A2 we would have pA ≤ pS [23] is not a strong enough argument for insecurity. It rather shows that the

definition from [22] is too strong. In our approach, we decided to characterise resistance herein through

a pair of probabilities (γ,γ′).

4. Practical and Secure Distance-Bounding Protocols

4.1. SKI: DESCRIPTION AND COMPLETENESS

At a high level, the protocol schema SKI is presented in Fig. 2. We use the parameters (s,q,n,k, t, t ′),
where s is the security parameter. The SKI protocols are built using a PRF (pseudorandom function),

denoted ( fx)x∈GF(q)s , with q being a small power of prime. In the concrete examples in the main body of

the paper, we employ q= 2, i.e., x, a are simply bitstrings as it is most practical. In the DB phase, n rounds

are used, with n∈Ω(s). Then, SKI uses the value fx(NP,NV ,L)∈GF(q)t ′n, with nonces NP,NV ∈ {0,1}
k

and a mask M ∈GF(q)t ′n, where k∈Ω(s). In the main proposal, t ′= 2 is used, i.e., to keep the lightweight

character. The element a = (a1, . . . ,an) with ai ∈ GF(q)t ′ is established by V in the initialisation phase,

and it is sent encrypted as M := a+ fx(NP,NV ,L), with M ∈GF(q)t ′n, where + denotes the GF(q)-vector
addition. Similarly, V selects a random linear transformation L from a set11

L which is specified by the

SKI protocol instance and the parties compute x′ = L(x). Further, c = (c1, . . . ,cn) is the challenge-vector

with ci ∈ {1, . . . , t}, ri := F(ci,ai,x
′
i) is the i-th response to the i-th challenge ci, with i ∈ {1, . . . ,n}, ri ∈

GF(q) and F as specified below.12 In other concrete proposals, t = 3, or t = 2 for the lighter version, are
used. The protocol ends with a message OutV denoting the output of the verifier (i.e., the success/failure

of the protocol), to capture the notion of MiM attackers on a non-narrow protocol.

SKI Instances. We first depict SKIpro through Fig. 3.

10In practice, A
MiM and A

CF represent the same adversarial party; we simply differentiate to show that different
algorithms/attack-strategies may be involved.

11The L set will be later introduced as a leakage scheme; its purpose is to leak L(x) in the case of a collusion-fraud/terrorist-
fraud.

12This will be called the F-scheme and it will incorporate requirements towards (generalised) DF-, TF- and MF-resistance.
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Verifier V Prover P

x;rV x ∈U GF(q)s x;rP

Initialisation phase

NP←−−−−−−−−−−−−−−− Use rP to generate a nonce NP ∈ {0,1}
k

Use rV to generate a ∈ GF(q)t′n,

a transformation L ∈ L

and a nonce NV ∈ {0,1}
k M,L,NV−−−−−−−−−−−−−−−→

do M := a+ fx(NP,NV ,L) do a := M− fx(NP,NV ,L);
do x′ := L(x), with x′ ∈ GF(q)n do x′ = L(x), with x′ ∈GF(q)n

Distance-bounding phase

for i = 1 to n

Use rV to generate ci ∈ {1, . . . , t}

Start Clock
ci−−−−−−−−−−−−−−−→ if ci /∈ {1, . . . , t}, halt

Stop Clock
ri←−−−−−−−−−−−−−−− do ri := F(ci,ai,x

′
i)

verify the responses and that clocked-rounds≤ 2B for at least τ iterations
OutV−−−−−−−−−−−−−−−→

Figure 2. The SKI schema of Distance-Bounding Protocols

In fact, in Boureanu et al. [11,10], several variants of SKI were proposed. We now concentrate on two

variants of SKI:

– SKIpro with q = 2, t ′ = 2, t = 3, with the response-function

F(1,ai,x
′
i) = (ai)1 F(2,ai,x

′
i) = (ai)2 F(3,ai,x

′
i) = x′i +(ai)1 +(ai)2,

where (ai) j denotes the jth bit of ai, with the transforms Lµ defined each from a vector µ ∈GF(q)s

by

Lµ(x) = (µ · x, . . . ,µ · x)

i.e., n repetitions of the same bit µ · x, the dot product of µ and x over GF(2).
– SKIlite with q = 2, t ′ = 2, t = 2, with the response-function

F(1,ai,x
′
i) = (ai)1 F(2,ai,x

′
i) = (ai)2,

with the transform-set L = { /0}.

Namely, note that SKIlite never uses the ci = 3 challenge, i.e., it never uses the part x′ having to do

directly with the secret key x in the DB responses. Each SKIpro session uses a transform Lµ on x such
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Verifier V Prover P

x;rV x ∈U {0,1}
s x;rP

Initialisation phase

NP←−−−−−−−−−−−−−−− Use rP to generate a nonce NP ∈ {0,1}
k

Use rV to generate a ∈ {0,1}2n,

µ ∈ {0,1}s

and a nonce NV ∈ {0,1}
k

M,Lµ,NV
−−−−−−−−−−−−−−−→

do M := a⊕ fx(NP,NV ,Lµ) do a := M⊕ fx(NP,NV ,Lµ);
do x′ := Lµ(x), with x′ ∈ {0,1}n do x′ = Lµ(x), with x′ ∈ {0,1}n

with Lµ(x) = (µ · x, . . . ,µ · x)

Distance-bounding phase

for i = 1 to n

Use rV to generate ci ∈ {1,2,3}

Start Clock
ci−−−−−−−−−−−−−−−→ if ci /∈ {1,2,3}, halt

Stop Clock
ri←−−−−−−−−−−−−−−− do ri := F(ci,ai,x

′
i),

where F(1,ai,x
′
i) = (ai)1,

F(2,ai,x
′
i) = (ai)2,

F(3,ai,x
′
i) = x′i⊕ (ai)1⊕ (ai)2.

verify the responses and that clocked-rounds≤ 2B for at least τ iterations
OutV−−−−−−−−−−−−−−−→

Figure 3. The SKIpro Distance-Bounding Protocol (q = 2, t = 3, t ′ = 2)

that on x′ all coordinates are set to the scalar product between µ and x. Since SKIlite never uses x′, L can

be left empty.

We note that both instances are efficient. Indeed, we could precompute the table of F(·,ai,x
′
i) and just

do a table lookup to compute ri from ci. For SKIpro, this can be done with a circuit of only 7 NAND

gates and depth 4. For SKIlite, 3 NAND gates and a depth of 2 are enough. The heavy computation lies

in the fx evaluation which occurs in a phase which is not time-critical. In practice, any reasonable PRF

suffices as it can satisfy the circular-keying condition to be stated below.

However, in our design, we need the reuse of x for protection against terrorist-fraud and/or collusion-

fraud. Along these lines, the SKIlite protocols do not assume circular-keying security (as defined below),

but the SKIpro do.

In Appendix B, we consider other variants of SKI with different F-schemes (using, e.g., two-bit re-

sponses) which we still deem very practical.

SKI Completeness (in Noisy Communications). We would like to investigate the suitability of the

selected parameters. More precisely, we verify for which parameters, SKI is in line with Definition 3.1,

i.e., it definitely terminates, but the completeness bound can be “tuned”.
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Each (ci,ri) exchange is time-critical, so it is subject to errors. To address this, we introduce the

probability pnoise of one response being erroneous (à la Hancke-Kuhn [29]). Then, the SKI protocol

specifies that the verifier accepts only if the number of correct answers is at least τ, where τ is an extra

parameter. The probability that at least τ responses out of n are correct is clearly given by:

B(n,τ,1− pnoise) =
n

∑
i=τ

(n

i

)

(1− pnoise)
i pn−i

noise

It is natural to choose τ (and other parameters) such that we operate with correct DB protocols, cnf.

with Definition 3.1. I.e., the protocol is complete: honest communications succeed with high probability.

Lemma 4.1. Let ε > 0. For τ≤ (1− pnoise− ε)n, the SKI protocols are (1− e−2ε2n)-complete.

Proof. Due to the the Chernoff-Hoeffding bound [16,31], τ ≤ (1− pnoise − ε)n implies B(n,τ,1−

pnoise)≥ 1− e−2ε2n. According to Definition 3.1, this makes the SKI protocols (1− e−2ε2n)-complete.

In practice, we may use a constant pnoise (i.e., hard-coded in the protocol implementation). This also

entails employing τ as some parameter which is linear in terms of n. A detailed analysis of the optimal

selection of this threshold τ is provided in [20].

4.2. SKI: SECURITY-DRIVEN DESIGN & SECURITY ASSESSMENT

In this subsection, we discuss the design choices that we made in order to render the instances of SKI

provably secure.

PRF masking. Importantly, SKI applies a random mask M on the output of fx to fix the problems

raised in Boureanu et al. [7]. We call this PRF masking.

We introduce PRF masking to protect against the class of attacks in [7]. I.e., Without PRF masking,

M is not used (or equivalently, M is always set to 0). Then we could construct [7] a PRF such that, e.g.,

for all x and NV , the value of fx(x,NV ,L) is such that F(ci,ai,x
′
i) does not depend on ci. In this way, a

malicious prover could set, e.g., NP = x and predict the answer F(ci,ai,x
′
i) without having received the

challenge ci. Hence, he could mount a successful distance-fraud. By having the verifier decide a (thus,

by masking the value of the PRF-instance fx(x,NV ,L)), SKI enforces that the distribution of a cannot be

influenced by a malicious prover.

F-scheme. In our way to prove security, we need some notions related to the response-function F; these

characterise the concept of F-scheme. At the same time, these concepts give the sufficient conditions
to protect against all three frauds possible against the concrete SKI instances to follow. Such a charac-

terisation is different from the approach in Avoine et al. [2], where a response-function based on secret

sharing is proposed for the protection against terrorist-fraud only, but no formal justification was given to

that end; also, the relation between the other frauds and the response-function was not addressed therein.

Thus, we stress that using a secret sharing scheme in computing the responses may be too strong and/or

insufficient to characterise the protection against frauds mounted onto DB protocols, and we amend this

with Definition 4.1 and Definition 4.3.

Definition 4.1 (F-scheme). Let t, t ′ ≥ 2. The response-function F : {1, . . . , t} ×GF(q)t ′ ×GF(q) →
GF(q) gives an F-scheme, which is characterised as follows.
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– We say that the F-scheme is linear if for all challenges ci in their domain, the F(ci, ·, ·) function

is a linear form over the GF(q)-vector space GF(q)t ′ ×GF(q) which is non-degenerate in the ai

component.

– We say the F-scheme is pairwise uniform if

(∀I  {1, . . . , t},#I ≤ 2)(H(x′i|F(ci,ai,x
′
i)ci∈I) = H(x′i)),

where (ai,x
′
i) ∈U GF(q)t ′ ×GF(q), #S denotes the cardinality of a set S, and H denotes the Shan-

non entropy.

– We say the F-scheme is t-leaking if there exists a polynomial time algorithm E such that for all

(ai,x
′
i) ∈GF(q)t ′ ×GF(q), we have E

(

F(1,ai,x
′
i), . . . ,F(t,ai,x

′
i)
)

= x′i.
– Let Fai,x′i

denote F(·,ai,x
′
i). We say that the F-scheme is σ-bounded if for any x′i ∈GF(q), we have

Eai

(

maxy

(

#(F−1
ai,x′i

(y))
)

)

≤ σ, where x′ ∈ GF(q) and the expected-value is E taken over ai ∈

GF(q)t ′ .

Informal Explanation of Def. 4.1. The pairwise uniformity and the t-leaking property of the F-scheme

say that knowing the complete table of the response-function F for a given ci leaks x′i, yet knowing only

up to 2 entries challenge-response in this table discloses no information about x′i.

The σ-boundedness of the schemes says that the expected value (taken on the choice of the subsecrets

ai) of the largest preimage of the map ci 7→ F(ci,ai,x
′
i) is bounded by a constant σ. In simple words, it

says that it should be hard to invert the response function.

We have t
q
≤ σ≤ t due to the pigeonhole principle, since ∑y #(F−1

ai,x′i
(y)) = t. Furthermore, σ≥ 1.

In relation with the definitions of the F-schemes above, we now prove the following lemma.

Lemma 4.2. The F-scheme used in SKIpro is linear, pairwise uniform, 9
4 -bounded, and t-leaking. The

F-scheme used in SKIlite is linear, pairwise uniform, 3
2
-bounded, but not t-leaking.

This lemma extends to Lemma B.1 given and proven in Appendix B.

Leakage scheme. We can consider several sets L of transformations to be used in the PRF-instance, of

the SKI initialisation phase. The idea of the set L is that, when leaking some noisy versions of L(x) for

some random L ∈ L , the adversary can reconstruct x without noise.
More formally, we introduce the following notion.

Definition 4.2 (Leakage scheme). Let L be a set of linear functions from GF(q)s to GF(q)n. Given x ∈
GF(q)s and a ppt. algorithm e(x,L;re), we define an oracle OL ,x,e producing a random pair (L,e(x,L))

with L ∈U L . We say that L is a (T,u, p)-leakage scheme if there exists an oracle ppt. algorithm A
〈·〉

limited to u queries, such that for all x∈GF(q)s, for all ppt. e, Pr[AOL,x,e = x|E]≥ p, where E is the event

that all queries return a value such that dH(e(x,L),L(x)) < T , where dH denotes the Hamming distance.

Informal Explanation of Def. 4.2. Intuitively, this means that based on r values of L and a noisy L(x),
we can decode and return x.

We define Lclassic = {L}, with only one transformation: the identity function L, i.e., L(x) = x. Unfortu-

nately, this is not sufficient to add protection against collusion fraud due to Hancke [28]: given a constant

θ, a malicious prover could select a vector e of Hamming weight n− τ+ θ and provide the full table of

all ci 7→ F(ci,ai,xi) functions, only that some entries in the table had been changed. Namely, for each
i∈ {1, . . . ,n} with ei = 1, the dishonest prover flips F(ci,ai,xi) in this leaked table. Then, we would have
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γ =
(

1− 1
t

)θ
, but this helped attacker can only reconstruct x+ e. Using multiple coerced provers P∗ will

not reveal anything more, if the function g(x) giving e is deterministic (i.e., then, several runs would have

no randomised, adaptive choices of g(x), coming from P∗’s). Depending on such functions g, and since

n− τ is linear, recovering x takes exponential time. So, the value of x+g(x) is not enough to run a MiM
attack since we need x to evaluate fx.

We consider the leakage scheme Lbit of SKIpro, consisting of all Lµ transforms, where Lµ is defined

from a vector µ ∈GF(q)s by

Lµ(x) = (µ · x, . . . ,µ · x)

The following lemma is trivial.

Lemma 4.3. Lclassic is a (1,1,1)-leakage scheme.

Lemma 4.4. For all constant u > s, Lbit is a (n
2
,u,1−qs−u)-leakage scheme.

Proof. A calls the oracle u times, then —by computing the majority— A deduces µ · x whenever the
Hamming distance to Lµ(x) of the returned vector is lower than n

2
, for each of the obtained µ. After

collecting u samples µ, they span the entire GF(qs) vector space except with probability bounded by qs−u.

Then, we deduce x by solving a linear system.

Circular-Keying Security. On our way to prove the security of the SKI protocols, we need and hereby

introduce the notion of security against circular-keying. This notion of security will help protect against
MiM, in the context in which the key x is used in the response-function to protect against TF. To attain

provable security against MiM attackers, we take secure circular-keying as an extra assumption to the

PRF ( fx)x∈GF(q)s to handle the reuse of a fixed x outside of a PRF instance fx.

Definition 4.3 (Circular-Keying). Let s be some security parameter, let b be a bit, let q ≥ 2, let m ∈
Poly(s), and let x,x ∈ GF(q)s be two row-vectors. Let ( fx)x∈GF(q)s be a family of (keyed) functions, e.g.,

fx : {0,1}∗→ GF(q)m. For an input y, the output fx(y) can be represented as a row-vector in GF(q)m.

We define an oracle O fx,x such that upon a query of form (yi,Ai,Bi), with Ai ∈ GF(q)s, Bi ∈ GF(q)m,

it answers (Ai · x)+ (Bi · fx(yi)). The game Circ fx,x of circular-keying with an adversary A is described

as follows: we set b fx,x := A
O fx ,x , where the queries (yi,Ai,Bi) from A must follow the restriction that

(∀c1, . . . ,ck ∈ GF(q))
(

#{yi;ci 6= 0}= 1,
k

∑
j=1

c jB j = 0 =⇒
k

∑
j=1

c jA j = 0
)

.

We say that the family of functions ( fx)x∈GF(q)s is an (ε,C,Q)-circular-PRF if for any ppt. adversary

A making Q queries and having complexity C, it is the case that Pr[b fx,x = b f ∗,x] ≤
1
2 + ε, where the

probability is taken over the random coins of A and over the random selection of x,x ∈ GF(q)s and the

random function f ∗.

The condition on the queries means that for any set of queries with the same value yi, any linear

combination making B j vanish makes A j vanish at the same time. (Otherwise, we would trivially extract
some information about x by linear combinations.)

We note that it is possible to create secure circular-keying in the random oracle model (ROM) [5].

This is a “sanity check” for our circular-keying notion. Indeed, any “reasonable” PRF should satisfy this
constraint. Only special constructions would not. E.g., the ones based on PRF programming from [7].
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Lemma 4.5. Let fx(y) = H(x,y), where H is a random oracle, x ∈ {0,1}s , and y ∈ {0,1}∗. Then, f is a

(T 2−s,T,Q)-circular PRF for any T and Q.

Proof. Let (y,Ai,Bi), i ∈ 1, . . . ,k, be some queries to O fx,x that share the same y, made by some A ,

making no query to H . We define the matrices A = (A1 · · ·Ak)
T

and B = (B1 · · ·Bk)
T

. Thus, A learns

Ax+BH(x,y). Now, w.l.o.g., assume that A multiplies Ax+BH(x,y) to the left by a conveniently chosen,

invertible matrix P, i.e., such that PB = (Ip 0)T where Ip is the identity matrix of rank p of B and 0 is a

zero matrix block.

By taking c = c′P with c′ = (0, . . . ,0,1,0 . . . ,0), where 1 appears at some position j for any j > p, we

have that cB = 0. Then, by circular keying, we have that cA = 0. Thus, all rows from positions beyond p,

i.e., p+1, p+2, . . . “downwards” inside the matrix PA, are filled with zeroes. Thus, A learns A′x+H(x,y),
where A′ is the “upper-part” of PA, i.e., above the pth row. We have shown that A is equivalent to an

adversary learning A′x+H(x,y) for some random matrix A′. So, we can replace H(x,y) by something

random and the advantage of the adversary A in this game would not change.

Now, in the random oracle model, A also queries H . We consider the hybrids of A in which the first

queries to H are simulated and the hybrid stops before making the next query to H (there are up to T

hybrids). We apply the previous argument to the hybrids to show that they cannot query H with x, except

by guessing it with probability 2−s.

We proceed with inspecting the rest of the security requirements on these protocols.

Theorem 4.1. The SKI protocols are secure distance-bounding protocols, i.e.,:

– A. If the F-scheme is linear and σ-bounded, if ( fx)x∈GF(q)n is a (ε,nN,C)-circular PRF, then the

SKI protocols offer α-resistance to distance-fraud, with α = B(n,τ, σ
t
)+ ε, for attacks limited to

complexity C and N participants. So, we need τ
n
> σ

t
for security.

– B. If the F-scheme is linear and pairwise uniform, if ( fx)x∈GF(q)n is a (ε,n(ℓ+ z+ 1),C)-circular

PRF, if L is a set of linear mappings, the SKI protocols are β-resilient against (non-narrow) MiM

attackers with parameters ℓ and z and a complexity bounded by C, β = B(n,τ, 1
t
+ t−1

t
× 1

q
) +

2−k
(

ℓ(ℓ−1)
2 + z(z+1)

2

)

+ ε. So, we need τ
n
> 1

t
+ t−1

t
× 1

q
for security.

– B
′
. If the F-scheme is linear and pairwise uniform, if ( fx)x∈GF(q)n is a (ε,n(ℓ+ z+ 1),C)-PRF, if

the function F(ci,ai, ·) is constant for each ci,ai, the SKI protocols are β-resilient against (non-

narrow) MiM attackers with parameters ℓ and z and a complexity bounded by C, β = B(n,τ, 1
t
+

t−1
t
× 1

q
)+2−k

(

ℓ(ℓ−1)
2 + z(z+1)

2

)

+ ε. So, we need τ
n
> 1

t
+ t−1

t
× 1

q
for security.

– C. If the F-scheme is t-leaking, if L is a (T,u, p)-leakage scheme, for all θ∈]0,1[, the SKI protocols

offer

(

γ,γ′
)

-resistance to collusion-fraud, for γ ≥ B(T,T + τ− n, t−1
t
)1−θ, γ−1 is polynomially

bounded, and γ′ =
(

1−B(T,T + τ−n, t−1
t
)θ
)u

p. So, we need τ
n
> 1− T

tn
for security.

The proof of Th. 4.1.B
′
is similar (and simplified) as the one of Th. 4.1.B. So, we prove the A, B, and

C parts only.

In the noiseless case (i.e., with pnoise = 0), we can work with τ = n. Interestingly, we can then use

L = Lclassic and still have resistance to collusion fraud, with γ≥ ( t−1
t
)1−θ and γ′ = 1− ( t−1

t
)θ.
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Th. 4.1.A. For each key x′ which is different from x and for which there is a P(x′) close to V (so, there is

no P∗(x′) anywhere, due to the distance-fraud model), we apply the circular-PRF reduction. (Details as

for why we can apply this reduction will appear in the proof of Th. 4.1.B.) We are losing a probability
up to ε in this reduction.

We recall that if the F-scheme is linear, then F(ci,ai,x
′
i) must be non-degenerate in ai. So, answers ri

coming from P(x′) instead of P∗(x) are correct with probability 1
t
, since ai is random, after the circular-

PRF reduction.

If ri now comes from P∗, due to Lemma 3.1, ri must be a function independent from ci. I.e., P∗ must

have F(ci,ai,x
′
i) ready, before ci arrives from V . So, for any secret x and a, the probability to get one

response right is given by pi = Prci∈{1,...,t}[ri = F(ci,ai,x
′
i)].

Thanks to PRF masking, the distribution of the ai’s is uniform. Namely, P∗ cannot influence their

distribution by selecting NP maliciously.
To establish the probabilities pi, consider the partitions I j, j ∈ {1, . . . , t} as follows: for i ∈ I j, the

largest preimage of Fai,x′i
: ci 7→ F(ci,ai,x

′
i) has size j, i.e., maxy

(

#(F−1
ai,x′i

(y)
)

= j. Then, we are looking

at the probability

Pj(x
′
i) := Pr

ai

[

max
y

(

#(F−1
ai,x
′
i
(y))

)

= j

]

,

where #(S) denotes the cardinality of a set S. Given x′ fixed, each iteration has a probability to succeed

equal to

P1

t
+

2P2

t
+ · · ·+

tPt

t
=

σ

t

So, the probability to win the experiment is bounded by p = B(n,τ, σ
t
).

Tightness. The above result is tight as the following attack shows. It is thus the best distance fraud. We

consider a malicious (far-away) prover who follows normally the initialisation phase. For the distance
bounding phase, he anticipates the challenge ci and sends the response ri in advance so that it arrives on

time. The response is chosen such that #F−1
ai,x′i

(ri) is maximal. So, the probability that the verifier accepts

is B(n,τ, σ
t
), which is negligibly close to α.

Th. 4.1.B. In the next, P(. . .) and V (. . .) respectively denote the algorithm/(part of the) protocol of a

generic prover P and that of a generic verifier V , out of the ℓ provers and z+1 verifiers in this attack-game,

run on specific parameters to be specified in-line. We herein denote V in the MiM-resistance definition
as Vz+1.

We use the game-reduction methodology [42] to prove this lemma. Let Game0 be the non-narrow MiM

attack-game described in Definition 3.3 played by A against the honest parties in a SKI protocol.
Below we consider a prover Pj and a verifier Vk in an experiment, j ∈ {1, . . . , ℓ},k ∈ {1, . . . ,z+ 1}.

Let (NP, j,M j,L j,NV, j) be the values of the nonces (NP,NV ), of the mask M, and of the transformation

L that the prover Pj generates or sees respectively, and (NP,k,Mk,Lk,NV,k) be the values of the nonces
(NP,NV ), mask M, and transformation L that a verifier Vk generates or sees at his turn, j ∈ {1, . . . , ℓ},k ∈
{1, . . . ,z+1}.

We apply a reduction by failure-event to prove that the game Game0 is indistinguishable to the ad-
versary A from a game Game1 where no repetitions on NP, j or on NV,k happen for j ∈ {1, . . . , ℓ},
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k∈ {1, . . . ,z+1}, i.e., there is no collision on the nonces generated by the provers and there is no collision

on the nonces of the verifiers.

Assume that F is the event that at least a collision as above happens, i.e.,

F ≡
( ∨

0<i< j≤ℓ

(NP,i = NP, j)
)∨( ∨

0<i′< j′≤z+1

(NV,i′ = NV, j′)
)

.

We want to have that, from the point of view of the adversary A , Game0∧¬F⇔Game1∧¬F⇔Game1.
But,

‖Pr[A wins in Game0]−Pr[A wins in Game1]‖ ≤ Pr[F].

Then, Pr[F]≤ 2−k
(

ℓ(ℓ−1)
2 + z(z+1)

2

)

.

Since the F-scheme is linear, we can write F(ci,ai,x
′
i) = ui(ci)x

′
i + (vi(ci) · ai) where ui(ci) ∈

GF(q),vi(ci)∈GF(q)t ′ . Note that, in terms of i, the (vi(1), . . . ,vi(t))’s span independent linear spaces. In

Game1, each (NP,NV ,L, i) tuple can be invoked only twice (with a prover and a verifier) by the adversary.

The pairwise uniformity of the F-scheme implies that yvi(ci)+ y′vi(c
′
i) = 0 implies yui(ci)+ y′ui(c

′
i) = 0

for all ci,c
′
i ∈ {1, . . . , t} and all y,y′ ∈ GF(q). So, we deduce that the condition to apply the circular-

keying reduction is fulfilled. We can thus apply the circular-PRF reduction and reduce to Game2, where

F(ci, fx(NP,NV ,L)i,x
′
i) is replaced by ui(ci)x̃i +(vi(ci) · f ∗(NP,NV ,L)i), where f ∗ is a random function.

This reduction has a probability loss of up to ε.

From here, we use a simple bridging step to say that the adversary A has virtually no advantage over

Game2 and a game Game3, where the vector a = f ∗(NP,NV ,L) is selected at random; we recall that this

is the case since there is no repetition on NP and f ∗ is a random function. The (NP,NV ,L) triplet used by

V in the attack phase can be used by only one Pj, in the attack phase as well, where j ∈ {m+ 1, . . . , ℓ}.
We can simulate all other P’s and V ’s based on a (simulated) random a. This reduces to an adversary

making no use of the learning phase and using only Pj and V in the attack phase.

So, the probability p of A of succeeding in Game3 is the probability that at least τ rounds have a
correct ri. Due to Lemma 3.1, ri must be computed by A (and not Pj). Getting ri correct for ci can thus

be attained in two distinct ways: 1. in the event e1 of guessing c′i = ci and sending it beforehand to Pj

and getting the correct response ri, or 2. in the event e2 of simply guessing the correct answer ri (for a

challenge c′i 6= ci). So, p = B(n,τ,Pr[e1]+Pr[e2]) = B(n,τ, 1
t
+ t−1

t
× 1

q
).

Tightness. The above result is tight as the following attack shows. It is thus the best MiM attack. We

consider an adversary who first relays the messages between the (far away) prover and the verifier during

the initialisation phase. Then, he simulates a distance bounding phase with the prover to learn some

ci 7→ ri relations. During the distance bounding phase with the verifier, either the challenge matches the

learnt ci, in which case he can answer ri and pass with probability 1, or the challenge is different, in which
case he can answer randomly and pass with probability 1

q
. The overall probability to pass one round is

1
t
+(1− 1

t
)1

q
. So, the probability that the verifier accepts is B(n,τ, 1

t
+ (1− 1

t
)1

q
), which is negligibly

close to β.

Th. 4.1.C. Assume as per the requirement for resistance to collusion-fraud that there is an experiment
expCF = (P∗(x)←→A

CF(rCF)←→V0(y;rV0
)), with P∗ a coerced prover who is far away from V0 and that

PrrV0
,rCF [OutV0

= 1] = γ. Given some random c1, . . . ,cn from the verifier, we define the random variable
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Viewi as being the view of A
CF before receiving ci from V , and the random variable wi being all the

information that A
CF has received from P∗ before the time when sending out ri would become critical

(i.e., before it would be too late to send ri on to V0). This answer ri done by A
CF is formalised in

Lemma 3.1. So, ri := A
CF(Viewi‖ci‖wi).

Let Ci be the set of all possible ci’s on which the functions A
CF(Viewi‖ · ‖wi) and F(.,ai,x

′
i) match

(i.e., A
CF answers correctly to the challenge ci at round i). Let S be the set of i’s such that ci ∈Ci (i.e.,

A
CF answers correctly at round i). Finally, let R be the set of i’s such that #Ci = t (i.e., A

CF answers

correctly at round i whatever the challenge). I.e., Ci = {c ∈ {1, . . . , t}|A
CF(Viewi‖c‖wi) = F(c,ai,x

′
i)},

S = {i ∈ {1, . . . ,n}|ci ∈ Ci}, and R = {i ∈ {1, . . . ,n}|#Ci = t}. The adversary A succeeds in expCF if

#S ≥ τ, i.e., if he can pass at least τ rounds, for the challenges that V0 will fix in those rounds.

For terrorist-fraud resistance, we would also like that—in the second, MiM experiment—the adversary

A2 can answer τ rounds (or more), no matter what the challenge, i.e., in this way, A could extract x and

the TF would be invalid. In other words, we would like that #R is large, i.e. #R > n−T so that we can

decode.

So, if we were to pick a set of challenges such that #S ≥ τ and #R ≤ n−T , we should select a good

challenge (from no more than t−1 existing out of t), for at least T +τ−n rounds out of T . In other words,

Pr[#S ≥ τ,#R ≤ n− T ] ≤ B(T,T + τ− n, t−1
t
). But, by the hypothesis, Pr[#S ≥ τ] ≥ γ. So, we deduce

immediately that Pr[#R ≤ n−T |#S ≥ τ]≤ γ−1B(T,T + τ−n, t−1
t
). Therefore, Pr[#R > n−T |#S ≥ τ]≥

1− γ−1B(T,T + τ−n, t−1
t
).

We use m= ℓ= z=O(γ−1r) (i.e., A2 will directly impersonate P to V after A1 ran m times the collusion

fraud, with P∗ and V ). We define A2 such that, for each execution of the collusion fraud with P∗ and

V , it gets Viewi, wi. For each i, A2 computes the table c 7→ A
CF(Viewi‖c‖wi) and apply the t-leaking

function E of the F-scheme on this table to obtain yi = E(c 7→ A
CF(Viewi‖c‖wi)). For each i ∈ R, the

table matches the one of c 7→ F(c,ai,x
′
i) with x′ = L(x), and we have yi = x′i. So, A2 computes a vector

y. If V accepts the proof, then y coincides with L(x) on at least n− T + 1 positions, with a probability

of at least ρ := 1− γ−1B(T,T + τ− n, t−1
t
). That is, after O(γ−1) runs, A2 implements an oracle which

produces a random L ∈ L and a y which has a Hamming distance to L(x) up to T −1.

By applying the leakage scheme decoder e on this oracle, with u samples, it can fully recover x, with

probability at least ρu p: just obtain a list of possible values for x and isolate the good one based on the

collected information. Then, by taking γ=B(T,T +τ−n, t−1
t
)1−θ and γ′=

(

1−B(T,T + τ−n, t−1
t
)θ
)u

p,

we obtain our result.

Tightness. For our SKIpro construction using T = n
2
, the above result is tight as the following attack

shows. It is thus the best collusion fraud. We assume there is a function g mapping the secret x and the

leak function Lµ to a vector e = g(x,Lµ) with Hamming weight n
2 . We consider a malicious prover who

selects some challenges c∗i at random. He runs the initialisation phase normally. Then, he sends to the

adversary a table ci 7→ ri for each round i. For i such that ei = 0, he gives the full table ci 7→ F(ci,ai,x
′
i).

For i such that e1 = 1, he gives the table, except for ci = c∗i , for which the correct response is flipped.

The adversary uses the table to answer to each round. Due to the leakage property, the adversary learns

Lµ(x)+ e which is a vector with Hamming weight n
2 , which leaks no information about Lµ(x). We can

show more formally that this does not leak any useable information about x.

During the collusion fraud, the adversary passes each round such that ei = 0. When ei = 1, the proba-

bility to pass is 1− 1
t
, i.e. the probability that the challenge is not c∗i . So, the overall probability to pass

the protocol is γ = B(n
2 ,τ−

n
2 ,1−

1
t
), without leaking any useable information. Our result indicates that

this is the largest γ we can achieve.
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Thus, under the circumstances where protection against terrorist-fraud and/or collusion-fraud13 is not

of primary importance, one can use the proposed SKIlite protocols, the security of which does not rely
on the assumption of circular-keying security.

Following Lemma 4.2 and Th. 4.1, it is clear that the probabilities α and β to succeed respectively in
a distance-fraud and MiM, against the SKI protocols are based on:

SKIpro SKIlite

α: B(n,τ, 3
4 ) B(n,τ, 3

4)
β: B(n,τ, 2

3
) B(n,τ, 3

4
)

SKI’s parameters: Let ε > 0. Remember (from page 14, Lemma 4.1) that the SKI protocols are (1−

e−2ε2n)-complete if τ is at most (1− pnoise− ε)n.

According to the data in the table above, we must take 1− pnoise− ε ≥ τ
n
≥ 3

4 + ε to make the above

instances of SKI secure, with a failure probability bounded β by e−2ε2n (by the Chernoff-Hoeffding
bound [16,31]).

By changing the F-scheme, we can decrease the value 3
4 in α. For instance, using the Shamir secret

sharing [41], we reduce it to 5
8 , as shown in Appendix B.

If we require TF-resistance (as per Th. 4.1.C), we also get a constraint of τ
n
> 5

6
+ ε

2
, similarly.

5. Summarising SKI’s Contributions

The contributions of the SKI families of protocols is two-fold: provable security and efficiency.

Provable Security. As we discussed in subsection 2.1, most distance-bounding protocols, new or old,
do not enjoy formal security proofs. On the contrary, most have been proven vulnerable to various attacks

(see [11,10, Table 1]). The only two, recent protocols which amend this and come with a formal security
model and adjacent security protocol are the SKI family here, and the Fischlin-Onete (FO) protocol [24].

Moreover, in this paper, we also discuss the tightness of our security proofs.
The two formalisms are different; the FO model is game-based, the current one being based on simpler

experiments run by interactive Turing-machines. Throughout the paper, for each formulated definition
where it was pertinent, we discussed the link with the FO model. We remind that the FO recent protocol

is discussed and compared with SKI in [48]; therein, it was observed, e.g., that the resistance of [24] to
terrorist fraud lowered the resistance to mafia fraud.

Efficiency. The SKI protocol is generally more efficient than the FO protocol. To see this, one has to
set acceptable levels for the noise (e.g., 5%) and completeness (e.g., 99%), look at the necessary number

of rounds to obtain different levels of resistance to the different frauds (i.e., see what n, implies which
α,β,γ, etc). By doing so, one can see that, e.g., SKI offers the double of MiM-resistance (e.g., 2−20

as opposed to 2−10) for the same number of rounds (e.g., 120). The more in-depth matter of protocol
efficiency is however not the focus of this paper.

6. Conclusions

In this paper, we have specified distance-bounding protocols and their security requirements, i.e., resis-

tance to (generalised) distance-fraud, man-in-the-middle, terrorist-fraud attacks, in a general formalism

13It is clear that these SKIlite protocols do not protect against terrorist-fraud (given the F-scheme used inside them).
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for modelling location-driven security protocols developed herein. We also proposed the formal proofs

for a provably secure class of practical protocols for distance-bounding, by identifying the requirements

on the building blocks (i.e., the F-scheme, the leakage scheme, PRF masking, and the circular-keying

security). Thus, these protocols are practical, efficient and provably secure against all frauds and their

generalisations, even in noisy conditions. As a by-product, we introduced (at least) a new security notion,

i.e., circular-keying for pseudorandom functions (PRFs); this models the employment of a PRF, with

possible linear reuse of the key.
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Appendix

A. A Communication Model

We introduce a model for distance-bounding protocols. We first specify the main ideas at a high-level
and then, in Section A.2, we formalise our communication and our threat model.

A.1. General Communication Principles

We impose the following gold principles: 1. participants have one location; 2. messages travelling one
unit of distance between two locations require one time-unit for delivery; 3. messages under transmission

are broadcast and become readable at a location when they physically reach its proximity. We now explain
the above in more depth and add some extra specifications.

A participant has a physical location, modelled as a centre of a sphere with the radius of one distance-
unit. A sender S who wants to send a message to a receiver R just broadcasts the message, setting R as

the aimed “delivery address”. Every time-unit, a message sent by S moves from the sphere centred on S

to another sphere with a radius augmented by one unit (see Fig. 4). Participant R can read the message
as soon as the growing sphere on which the message is travelling includes R.

1 2 3 4 5 6 7 8 9 10

V

A P

P∗

Figure 4. Sketch of Message-Transmitting Model: A message send by V is broadcast and travels at one unit of distance per
clock cycle. Assume P is the purported recipient. However, A can read the message two clock cycles before P, whereas P∗

must wait three clock cycles more than P before the message reaches him.

Honest participants are supposed to read only the messages for which they are the purported recipient.
There is no implicit authentication: received messages may have been previously sent by any partici-

pant.
The adversary can change the destination to himself (so that the legitimate receiver does not read the

corresponding message).
In the following, we give further, more formal explanations on these, as well as on time-increments

and the communication model.
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A.2. Computation and Communication Models

Formalised Participants. Each participant in the protocol is formally described by an interactive Turing

machine (ITM). The ITMs we use in this formalisation have the following tapes: an input tape, a random

tape, an incoming communication tape, an outgoing communication tape, a read/write working tape, and

an output tape. Each machine has an assigned algorithm, which describes the behaviour of that participant

in the protocol to model. As suggested, each participant U has a location denoted by locU in a metric

space, where d is the distance-function of this metric space (i.e., there is a distance-unit and the classical

requirements to measure distances). The distance is assumed to measure the time-of-flight of messages

between two locations (i.e., as if messages were travelling uniformly at a speed of one distance-unit per

time-unit). At this stage, the reader can refer to Fermat’s principle [40] for the notion of time-of-flight.

The time-of-flight is further described by a global counter called clock. This clock is incremented at

certain execution-points, as the communication model will explain below. We underline that the com-

plexity of the machines is measured in the number of computational14 steps and it is not linked to this

notion of time-of-flight. Thus, we assume that all computation of (parts of) messages is instantaneous (in

terms of the ticks of the clock). Only other actions, e.g., sending a message from one location to another,

have a time-duration on the clock.

Also, there is a global system-recall called history. The tuples stored in this register are of the form

(message, locationOfOrigin, timeOfSending,destination)

i.e., a message that has been sent, from some initiator-origin, departing at some time and being aimed at

some participant.

Communication. In the following, we assume that the network is asynchronous. We consider insecure

and noisy channels. However, the adversary receives messages with no noise.15 In addition to this, and for

simplicity, protocol messages which are not “time-critical” (as clearly explained later) can be assumed

to be noiseless, or equivalently, that participants use a computations overhead for error correction. All

channels employed in this model are timed, i.e., by the (units of) global counter clock. As aforementioned,

we assume that all communication happens through a broadcast anonymous channel.

All machines have communication-related actions of three types: send, standby and halt. If a machine

does a halt action, then its execution is terminated. Before halting, the machines write their output on

the output tape. If a machine M performs the action send(m,P), this denotes that the message m is aimed

at a participant P. Namely, the message m is written on the outgoing communication tape of the sending

machine M and the tuple (m, locM ,clock_value,P) is added to the history, where clock_value is the value

of the clock register at the time of this sending by M. After some sendings or simply at some point, the

machine will do a standby action: i.e., the machine waits for a reactivation. When all participants are in

a “hanging” state (e.g., some in standby, some halted), the global counter clock is incremented by a unit

and the participants standing by are reactivated.

Let clock_value be the current value of the global clock register. For each tuple in the global history

of the form (m, locM , time_sent,dest), if d(locP, locM)≤ (clock_value− time_sent) then the participant

14We will still consider “time complexity”, namely polynomial versus non-polynomial computational complexity, but it does
not relate to the notion of time-of-flight that we refer to in this section.

15This is due to adversaries using a more elaborate equipment.
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P can read16 the content m of its incoming communication tape. However, an honest participant P will

not read m if dest 6= P.

Adversary. An adversary A is modelled by an ITM of the above kind, i.e., he is part of the system

as described, he has a location, etc. Moreover, an adversary A has the following abilities: 1. reading

messages for which he is not necessarily the intended recipient; 2. corrupting the channel between any

two participants S and R (i.e., upon corruption, for an action send(m,R) done by S, the system performs

the action send(m,A) instead, re-aiming the message m to A); 3. sending his own messages to different

participants. An adversary is not able to: modify sent messages.

If the adversary A could modify a flying message sent by S to R before R could actually read it,

this would implement a super-fast channel contradicting our gold principles. We could then design the

following trivial (but unrealistic) distance-fraud. The malicious prover can send a random response before

receiving the challenge, wait to receive the verifier’s challenge and use this super-fast channel to modify

his own flying response when it has not reached the verifier yet. Clearly, any sent message could thuswise

be used as a “carrier” to send messages faster than allowed by our gold principles. Instead of modifying

a message far along its course, A can change the destination from R to A and may send another message

to R. We believe this does not decrease the capabilities compared to practice since adversaries can still

carry out man-in-the-middle attacks.

Similarly, the action 2 has a restriction: a message m sent by S in the past, present, or future is blocked

by corrupting the channel, unless it would reach R before a message which would have been sent by A

to R at the corruption time.

Also, the adversary has no control over the global counter clock. This is normal, since the counter

clock simply models time passing, as we know it. However, the adversary is the first to be activated after

each increment of the clock (i.e., as he may, e.g., corrupt a channel before a new message is sent on it).

B. SKI Variants

Our F-scheme can be instantiated to produce different SKI protocols, some arguably more practi-

cal/secure than others. In the main body of this paper, we presented a version that is in-line with the

existing literature in the field, i.e., one-bit responses and a set of values for challenges of small cardinal-

ity, e.g., 3. Irrespective of this alignment with the state-of-the-art, the practicality of today’s RFID/NFC

cards goes beyond one-bit responses [44]. Moreover, pre-computation tables can be used.

As formalised above, to attain security, the idea behind such an F-scheme is that it should be a secret

sharing scheme in which the response to the t > 2 challenges in round i reveals the component xi of the

secret, but the answers to only 2 of these challenges (e.g., one from the prover and another indirectly

leaked by the verifier, e.g., within a non-narrow MiM attack) do not reveal xi. Namely, we will consider

two generic such response-functions in which the ith response (1≤ i≤ n) is produced as follows:

Fshamir(ci,ai,xi) = xi +(ai)1ci +(ai)2ci
2 + . . .+(ai)t−1ci

t−1

16This formalises the discussion in page 24 about broadcasting and reading messages when the intended recipients are on
the correct spheres.
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where xi ∈ GF(q), q ≥ 4, ci ∈ {1, . . . , t} is mapped to ci ∈ GF(q)∗ by an arbitrary injective mapping,

(ai) j ∈ GF(q), j ∈ {1, . . . , t−1};

Fxor(ci,ai,xi) = xi1ci=t +(ai)11ci∈{t,1}+ . . .+(ai)t−11ci∈{t,t−1}

where ci ∈ {1, . . . , t}, xi ∈ GF(q), q≥ 2, (ai) j ∈ GF(q), j ∈ {1, . . . , t−1}, and 1R is 1 if R is true and 0
otherwise.

Note that the function Fxor has been invoked in the main body of this paper to define SKIpro and

SKIlite. We give two more variants of it, SKIshamir and SKI4.

In our numerical studies, we actually look at three specific F-schemes dictated by the functions above,
giving three specific SKI protocols as follows:

– SKIshamir: defined by L = Lbit, and the response-function Fshamir above, with q = 4, t = 3, t ′ = 2,

i.e., F(ci,ai,xi) = xi +(ai)1ci +(ai)2ci
2, with xi,(ai)1,(ai)2 ∈ GF(4) and ci ∈ GF(4)∗;

– SKIpro: defined by L = Lbit, and the response-function Fxor above, with q = 2, t = 3, t ′ = 2, i.e.,

F(ci,ai,xi) = (ai)ci
for ci ∈ {1,2} and F(3,ai,xi) = xi +(ai)1 +(ai)2, with (ai)1,(ai)2,xi ∈GF(2);

– SKI4: defined by L = Lbit, and the response-function Fxor above, with q = 2, t = 4, t ′ =
3, i.e., F(ci,ai,xi) = (ai)ci

for ci ∈ {1,2,3} and F(4,ai,xi) = xi + (ai)1 + (ai)2 + (ai)3, with

(ai)1,(ai)2,(ai)3,xi ∈ GF(2);
– SKIlite: defined by a variant of response-function Fxor above (not depending on xi), with q = 2,

t = t ′ = 2, i.e., F(ci,ai,xi) = (ai)ci
for ci ∈ {1,2}, with (ai)1,(ai)2 ∈ GF(2). Since x′ is not used,

L can be let empty.

In relation with the definitions of the F-schemes and protocols above, we prove the following lemma.

Lemma B.1. The F-schemes used in SKIshamir, SKIpro and SKI4 are linear, pairwise uniform, t-leaking.

The F-scheme used in SKIlite is linear, pairwise uniform and not t-leaking.

– Lemma B.1.1: The F-scheme used in SKIshamir is 15
8

-bounded.

– Lemma B.1.2: The F-scheme used in SKIpro is 9
4 -bounded.

– Lemma B.1.3: The F-scheme used in SKI4 is 3-bounded.
– Lemma B.1.4: The F-scheme used in SKIlite is 3

2 -bounded.

Following Lemma B.1 and Th. 4.1, it is clear that the probabilities α and β to succeed respectively in

distance-frauds and in MiMs, against the SKI protocols are:

SKIshamir SKIpro SKI4 SKIlite

α: B(n,τ, 5
8) B(n,τ, 3

4) B(n,τ, 3
4) B(n,τ, 3

4 )
β: B(n,τ, 1

2
) B(n,τ, 2

3
) B(n,τ, 5

8
) B(n,τ, 3

4
)

Proof. The first three properties (i.e, linearity, pairwise uniformity, t-leaking property) follow easily from

the respective definitions of the three functions.

For the property of σ-boundedness, we will carry the proof using the notation

Pj(xi) := Pr
ai

[

max
y

(

#(F−1
ai,xi

(y))
)

= j

]

for Fai,xi
: ci 7→ F(ci,ai,xi). We will compute the bound σ as maxxi ∑t

j=1 jPj(xi). We recall that Pj(xi) = 0

for j < t
q
.
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We start by proving Lemma B.1.1, i.e., the response-function F that gives the ith response as

F(ci,ai,xi) = xi +(ai)1c̄i +(ai)2c̄2
i , with xi,(ai)1,(ai)2 ∈ GF(4) and c̄i ∈ GF(4)∗ is the mapped of the

challenge ci ∈ {1, . . . , t}.
We can show that:

max
y

(

#(F−1
ai,xi

(y))
)

= 1⇔(ai)2 = 0 and (ai)1 6= 0

max
y

(

#(F−1
ai,xi

(y))
)

= 2⇔(ai)2 6= 0

max
y

(

#(F−1
ai,xi

(y))
)

= 3⇔(ai)2 = (ai)1 = 0

So, for a component xi in the secret vector x as per above, it holds that:

P1(xi) =
3

16
, P2(xi) =

3

4
, P3(xi) =

1

16
.

Thus, σ = 1× 3
16
+2× 3

4
+3× 1

16
= 15

8
. This ends the proof of Lemma B.1.1.

We now proceed to proving Lemma B.1.2, i.e., the response-function F that gives the ith response as

F(ci,ai,xi) = (ai)ci
for ci ∈ {1,2} and F(3,ai,xi) = xi +(ai)1 +(ai)2, with (ai)1,(ai)2,xi ∈GF(2).

Following a similar calculation as above, we have:

max
y

(

#(F−1
ai,xi

(y))
)

= 3⇔ (ai)1 = (ai)2 = xi, thus P3(xi) =
1

4
.

For j < t
q
,Pj(xi) = 0, so since 1 < 3

2 we have that P1(xi) = 0. So, P2(xi) = 1−P3(xi) =
3
4 . Thus, σ =

(2× 3
4
+3× 1

4
) = 9

4
. This ends the proof of Lemma B.1.2.

We now proceed to proving Lemma B.1.3, i.e., the response-function F that gives F(ci,ai,xi) = (ai)ci

for ci ∈ {1,2,3} and F(4,ai,xi) = xi +(ai)1 +(ai)2 +(ai)3, with (ai)1,(ai)2,(ai)3,xi ∈ GF(2). For j <
t
q
,Pj(xi) = 0, so since 1 < 4

2 , P1(xi) = 0.

If xi = 0 we have:

max
y

(

#(F−1
ai,xi

(y))
)

= 4⇔ (ai)1 = (ai)2 = (ai)3, thus P4(xi) =
1

4
.

We have that maxy

(

#(F−1
ai,xi

(y))
)

= 3 is impossible, i.e., P3(xi) = 0. So, P2(xi) = 1−P4(xi) =
3
4 . Finally,

(

4× 1
4
+2× 3

4

)

= 5
2
.

If xi = 1, then maxy

(

#(F−1
ai,xi

(y))
)

= 4 or 2 are impossible, i.e, P4(xi) = 0. Thus, for xi = 1 we have

maxy

(

#(F−1
ai,xi

(y))
)

= 3. We conclude that σ = max
{

5
2 ,3

}

= 3. This ends the proof of Lemma B.1.3.

The proof of Lemma B.1.4 is along the same lines as in the above, especially as in Lemma B.1.2.


