
ar
X

iv
:1

40
1.

58
46

v4
 [

cs
.L

O
]

 1
4

N
ov

 2
01

5

Modal Logics with Hard Diamond-free

Fragments

Antonis Achilleos

The Graduate Center of The City University of New York, New York, USA
aachilleos@gradcenter.cuny.edu

Abstract. We investigate the complexity of modal satisfiability for cer-
tain combinations of modal logics. In particular we examine four exam-
ples of multimodal logics with dependencies and demonstrate that even
if we restrict our inputs to diamond-free formulas (in negation normal
form), these logics still have a high complexity. This result illustrates
that having D as one or more of the combined logics, as well as the
interdependencies among logics can be important sources of complexity
even in the absence of diamonds and even when at the same time in our
formulas we allow only one propositional variable. We then further in-
vestigate and characterize the complexity of the diamond-free, 1-variable
fragments of multimodal logics in a general setting.

Keywords: Modal Logic · Satisfiability · Computational Complexity ·
Diamond-free Fragments · Multi-modal · Lower bounds

1 Introduction

The complexity of the satisfiability problem for modal logic, and thus of its
dual, modal provability/validity, has been extensively studied. Whether
one is interested in areas of application of Modal Logic, or in the proper-
ties of Modal Logic itself, the complexity of modal satisfiability plays an
important role. Ladner has established most of what are now considered
classical results on the matter [17], determining that most of the usual
modal logics are PSPACE-hard, while more for the most well-known logic
with negative introspection, S5, satisfiability is NP-complete; Halpern and
Moses [12] then demonstrated that KD45-satisfiability is NP-complete
and that the multi-modal versions of these logics are PSPACE-complete.
Therefore, it makes sense to try to find fragments of these logics that
have an easier satisfiability problem by restricting the modal elements of
a formula – or prove that satisfiability remains hard even in fragments
that seem trivial (ex. [11, 3]). In this paper we present mostly hardness
results for this direction and for certain cases of multimodal logics with
modalities that affect each other. Relevant syntactic restrictions and their

http://arxiv.org/abs/1401.5846v4

effects on the complexity of various modal logics have been examined in
[13] and [14]. For more on Modal Logic and its complexity, see [12, 9, 20].

A (uni)modal formula is a formula formed by using propositional vari-
ables and Boolean connectives, much like propositional calculus, but we
also use two additional operators, ✷ (box) and ✸ (diamond): if φ is a
formula, then ✷φ and ✸φ are formulas. Modal formulas are given truth
values with respect to a Kripke model (W,R, V),1 which can be seen as
a directed graph (W,R) (with possibly an infinite number of vertices and
allowing self-loops) together with a truth value assignment for the propo-
sitional variables for each world (vertex) in W , called V . We define ✷φ
to be true in a world a if φ is true at every world b such that (a, b) is an
edge, while ✸ is the dual operator: ✸φ is true at a if φ is true at some b
such that (a, b) is an edge.

We are interested in the complexity of the satisfiability problem for
modal formulas (in negation normal form, to be defined later) that have
no diamonds – i.e. is there a model with a world at which our formula is
true? When testing a modal formula for satisfiability (for example, trying
to construct a model for the formula through a tableau procedure), a
clear source of complexity are the diamonds in the formula. When we try
to satisfy ✸φ, we need to assume the existence of an extra world where φ
is satisfied. When trying to satisfy ✸p1 ∧✸p2 ∧✷φn, we require two new
worlds where p1∧φn and p2∧φn are respectively satisfied; for example, for
φ0 = ⊤ and φn+1 = ✸p1∧✸p2∧✷φn, this causes an exponential explosion
to the size of the constructed model (if the model we construct for φn has
k states, then the model for φn+1 has 2k + 1 states). There are several
modal logics, but it is usually the case that in the process of satisfiability
testing, as long as there are no diamonds in the formula, we are not
required to add more than one world to the constructed model. Therefore,
it is natural to identify the existence of diamonds as an important source
of complexity. On the other hand, when the modal logic is D, its models
are required to have a serial accessibility relation (no sinks in the graph).
Thus, when we test ✷φ for D-satisfiability, we require a world where φ
is satisfied. In such a unimodal setting and in the absence of diamonds,
we avoid an exponential explosion in the number of worlds and we can
consider models with only a polynomial number of worlds.

Several authors have examined the complexity of combinations of
modal logic (ex. [18, 8, 15]). Very relevant to this paper work on the com-
plexity of combinations of modal logic is by Spaan in [20] and Demri in

1 There are numerous semantics for modal logic, but in this paper we only use Kripke
semantics.

2

[5]. In particular, Demri studied L1 ⊕⊆ L2, which is L1 ⊕ L2 (see [20])
with the additional axiom ✷2φ→ ✷1φ and where L1, L2 are among K, T,
B, S4, and S5 – modality 1 comes from L1 and 2 from L2. For when L1

is among K, T, B and L2 among S4, S5, he establishes EXP-hardness for
L1 ⊕⊆ L2-satisfiability. We consider L1 ⊕⊆ L2, where L1 is a unimodal
or bimodal logic (usually D, or D4). When L1 is bimodal, L1 ⊕⊆ L2 is
L1 ⊕ L2 with the extra axioms ✷3φ→ ✷1φ and ✷3φ→ ✷2φ.

The family of logics we consider in this paper can be considered part of
the much more general family of regular grammar logics (with converse).
Demri and De Nivelle have shown in [7] through a translation into a
fragment of first-order logic that the satisfiability problem for the whole
family is in EXP (see also [6]). Then, Nguyen and Sza las in [19] gave a
tableau procedure for the general satisfiability problem (where the logic
itself is given as input in the form of a finite automaton) and determined
that it is also in EXP.

In this paper, we examine the effect on the complexity of modal sat-
isfiability testing of restricting our input to diamond-free formulas under
the requirement of seriality and in a multimodal setting with connected
modalities. In particular, we initially examine four examples: D2 ⊕⊆ K,
D2 ⊕⊆ K4, D ⊕⊆ K4, and D42 ⊕⊆ K4.2 For these logics we look at their
diamond-free fragment and establish that they are PSPACE-hard and in
the case of D2 ⊕⊆ K4, EXP-hard. Furthermore, D2 ⊕⊆ K, D ⊕⊆ K4, and
D42 ⊕⊆ K4 are PSPACE-hard and D2 ⊕⊆ K4 is EXP-hard even for their
1-variable fragments. Of course these results can be naturally extended
to more modal logics, but we treat what we consider simple characteristic
cases. For example, it is not hard to see that nothing changes when in the
above multimodal logics we replace K by D, or K4 by D4, as the extra ax-
iom ✷3φ→ ✸3φ (✷2φ→ ✸2φ for D⊕⊆K4) is a derived one. It is also the
case that in these logics we can replace K4 by other logics with positive
introspection (ex. S4, S5) without changing much in our reasoning.

Then, we examine a general setting of a multimodal logic (we con-
sider combinations of modal logics K, D, T, D4, S4, KD45, S5) where we
include axioms ✷iφ → ✷jφ for some pairs i, j. For this setting we deter-
mine exactly the complexity of satisfiability for the diamond-free (and
1-variable) fragment of the logic and we are able to make some interest-
ing observations. The study of this general setting is of interest, because
determining exactly when the complexity drops to tractable levels for the
diamond-free fragments illuminates possibly appropriate candidates for

2 In general, in A ⊕⊆ B, if A a bimodal (resp. unimodal) logic, the modalities 1 and
2 (resp. modality 1) come(s) from A and 3 (resp. 2) comes from logic B.

3

parameterization: if the complexity of the diamond-free, 1-variable frag-
ment of a logic drops to P, then we may be able to develop algorithms
for the satisfiability problem of the logic that are efficient for formulas
of few diamonds and propositional variables; if the complexity of that
fragment does not drop, then the development of such algorithms seems
unlikely (we may be able to parameterize with respect to some other pa-
rameter, though). Another argument for the interest of these fragments
results from the hardness results of this paper. The fact that the com-
plexity of the diamond-free, 1-variable fragment of a logic remains high
means that this logic is likely a very expressive one, even when deprived
of a significant part of its syntax.

A very relevant approach is presented in [13, 14]. In [13], Hemaspaan-
dra determines the complexity of Modal Logic when we restrict the syntax
of the formulas to use only a certain set of operators. In [14], Hemaspaan-
dra et al. consider multimodal logics and all Boolean functions. In fact,
some of the cases we consider have already been studied in [14]. Unlike
[14], we focus on multimodal logics where the modalities are not com-
pletely independent – they affect each other through axioms of the form
✷iφ → ✷jφ. Furthermore in this setting we only consider diamond-free
formulas, while at the same time we examine the cases where we allow
only one propositional variable. As far as our results are concerned, it
is interesting to note that in [13, 14] when we consider frames with se-
rial accessibility relations, the complexity of the logics under study tends
to drop, while in this paper we see that serial accessibility relations (in
contrast to arbitrary, and sometimes reflexive, accessibility relations) con-
tribute substantially to the complexity of satisfiability.

Another motivation we have is the relation between the diamond-free
fragments of Modal Logic with Justification Logic. Justification Logic can
be considered an explicit counterpart of Modal Logic. It introduces justi-
fications to the modal language, replacing boxes (✷) by constructs called
justification terms. When we examine a justification formula with respect
to its satisfiability, the process is similar to examining the satisfiability of
a modal formula without any diamonds (with some extra nontrivial parts
to account for the justification terms). Therefore, as we are interested in
the complexity of systems of Multimodal and Multijustification Logics,
we are also interested in these diamond-free fragments. For more on Jus-
tification Logic and its complexity, the reader can see [2, 16]; for more on
the complexity of Multi-agent Justification Logic and how this paper is
connected to it, the reader can see [1].

4

It may seem strange that we restrict ourselves to formulas without
diamonds but then we implicitly reintroduce diamonds to our formulas
by considering serial modal logics – still, this is not the same situation
as allowing the formula to have any number of diamonds, as seriality is
only responsible for introducing at most one accessible world (for every
serial modality) from any other. This is a nontrivial restriction, though,
as we can see from this paper’s results. Furthermore it corresponds well
with the way justification formulas behave when tested for satisfiability.

2 Modal Logics and Satisfiability

For the purposes of this paper it is convenient to consider modal formu-
las in negation normal form (NNF) – negations are pushed to the atomic
level (to the propositional variables) and we have no implications – and
this is the way we define our languages. Note that for all logics we con-
sider, every formula can be converted easily to its NNF form, so the NNF
fragment of each logic we consider has exactly the same complexity as
the full logic. We discuss modal logics with one, two, and three modali-
ties, so we have three modal languages, L1 ⊆ L2 ⊆ L3. They all include
propositional variables, usually called p1, p2, . . . (but this may vary based
on convenience) and ⊥. If p is a propositional variable, then p and ¬p are
called literals and are also included in the language and so is ¬⊥, usually
called ⊤. If φ,ψ are in one of these languages, so are φ∨ψ and φ∧ψ. Fi-
nally, if φ is in L3, then so are ✷1φ,✷2φ,✸1φ,✸2φ,✷3φ,✸3φ. L2 includes
all formulas in L3 that have no ✷3,✸3 and L1 includes all formulas in L2

that have no ✷2,✸2. In short, Ln is defined in the following way, where
1 ≤ i ≤ n: φ ::= p | ¬p | ⊥ | ¬⊥ | φ∧ φ | φ∨ φ | ✸iφ | ✷iφ. If we did not
only consider formulas in negation normal form, we would include ¬φ. If
we consider formulas in L1, ✷1 may just be called ✷.3

A Kripke model for a trimodal logic (a logic based on language L3)
is a tuple M = (W,R1, R2, R3, V), where R1, R2, R3 ⊆ W × W and
for every propositional variable p, V (p) ⊆ W . Then, (W,R1, V) (resp.
(W,R1, R2, V)) is a Kripke model for a unimodal (resp. bimodal) logic.
Then, (W,R1), (W,R1, R2), and (W,R1, R2, R3) are called frames and
R1, R2, R3 are called accessibility relations. We define the truth relation |=
between models, worlds (elements of W , also called states) and formulas
in the following recursive way:

3 It may seem strange that we introduce languages with diamonds and then only
consider their diamond-free fragments. When we discuss K, we consider the full
language, so we introduce diamonds for L1, L2, L3 for uniformity.

5

M, a 6|= ⊥;
M, a |= p iff a ∈ V (p) and M, a |= ¬p iff a /∈ V (p);
M, a |= φ ∧ ψ iff both M, a |= φ and M, a |= ψ;
M, a |= φ ∨ ψ iff M, a |= φ or M, a |= ψ;
M, a |= ✸iφ iff there is some b ∈W such that aRib and M, b |= φ;
M, a |= ✷iφ iff for all b ∈ W such that aRib it is the case that
M, b |= φ.

In this paper we deal with five logics: K, D2⊕⊆K, D2⊕⊆K4, D⊕⊆K4,
and D42 ⊕⊆ K4. All except for K and D⊕⊆ K4 are trimodal logics, based
on language L3, K is a unimodal logic (the simplest normal modal logic)
based on L1, and D ⊕⊆ K4 is a bimodal logic based on L2. Each modal
logic M is associated with a class of frames C. A formula φ is then called
M -satisfiable iff there is a frame F ∈ C, where C the class of frames
associated to M , a model M = (F , V), and a state a of M such that
M, a |= φ. We say that M satisfies φ, or a satisfies φ in M, or M models
φ, or that φ is true at a.

K is the logic associated with the class of all frames;
D2 ⊕⊆ K is the logic associated with the class of frames F = (W,R1, R2, R3)

for which R1, R2 are serial (for every a there are b, c such that aR1b,
aR2c) and R1 ∪R2 ⊆ R3;

D2 ⊕⊆ K4 is the logic associated with the class of frames F = (W,R1, R2, R3)
for which R1, R2 are serial, R1 ∪R2 ⊆ R3, and R3 is transitive;

D⊕⊆ K4 is the logic associated with the class of frames F = (W,R1, R2)
for which R1 is serial, R1 ⊆ R2, and R2 is transitive;

D42 ⊕⊆ K4 is the logic associated with the class of frames F = (W,R1, R2, R3)
for which R1, R2 are serial, R1∪R2 ⊆ R3 and R1, R2, R3 are transitive.

Tableau A way to test for satisfiability is by using a tableau procedure.
A good source on tableaux is [4]. We present tableau rules for K and for
the diamond-free fragments of D2 ⊕⊆ K and then for the remaining three
logics. The main reason we present these rules is because they are useful
for later proofs and because they help to give intuition regarding the way
we can test for satisfiability. The ones for K are classical and follow right
away. Formulas used in the tableau are given a prefix, which intuitively
corresponds to a state in a model we attempt to construct and is a string
of natural numbers, with . representing concatenation. The tableau pro-
cedure for a formula φ starts from 0 φ and applies the rules it can to
produce new formulas and add them to the set of formulas we construct,
called a branch. A rule of the form a

b | c
means that the procedure nonde-

terministically chooses between b and c to produce, i.e. a branch is closed

6

σ φ ∨ ψ

σ φ | σ ψ

σ φ ∧ ψ

σ φ

σ ψ

σ ✷φ

σ.i φ

where σ.i has al-
ready appeared in
the branch.

σ ✸φ

σ.i φ

where σ.i has not
yet appeared in
the branch.

Table 1. Tableau rules for K.

under that application of that rule as long as it includes b or c. If the
branch has σ ⊥, or both σ p and σ ¬p, then it is called propositionally
closed and the procedure rejects its input. Otherwise, if the branch con-
tains 0 φ, is closed under the rules, and is not propositionally closed, it is
an accepting branch for φ; the procedure accepts φ exactly when there is
an accepting branch for φ. The rules for K are in Table 1.

For the remaining logics, we are only concerned with their diamond-
free fragments, so we only present rules for those to make things simpler.
As we mention in the Introduction, all the logics we consider can be seen
as regular grammar logics with converse ([7]), for which the satisfiability
problem is in EXP. This already gives an upper bound for the satisfiability
of D2 ⊕⊆ K4 (and for the general case of (N,⊂, F) from Section 4). We
present the tableau rules anyway (without proof), since it helps to visually
give an intuition of each logic’s behavior, while it helps us reason about
how some logics reduce to others.

To give some intuition on the tableau rules, the main differences from
the rules for K are that in a frame for these logics we have two or three
different accessibility relations (lets assume for the moment that they
are R1, R3, and possibly R2), that one of them (R3) is the (transitive
closure of the) union of the others, and that we can assume that due to
the lack of diamonds and seriality, R1 and R2 are total functions on the
states. To establish this, notice that the truth of diamond-free formulas
in NNF is preserved in submodels; when R1, R2 are not transitive, we
can simply keep removing pairs from R1, R2 in a model as long as they
remain serial. As for the tableau for D42 ⊕⊆ K4, notice that for i = 1, 2,
Ri can map each state a to some c such that for every ✷iψ, subformula
of φ, c |= ✷iψ → ψ. If a is such a c, we map a to a; otherwise we can
find such a c in the following way. Consider a sequence bRic1Ric2Ri · · · ; if
some cj 6|= ✷iψ → ψ, then cj |= ✷iψ, so for every j′ > j, cj′ |= ✷iψ → ψ.
Since the subformulas of φ are finite in number, we can find some large
enough j ∈ N and set c = cj . Notice that using this construction on c, Ri

maps c to c, is transitive and serial.

7

σ φ ∨ ψ

σ φ | σ ψ

σ φ ∧ ψ

σ φ

σ ψ

σ ✷1φ

σ.1 φ

σ ✷2φ

σ.2 φ

σ ✷3φ

σ.1 φ
σ.2 φ

Table 2. The rules for D2 ⊕⊆ K

The rules for D2 ⊕⊆ K are in Table 2.

We sketch a proof that these tableau procedures are correct, i.e. for
every diamond-free φ, there is a model for φ iff there is an accepting
branch for φ. From an accepting branch for φ we construct a model for
φ: let W be all the prefixes that have appeared in the branch,

R1 = {(w,w.1) ∈W 2} ∪ {(w,w) ∈W 2 | w.1 /∈W},

R2 = {(w,w.2) ∈W 2} ∪ {(w,w) ∈W 2 | w.2 /∈W},

R3 = R1 ∪ R2, and V (p) = {w ∈ W | w p appears in the branch}. Then,
it is not hard to see that (W,R1, R2, R3) is indeed a frame for D2 ⊕⊆ K

(R1, R2 ⊆ R3 and they are all serial), and that for M = (W,R1, R2, R3, V),
M, 0 |= φ – by proving through a straightforward induction on ψ that for
every w ψ in the branch, M, w |= ψ.

On the other hand, given M, a |= φ, we can construct an accepting
branch for φ in the following way. We map 0 to a and for every w.i, where
i = 1, 2, if w is mapped to state b of the model, then w.i is mapped to
some state c, where bRic. Then we can make sure we make appropriate
nondeterministic choices when applying a rule to ensure that whenever
w ψ is produced and w is mapped to a, then M, a |= ψ: if ψ = φ, then
this is trivially correct; if we apply the first rule on w ψ1 ∨ψ2, then since
M, a |= ψ1 ∨ ψ2, it is the case that M, a |= ψ1 or M, a |= ψ2 and we can
choose the appropriate formula to introduce to the branch; the remaining
rules are trivial. Therefore, the branch can never be propositionally closed.

To come up with tableau rules for the other three logics, we can modify
the above rules. The first two rules that cover the propositional cases are
always the same, so we give the remaining rules for each case. In the
following, notice that the resulting branch may be infinite. However we
can simulate such an infinite branch by a finite one: we can limit the
size of the prefixes, as after a certain size (up to 2|φ|, where φ the tested
formula) it is guaranteed that there will be two prefixes that prefix the
exact same set of formulas. Thus, we can either assume the procedure
terminates or that it generates a full branch, depending on our needs. In

8

σ ✷1φ

σ.1 φ

σ ✷2φ

σ.2 φ

σ ✷3φ

σ.1 φ
σ.2 φ
σ.1 ✷3φ

σ.2 ✷3φ

Table 3. Tableau rules for the diamond-free fragment of D2 ⊕⊆ K4

σ ✷1φ

σ.1 φ

σ ✷2φ

σ.1 φ
σ.1 ✷2φ

Table 4. Tableau rules for the diamond-free fragment of D⊕⊆ K4

that latter case, to ensure a full branch is generated, we can give lowest
priority to a rule when it generates a new prefix.

The rules for the diamond-free fragment of D2 ⊕⊆ K4 are in Table 3;
the rules for the diamond-free fragment of D ⊕⊆ K4 in Table 4; and the
rules for the diamond-free fragment of D42 ⊕⊆ K4 are in Table 5.

We skip any proof of correctness for these cases, as they are similar to
the previous case. The exception is the tableau procedure for D42 ⊕⊆ K4,
which is a little different and for which we must give some adjustments
in the constructions of the model from the accepting branch and of the
accepting branch from a model. The construction of the model is similar
as for the case of D2⊕⊆K, only this time for i = {1, 2} Ri = {(σ, ni(σ)) ∈
W 2}∪ {(σ, σ) ∈W 2 | ni(σ) /∈W} (notice they are transitive) and R3 the
transitive closure of R1 ∪ R2. On the other hand, when constructing an
accepting branch, we need to make sure that if we map σ to b, then we
map σ.i to some c such that for every ✷iψ, subformula of φ, c |= ✷iψ → ψ.
We can find such a c by considering a sequence bRic1Ric2Ri · · · ; if some
cj 6|= ✷iψ → ψ, then cj |= ✷iψ, so for every j′ > j, cj |= ✷iψ → ψ. Since
the subformulas of φ are finite in number, we can find some large enough
j ∈ N and set c = cj .

Proposition 1. The satisfiability problem for the diamond-free fragments
of D2 ⊕⊆ K, of D ⊕⊆ K4, and of D42 ⊕⊆ K4 is in PSPACE; satisfiability
for the diamond-free fragment of D2 ⊕⊆ K4 is in EXP.

Proof. We can use the rules to prove that satisfiability of the diamond-
free fragment of D2⊕⊆K is in PSPACE. In fact, we can use an alternating
polynomial-time algorithm to simulate the tableau procedure and given
a formula φ to construct an accepting branch for φ. The algorithm uses

9

σ ✷1φ

n1(σ) φ

σ ✷2φ

n2(σ) φ

σ ✷3φ

n1(σ) φ
n2(σ) φ
n1(σ) ✷3φ

n2(σ) ✷3φ

where ni(σ) = σ if σ = σ′.i for some σ′ and ni(σ) = σ.i otherwise.
Table 5. Tableau rules for the diamond-free fragment of D42 ⊕⊆ K4

an existential non-deterministic choice when we apply the first rule to
choose which of the resulting prefixed formulas to add to the branch;
it also uses a universal choice to choose between σ.1 and σ.2 for every
σ it has produced. Other than that, it applies all the tableau rules it
can, until there are none left. It is not hard to construct an accepting
tableau branch from an accepting run of the algorithm and vice-versa.
The fact that the algorithm runs in polynomial time can be established
by observing that only up to |φ| formulas can be prefixed by a specific
prefix, while the nesting depth of the boxes in the formulas (also called
modal depth) strictly decreases as the length of their prefix increases.

To establish upper complexity bounds for the diamond-free fragments
of the remaining logics, we can use a similar procedure, only this time
it is an alternating polynomial space algorithm to simulate the tableau
procedure – we do not have the same bounds on the length of the prefixes
as above, but we can just keep formulas prefixed by a single prefix in
memory and as we argued before this is at most |φ| formulas – of course
this means we give priority to propositional rules. Furthermore we do
not even need to keep the current prefix in memory, but we can just use
a counter of polynomial size for the length of the prefix (an important
point, because the length of a prefix can be exponential); when the counter
becomes larger than 2|φ|, then of course we can terminate. This gives an
(APSPACE =)EXP-upper bound for the complexity of satisfiability for the
diamond-free fragment of D2⊕⊆K4; to get a PSPACE-upper bound for the
other two logics, notice that the tableau for D⊕⊆K4 uses only prefixes of
the form 0.1x and the tableau for D42 ⊕⊆ K4 only subprefixes of 0.(1.2)ω

and 0.(2.1)ω , therefore making universal choices unnecessary. ⊓⊔

The cases of D ⊕⊆ K4 and D42 ⊕⊆ K4 are especially interesting. In
[5], Demri established that D ⊕⊆ K4-satisfiability (and because of the
following section’s results also D42 ⊕⊆ K4-satisfiability) is EXP-complete.
In this paper, though, we establish that the complexity of these two logics’
diamond-free (and one-variable) fragments are PSPACE-complete (in this

10

section we establish the PSPACE upper bounds, while in the next one the
lower bounds), which is a drop in complexity (assuming PSPACE 6= EXP),
but not one that makes the problem tractable (assuming P 6= PSPACE).

3 Lower Complexity Bounds

In this section we give hardness results for the logics of the previous
section – except for K. In [3], the authors prove that the variable-free
fragment of K remains PSPACE-hard. We make use of that result here
and prove the same for the diamond-free, 1-variable fragment of D2⊕⊆K.
Then we prove EXP-hardness for the diamond-free fragment of D2 ⊕⊆ K4

and PSPACE-hardness for the diamond-free fragments of D⊕⊆ K4 and of
D42⊕⊆K4, which we later improve to the same result for the diamond-free,
1-variable fragments of these logics.

Proposition 2. The diamond-free, 1-variable fragment of D2 ⊕⊆ K is
PSPACE-complete.

Proof. The upper bound was given by Proposition 1. We give a translation
from unimodal formulas to formulas of three modalities such that φ is
K-satisfiable if and only if φtr (the result of the translation) is D2 ⊕⊆

K-satisfiable. The translation uses an extra propositional variable (not
appearing in φ), q. It is defined in the following way.

We want the tableau for φtr to simulate the tableau for φ. However,
φ may have diamonds, which are not allowed in φtr. When the tableau
for K encounters a diamond, then it generates a unique prefix. Therefore,
we must replace a diamond with something which will generate a unique
prefix in the tableau for D2⊕⊆K. This unique prefix can be generated by
a unique sequence of boxes, which is provided by function dseq (defined
below):

For a formula φ, let θ1, . . . , θk be an enumeration of its subformulas
and in increasing order with respect to their size (to ensure that if η1 is
a subformula of η2, then η1 appears first). Also, let4

dseq : {1, 2, . . . , k} −→ {✷1,✷2}
⌈log k⌉

be some one-to-one mapping from those subformulas to a unique sequence
of boxes. The actual mapping is not important, but an easy choice would

4 Notice that if there is at least one diamond in φ, then φ has at least two subfor-
mulas, thus if there are diamonds, then log k ≥ 1; if k = 1, then this discussion is
meaningless: φtr = φ.

11

be dseq(x) = ✷x1+1✷x2+1 · · ·✷x⌈log k⌉+1, where bin(x) := x1x2 · · · x⌈log k⌉
is the binary representation of x – so this is the one we assume. We can
define itr by recursion on i:

– if θi is a literal, ⊤, or ⊥, then itr = θi;

– if θi = θj ◦ θl, where ◦ is either ∧ or ∨, then itr = jtr ◦ ltr;

– if θi = ✷θj, then itr = ✷
⌈log k⌉
3 (jtr ∨ ¬q);

– finally, if θi = ✸θj, then itr = dseq(i)(jtr ∧ q).

Then, φtr = ktr ∧ q (as θk is actually φ). The extra variable, q, is used to
mark which prefixes in the D2⊕⊆ K-tableau correspond to prefixes in the
K-tableau that have appeared.

For convenience assume that in the K-tableau for φ, σ θi, where θi =
✸η produces σ.i η – which is reasonable, since for each σ each θi appears at
most once. Assume a complete accepting K-branch b for φ. Let m(0) = 0
and m(σ.i) = m(σ).bin(i). Then, b′ is constructed in a recursive way, so
that for every σ′ η, σ′ q ∈ b′, where η 6= q,¬q, there is some σ θi ∈ b
such that σ′ = m(σ) and η = itr. When we apply the ✷1- or ✷2-rule from
the ones we presented in Table 2, that is in the course of generating a
prefix m(σ) – so, from m(σ) itr, where θi = ✸θj, we eventually generate
m(σ.i) jtr and m(σ.i) q (and some auxiliary boxed formulas in-between);
when we apply the ✷3-rule, then this started from some m(σ) itr, where
θi = ✷θj, so for every σ.l θj ∈ b, we produce m(σ.l) jtr, while for σ.l θj ∈
b (where l ≤ k), we produce m(σ.l) ¬q (and auxiliary boxed formulas
in-between); when we apply a propositional rule on m(σ) itr ◦ jtr , we
just need to make the same nondeterministic choice that was made for
b (if applicable). Then, naturally, if b′ is rejecting, then that is because
m(σ) p,m(σ) ¬p ∈ b′, or m(σ) ⊥ ∈ b′; but then either σ p, σ ¬p ∈ b, or
σ ⊥ ∈ b, respectively.

On the other hand it is easier to give a complete accepting K-branch
b for φ given a complete accepting D2 ⊕⊆ K-branch b′ for φtr: b = {σ θi |
m(σ) itr ∈ b′}. We leave the reader to verify this claim.

Notice that χtr has no diamonds and the number of propositional
variables in χtr is one more than in χ. Since we can assume χ is variable-
free (see [3]), the proposition follows. ⊓⊔

For the remaining logics we first present a reduction to show hardness
for their diamond-free fragments and then we can use translations to their
1-variable fragments to transfer the lower bounds to these fragments. We
first treat the case of D2 ⊕⊆ K4.

12

Lemma 1. The diamond-free fragment of D2 ⊕⊆ K4 is EXP-complete,
while the diamond-free fragments of D ⊕⊆ K4 and of D42 ⊕⊆ K4 are
PSPACE-complete.

Proof. The upper bounds were given by Proposition 1. The proof for the
lower bounds resembles the one in [10] and is by reduction from a generic
APSPACE problem given as the alternating Turing machine of two tapes
(input and working tape) which uses polynomial space to decide it. Let
the machine be (Q,Σ, δ, s), where Q the set of states, Σ the alphabet,
δ the transition relation and s the initial state. Let Q = U ∪ E, where
E and U are distinct, E the set of existential and U the set of universal
states and assume that the machine only has two choices at every step
of the computation, provided by two transition functions, δ1, δ2: when
the transition functions are given state q ∈ Q, and symbols a, b ∈ Σ
for tape 1 and 2 respectively, for i = 1, 2, δi(q, a, b) = (q′, c, j1, j2) ∈
Q×Σ × {0,−1, 1}2, where q′ the new state, c the symbol to replace b in
tape 2, and j1, j2 the respective moves for each tape, where 0 indicates no
move, −1 a move to the left, and 1 a move to the right. Furthermore, let
x = x1x2 · · · x|x| be the input, where for every i ∈ {1, 2, . . . , |x|}, xi ∈ Σ.
Since the Turing machine uses polynomial space, there is a polynomial p,
such that the working tape only uses cells 1 to p(|x|) for an input x. For the
input tape, we only need cells 0 through |x|+1 (we may assume additional
symbols to indicate the beginning and end of the input), because the head
does not go any further and an output tape is not needed, since we are
interested only in decision problems. Therefore, there are Y,N ∈ Q, the
accepting and rejecting states respectively. Let r1 = {0, 1, 2, . . . , |x| + 1}
and r2 = {1, 2, . . . , p(|x|)}. A configuration c of the Turing machine is
called accepting if the computation of the machine that starts from c is
an accepting computation.

For this reduction, a formula will be constructed that will enforce
that any model satisfying it must describe a computation by the Turing
machine. Each propositional variable will correspond to some fact about
a configuration of the machine and the following propositional variables
will be used:

– t1[i], t2[j], for every i ∈ r1, j ∈ r2; t1[i] will correspond to the head for
the first tape pointing at cell i and similarly for t2[j],

– σ1[a, i], σ2[a, j], for every a ∈ Σ, i ∈ r1, j ∈ r2; σ1[a, i] will correspond
to cell i in the first tape having the symbol a and similarly for σ2[a, j]
and the second tape,

– q[e], for every e ∈ Q; q[e] means the machine is currently in state e.

13

For each configuration c of the Turing machine there is a formula that
describes it. This formula is the conjunction of the following and from now
on it will be denoted as φc: q[e], if e is the state of the machine in c; t1[i]
and t2[j], if the first tape’s head is on cell i and the second tape’s head
is on cell j; σ1[a1, i1], σ2[a2, i2], if i1 ∈ r1, i2 ∈ r2 and a1 is the current
symbol in cell i1 of the first tape and a2 is the current symbol in cell i2
of the second tape.

We need the following formulas. Intuitively, a world in a model for
φ corresponds to a configuration of our Turing machine. q ensures there
is exactly one state at every configuration; σ that there is exactly one
symbol at every position of every tape; t that for each tape the head is
located at exactly one position; σ′ ensures that the only symbols that
can change from one configuration to the next are the ones located in a
position the head points at; ac ensures we never reach a rejecting state
(therefore the machine accepts); st starts the computation at the starting
configuration of the machine; finally, dE , dU ensure for each configuration
that the next one is given by the transition relation (functions). Then, if
com = q ∧ σ ∧ t ∧ σ′ ∧ ac ∧ dE ∧ dU we define φ = st ∧ com ∧✷3com.

q =
∨

e∈Q

q[e] ∧
∧

e,f∈Q,
e 6=f

¬ (q[e] ∧ q[f]) ;

σ =
∧

j∈{1,2},
i∈rj

∨

a∈Σ

σj [a, i] ∧
∧

a,b∈Σ, a6=b

¬ (σj[a, i] ∧ σj [b, i])

 ;

t =
∧

j∈{1,2}

∨

i∈rj

tj[i] ∧
∧

i,k∈rj i 6=k

¬ (tj[i] ∧ tj[k])

 ;

σ′ =
∧

j∈{1,2}, i,i′∈rj ,
i 6=i′, a∈Σ

[(

tj [i] ∧ σj [a, i
′]
)

→ ✷1σj[a, i
′] ∧ ✷2σj [a, i

′]
]

;

ac = ¬q[N];
st = φc0 , where c0 is the initial configuration of the machine;
let locconf(e, i1, i2, j1, j2) = q[e] ∧ σ1[i1, j1] ∧ σ2[i2, j2] ∧ t1[j1] ∧ t2[j2] and
D(e, k, l1, l2,m1,m2) = q[e] ∧ σ2[k, l2] ∧ t1[l1 +m1] ∧ t2[l2 +m2]; then,

dE =
∧

(e,i1,i2)∈E×Σ×Σ,
j1∈r1, j2∈r2

locconf(e, i1, i2, j1, j2) →
✷1D(e1, k1, j1, j2,m

1
1,m

1
2)

∨ ✷1D(e2, k2, j1, j2,m
2
1,m

2
2)

 ,

14

where (e1, k1,m
1
1,m

1
2) = δ1(e, i1, i2), (e2, k2,m

2
1,m

2
2) = δ2(e, i1, i2);

dU =
∧

(e,i1,i2)∈U×Σ×Σ,
j1∈r1, j2∈r2

locconf(e, i1, i2, j1, j2) →
✷1D(e1, k1, j1, j2,m

1
1,m

1
2)

∧ ✷2D(e2, k2, j1, j2,m
2
1,m

2
2)

 ,

where (e1, k1,m
1
1,m

1
2) = δ1(e, i1, i2), (e2, k2,m

2
1,m

2
2) = δ2(e, i1, i2).

The few implications that appear above are of the form a∧b∧· · ·∧c→
ψ (where a, b, . . . , c are propositional variables) and can thus be rewritten
in negation normal form: ¬a ∨ ¬b ∨ · · · ∨ ¬c ∨ ψ. The correctness of the
reduction follows from the following two claims.

Claim: If for some model M, w |= φ and for some u, such that (u = w
or wR3u), u |= φc and c1, c2 are the next configurations from c, then if c a
universal configuration, there are wR3u1 and wR3u2, such that u1 |= φc1,
u2 |= φc2 and if c an existential configuration, there is some wR3u1, such
that either u1 |= φc1 or u1 |= φc2. From this claim, it immediately follows
that if φ is satisfiable, then the Turing machine accepts its input (since it
never rejects it). We prove the claim for the case of the universal configu-
ration. Because of formulas q, σ, t, in every world v, such that wR3v, there
is exactly one φc satisfied. There are worlds u1, u2, (because of seriality of
R1, R2) such that wR1u1 and wR2u2 and if u1 |= φc3 , u2 |= φc4 , then be-
cause of dU , c3 will differ from c in all respects δ1 demands; furthermore,
because of σ′, c3 differs only in the ways δ1 (or δ2) demands and we can
reason the same way for c4. Therefore, {c3, c4} = {c1, c2}.

Claim: If the Turing machine accepts x, then φ is satisfiable. Given the
machine’s computation tree for x, we can construct model (W,R1, R2, R3, V)
for φ. W is the set of configurations in the computation tree; let R1, R2

be minimal such that if u is a universal configuration and v,w its next
configurations, then uR1v and uR2w (or uR2v and uR1w), while if u
an existential configuration and v its next accepting configuration, then
uR1v and uR2v; let R3 be the transitive closure of R1 ∪R2. V is defined
to be such that if M = (W,R1, R2, R3, V), then M, u |= φu. Then, it is
not hard to see that M, c0 |= φ.

For the case of D ⊕⊆ K4, notice that if the machine is deterministic,
we can eliminate dU , half of dE and the subformulas beginning with ✷2

from σ′ and rename the remaining modalities from ✷1,✷3 to ✷1,✷2. For
the case of D42 ⊕⊆ K4, we can define a translation from the language of
D⊕⊆ K4 to the language of D42 ⊕⊆ K4: given a formula φ with ✷1,✷2 as
modalities, simply replace ✷2 by ✷1✷3✷2 and ✷1 by ✷1✷2. The remaining
argument is similar for the one for the case of D2 ⊕⊆ K – the iteration of

15

✷1 and ✷2 helps cut off the propagation of boxes in the tableau, which
does not happen for D⊕⊆ K4. ⊓⊔

From Lemma 1, with some extra work, we can prove the following.

Proposition 3. The 1-variable, diamond-free fragment of D2 ⊕⊆ K4 is
EXP-complete; the 1-variable, diamond-free fragments of D⊕⊆ K4 and of
D42 ⊕⊆ K4 are PSPACE-complete.

Proof. We present a method to translate a diamond-free formula φ in
negation normal form into a diamond-free, 1-variable formula φ′ such
that φ is D2 ⊕⊆ K4-satisfiable iff φ′ is D2 ⊕⊆ K4-satisfiable. Let p1, . . . , pk
be all the propositional variables that appear in φ and assume q is not
one of them. Then, pvi = ✷1✷

i
2q and (¬pi)

v = ✷1✷
i
2¬q. φ

′ results from φ
by replacing each literal l by lv. Notice that in a model M and state u,
only one of pvi and (¬pi)

v can be true. Let M = (W,R1, R2, R3, V), where
(W,R1 ∪ R2) is an infinite binary rooted tree (aR1b iff b the left child of
a and aR2b iff b the right child of a), u ∈ W , the root, and M, u |= φ
(it is not hard to see how to construct such a model from any other); R3

is the transitive closure of R1 ∪ R2. Then, for every x ∈ W , if there are
some y ∈ W and some positive j ∈ N, such that yR1R

j
2x (Rj

2 is defined:

R1
2 = R2 and aRj+1

2 b iff there is some c s.t. aR2cR
j
2b), then y, j are unique.

Thus, if V ′(q) = {x ∈W | ∃yR1R
j
2x s.t. y ∈ V (pj)}, it is the case that for

M′ = (W,R1, R2, R3, V
′), M′, u |= φ′. On the other hand given a model

M′, u |= φ′, we can just define V (pi) = {x ∈ W | M′, x |= ✷1✷
i
2q}, thus

φ is satisfiable iff φ′ is. If φ is diamond-free, then φ′ is diamond-free.

Notice that the method above does not work for D ⊕⊆ K4. Thus we
use another method: we translate a formula φ to a formula φ1 such that
φ is D⊕⊆ K4-satisfiable iff φ1 is D⊕⊆ K4-satisfiable and φ1 only uses one
variable. Let p1, . . . , pk be the propositional variables that appear in φ
and let q be a new variable (not among p1, . . . , pk). Let s = q ∧ ✷1q ∧
∧k

i=1✷
2i+1¬q. Then, we recursively define: (pi)

1 = ✷
2i
1 q; (¬pi)

1 = ✷
2i
1 ¬q;

⊥1 = ⊥; (¬⊥)1 = ¬⊥; (ψ1 ∧ ψ2)
1 = ψ1

1 ∧ ψ1
2 ; (ψ1 ∨ ψ2)

1 = ψ1
1 ∨ ψ1

2 ;
(✷1ψ)1 = ✷

2k+2
1 (ψ1 ∧ s) (✷x

1 is x iterations of ✷1); finally, (✷2ψ)1 =
✷2((ψ

1 ∧ q ∧ ✷1q) ∨ (¬q ∨ ✷¬q)). Formula s gives a “mold” to a model.
We can assume that the frames for D ⊕⊆ K4 are of the form (N,+1,≤).
Furthermore, if we restrict ourselves to formulas of the form ψ1, then
we can assume that for every n ∈ N, n(2k + 2), n(2k + 2) + 1 |= q and
for 1 ≤ i ≤ k, n(2k + 2) + 2i + 1 |= ¬q. Then, n(2k + 2) |= (✷1ψ)1 if
and only if (n + 1)(2k + 2) |= ψ1, while q ∧ ✷1q is true only at multiples
of 2k + 2. So, n(2k + 2) |= (✷2ψ)1 exactly when (n + 1)(2k + 2) |= ψ1.

16

Therefore, by induction on φ, we can see that φ is D⊕⊆ K4-satisfiable iff
φ1 is D⊕⊆ K4-satisfiable.

We can end this argument like the one for the case of D2 ⊕⊆ K: the
tableau run for φ can simulate the run for φ1 and vice-versa. Just map
every prefix σ from the first tableau to σ′ of the second one, such that
0′ = 0 and (σ.1)′ = σ′.12k+2. Then σ ψ appears in a branch of the first
procedure iff σ′ ψ1 appears in a branch which results from the “same”
nondeterministic choices in the second procedure. Furthermore, it is not
hard to see that σ′ (pi)

1 and σ′ (¬pj)
1 result in a closed branch iff i = j.

For the case of D42 ⊕⊆ K4, simply notice that the translation from
D⊕⊆ K4 in the proof of Lemma 1 does not introduce any variables. ⊓⊔

Remarks One may wonder whether we can say the same for the variable-
free fragment of these logics. The answer however is that we cannot. The
models for these logics have accessibility relations that are all serial. This
means that any two models are bisimilar when we do not use any propo-
sitional variables, thus any satisfiable formula is satisfied everywhere in
any model, thus we only need one prefix for our tableau and we can solve
satisfiability recursively on φ in polynomial time.

Notice that for the proofs above, the requirement that the respective
accessibility relations are serial was central. Indeed, otherwise there was
no way to achieve these results, as we would not be able to force extra
worlds in a constructed model. Then we would have to rely on the com-
plexity contributed by propositional reasoning and at best we would get
an NP-hardness result – as long as we allowed enough variables in our
formula.

Then what about D4⊕⊆ K4? Maybe we could attain similar hardness
results for this logic as for D42⊕⊆K4. Again, the answer is no. As frames
for D4 come with a serial and transitive accessibility relation, frames for
D4⊕⊆ K4 are of the form (W,R1, R2), where R1 ⊆ R2, R1, R2 are serial,
and R1 is transitive. It is not hard to come up with the following tableau
rule(s) for the diamond-free fragment, by adjusting the ones we gave for
D42 ⊕⊆ K4 to simply produce 0.1 φ from every σ ✷iφ. This drops the
complexity of satisfiability for the diamond-free fragment of D4⊕⊆ K4 to
NP (and of the diamond-free, 1-variable fragment to P), as we can only
generate two prefixes during the tableau procedure. The following section
explores when we can produce hardness results like the ones we gave in
this section.

17

4 A General Characterization

In this section we examine a more general setting and we conclude by es-
tablishing tight conditions that determine the complexity of satisfiability
of the diamond-free (and 1-variable) fragments of such multimodal logics.

A general framework would be to describe each logic with a triple
(N,⊂, F), where N = {1, 2, . . . , |N |} 6= ∅, ⊂ a binary relation on N , and
for every i ∈ N , F (i) is a modal logic; a frame for (N,⊂, F) would be
(W, (Ri)i∈N), where for every i ∈ N , (W,Ri) a frame for F (i) and for
every i ⊂ j, Ri ⊂ Rj . It is reasonable to assume that (N,⊂) has no
cycles – otherwise we can collapse all modalities in the cycle to just one
– and that ⊂ is transitive. Furthermore, we also assume that all F (i)’s
have frames with serial accessibility relations – otherwise there is either
some j ⊆ i for which F (j)’s frames have serial accessibility relations and
R(i) would inherit seriality from Rj, or when testing for satisfiability, ✷iψ
can always be assumed true by default (the lack of diamonds means that
we do not need to consider any accessible worlds for modality i), which
allows us to simply ignore all such modalities, making the situation not
very interesting from an algorithmic point of view. Thus, we assume that
F (i) ∈ {D,T,D4,S5}.56 The cases for which ⊂= ∅ have already had the
complexity of their diamond-free (and other) fragments determined in
[14]. For the general case, we already have an EXP upper bound from [7],
as we explain in the following subsection.

4.1 Regular Gramar Logics

We briefly demonstrate that the EXP upper bound from [7] applies in the
case of (N,⊂, F). In this subsection we present the basic definitions about
regular grammar logics with converse and we sketch an argument why
(N,⊂, F) is (or can be reduced to) a regular grammar logic with converse.
Definitions and most of our arguments come from [7].7 For every agent

5 We can consider more logics as well, but these ones are enough to make the points
we need. Besides, it is not hard to extend the reasoning of this section to other logics
(ex. B, S4, KD45 and due to the observation above, also K, K4), especially since the
absence of diamonds makes the situation simpler.

6 Frames for D have serial accessibility relations; frames for T have reflexive accessibil-
ity relations; frames for D4 have serial and transitive accessibility relations; frames
for S5 have accessibility relations that are equivalence relations (reflexive, symmetric,
transitive).

7 The reader may notice that we give slightly different notation and that we define
certain concept differently from [7] – but to the same effect given our purposes.

18

i ∈ N , let i be a new agent, i := i, N := {i | i ∈ N}, and in every frame
(W, (Ri)i∈N∪N), Ri = R−1

i .

A context-free semi-Thue system8 g on vocabulary N ∪N generates
a class of frames c where c has all frames such that if i → i1, . . . , ik is a
rule of g, then for every frame (W, (Ri)i∈N∪N) ∈ c, Ri1Ri2 · · ·Rik ⊆ Ri.

We correspond a multimodal logic l, associated with the class of frames
c, on agent set N with a context-free semi-Thue system gl on vocabulary
N ∪ N if gl generates c and for every rule i → i1 · · · ik in gl, there is
also rule i→ ik · · · i1 in gl. Then l is called a regular grammar logic with
converse if for every j ∈ N , gl(j), the language produced in gl from j, is
regular.

To argue that (N,⊂, F) is (or can be reduced to) a regular grammar
logic with converse, first we examine the possibility that there is an agent
i ∈ N , such that F (i) = D or D4.9 We examine the case where there is
no agent F (j) = D4; if there is, then the reasoning is similar as in the
following. If there are such agents, let N ′ = N ∪ {iD}, where iD is a new
agent; F ′ is such that F ′(i) = K4 if i = id, F ′(i) = K if F (i) = D, and
F ′(i) = F (i) otherwise; ⊂′ is defined the same as ⊂ on N and there is no
i ∈ N such that iD ⊂′ i, and i ⊂′ iD iff F (i) = D. Then we can simply
reduce (N,⊂, F)-satisfiability to (N ′,⊂′, F ′)-satisfiability by mapping φ
to φ ∧✷iD

∧

F (i)=D
✸i⊤.

Then, all single-agent instances of l = (N,⊂, F) are regular grammar
logics with converse [7]. We show by induction on m(j) = |{j ∈ N | j ⊂ i}|
that gl(j) and gl(j) are regular. If m(j) = 0, then by the observation
above, gl(j) is regular; F (j) may have any combination of Factivity (given
by grammar rule j → ε in gl), Positive Introspection (given by grammar
rule j → jj), and Negative Introspection (given by grammar rule j → jj).
The regular language produced by j and gl(j) is one of j, j + ε, jj∗,
j(j+ j)∗j+ j, j∗, (j+ j)∗, and (j+ j)∗j, depending on F (j). If m(j) > 0,
then let r(j) = {gl(i) | i ⊂ j} and r(j) = {gl(i) | i ⊂ j}; by the inductive
hypothesis, all languages in r(j) and r(j) are regular. Then, naturally,
gl(j) is the result of replacing j by (j +

⋃

r(j)) and j by (j +
⋃

r(j)) in
one of the regular expressions above. The result is a regular expression.

8 A context-free semi-Thue system is a lot like a context-free grammar, but with no
distinction between terminal and non-terminal symbols and no initial symbol. It is
a set of (context-free) rules of the form a→ α, where a ∈ N ∪N and α ∈ (N ∪N)∗.
For α, β, γ ∈ (N ∪N)∗, αaγ ⇒ αβγ if a→ α is a rule; ⇒∗ is the reflexive transitive
closure of ⇒; we say that α produces β if α⇒ ∗β.

9 Notice that we consider the general case here, and not only the diamond-free frag-
ment.

19

σ ✷iφ

σ ✷jφ

where j ⊂ i

σ ✷iφ

ni(σ) φ

where
i ∈ min(N)

σ ✷iφ

σ φ

where the frames
of F (i) have re-
flexive acc. rela-
tions

σ ✷iφ

nj(σ) ✷iφ

where j ∈ min(i) and
F (i)’s frames have
transitive acc. rela-
tions

Table 6. Tableau rules for the diamond-free fragment of (N,⊂, F)

For example, D2⊕⊂D4 can easily be reduced to K2⊕⊂K4 by mapping
φ to ✸1⊤ ∧ ✸2⊤ ∧ ✷3(✸1⊤ ∧ ✸2⊤) ∧ φ to impose seriality,10 for which
the corresponding regular languages produced from 1, 2, and 3 would be
✷1, ✷2, and (✷1 + ✷2 + ✷3)∗(✷1 + ✷2 + ✷3) respectively. The reader is
encouraged to see [7] and [19] for a more complete presentation of regular
grammar modal logics with converse.

4.2 Characterizing the Complexity of (N,⊂, F)

We now proceed to characterize the complexity of (N,⊂, F). For every
i ∈ N , let

min(i) = {j ∈ N | j ⊂ i or j = i, and 6 ∃j′ ⊂ j}

and min(N) =
⋃

i∈N min(i). We can now give tableau rules for (N,⊂, F).
Let

– ni(σ) = σ, if either

• the accessibility relations of the frames for F (i) are reflexive, or

• σ = σ′.i for some σ′ and the accessibility relations of the frames
for F (i) are transitive;

– ni(σ) = σ.i, otherwise.

The tableau rules appear in Table 6.

From these tableau rules we can reestablish EXP-upper bounds for all
of these cases (see the previous sections). To establish correctness, we only
show how to construct a model from an accepting branch for φ, as the op-
posite direction is easier. Let W be the set of all the prefixes that have ap-
peared in the branch. The accessibility relations are defined in the follow-
ing (recursive) way: if i ∈ min(N), thenRi = {(σ, ni(σ)) ∈W 2}∪{(σ, σ) ∈

10 No, this is not the same reduction we described above, but it helps save on notation
for the particular example.

20

W 2 | ni(σ) /∈ W or F (i) has reflexive frames}; if i /∈ min(N) and the
frames of F (i) do not have transitive or reflexive accessibility relations,
then Ri =

⋃

j⊆iRj ; if i /∈ min(N) and the frames of F (i) do have transi-
tive (resp. reflexive, resp. transitive and reflexive) accessibility relations,
then Ri is the transitive (resp. reflexive, resp. transitive and reflexive)
closure of

⋃

j⊆iRj . Finally, (as usual) V (p) = {w ∈ W | w p appears in
the branch}. Again, to show that the constructed model satisfies φ, we
use a straightforward induction.

By taking a careful look at the tableau rules above, we can already
make some simple observations about the complexity of the diamond-free
fragments of these logics. Modalities in min(N) have an important role
when determining the complexity of a diamond-free fragment. In fact, the
prefixes that can be produced by the tableau depend directly on min(N).

Lemma 2. If for every i ∈ min(N), F (i) has frames with reflexive acces-
sibility relations (F (i) ∈ {T,S5}), then the satisfiability problem for the
diamond-free fragment of (N,⊂, F) is NP-complete and the satisfiability
problem for the diamond-free, 1-variable fragment of (N,⊂, F) is in P.

Proof. Notice that in this case, for every i ∈ min(N), ni(0) = 0, so there is
no way to generate any other prefix besides 0. NP-hardness is the result
of the NP-hardness of propositional satisfiability. By the above we can
restrict ourselves to 1-world models; when we use only one variable, they
can all be generated in constant time. ⊓⊔

Taking this reasoning one step further:

Corollary 1. If min(N) ⊆ {i} ∪ A and F (i) has frames with transitive
accessibility relations (F (i) ∈ {D4,S5}) and for every j ∈ A, F (j) has
frames with reflexive accessibility relations, then the satisfiability problem
for the diamond-free fragment of (N,⊂, F) is NP-complete and the satis-
fiability problem for the diamond-free, 1-variable fragment of (N,⊂, F) is
in P.

Proof. Like Lemma 2, we can only generate prefixes 0 and 0.i. ⊓⊔

In [5], Demri shows that satisfiability for L1 ⊕⊆ L2 ⊕⊆ · · · ⊕⊆ Ln is
EXP-complete, as long as there are i < j ≤ n for which Li ⊕⊆ Lj is EXP-
hard. On the other hand, Corollary 1 shows that for all these logics, their
diamond-free fragment is in NP, as long as L1 has frames with transitive
(or reflexive) accessibility relations.

21

Finally, we can establish general results about the complexity of the
diamond-free fragments of these logics. For this, we introduce some ter-
minology. We call a set A ⊂ N pure if for every i ∈ A, F (i)’s frames do
not have the condition that their accessibility relation is reflexive (given
our assumptions, F [A] ∩ {T,S5} = ∅). We call a set A ⊂ N simple if for
some i ∈ A, F (i)’s frames do not have the condition that their accessibil-
ity relation is transitive (given our assumptions, F [A] ∩ {D,T} 6= ∅). An
agent i ∈ N is called pure (resp. simple) if {i} is pure (resp. simple).

Theorem 1. 1. If there is some i ∈ N and some pure A ⊆ min(i) for
which F (i) has frames with transitive accessibility relations (F (i) ∈
{D4,S5}) and either

– |A| = 2 and A is simple, or
– |A| = 3,

then the satisfiability problem for the diamond-free, 1-variable frag-
ment of (N,⊂, F) is EXP-complete;

2. otherwise, if there is some i ∈ N and some pure A ⊆ min(i) for which
either

– |A| = 2 and there is some pure and simple j ∈ min(N), or
– |A| = 3,

then the satisfiability problem for the diamond-free, 1-variable frag-
ment of (N,⊂, F) is PSPACE-complete;

3. otherwise, if there is some i ∈ N and some pure A ⊆ min(i) for
which F (i) has frames with transitive accessibility relations (F (i) ∈
{D4,S5}) and either

– |A| = 1 and A is simple or
– |A| = 2,

then the satisfiability problem for the diamond-free (1-variable) frag-
ment of (N,⊂, F) is PSPACE-complete;

4. otherwise the satisfiability problem for the diamond-free (resp. and
1-variable) fragment of (N,⊂, F) is NP-complete (resp. in P).

Proof. All the lower bounds (except for the one in 4, of course) are es-
tablished by providing suitable translations. Notice that by definition, if
|min(i)| > 1, then i /∈ min(i) (and thus, i /∈ min(N)). In every case,
assume that φ is the formula that is given.

We first prove 1. This is done by a translation from D2 ⊕⊆ K4. φ is
translated to φm, such that φ is D2 ⊕⊆ K4-satisfiable if and only if φm is
(N,⊂, F)-satisfiable. If A = {x, y} and F (x) has frames with accessibility
relations that are not transitive, then let ✷(1) = ✷x✷x✷x✷y✷x✷y✷x✷x

and ✷(2) = ✷y✷x✷x✷y✷x✷y✷x✷x, and ✷(3) = ✷i✷y✷x✷y✷x✷x. Then,

22

φm results from φ by replacing ✷k by ✷(k), where k = 1, 2, 3. We can
see that the tableau for φm follows the one for φ – as long as we map
(say w is mapped to wm) 0 to 0 and σ.1 to σm.x.x.x.y.x.y.x.x and σ.2
to σm.y.x.x.y.x.y.x.x. The important observation here is that if σm ✷3ψ
eventually produces α ψ, then α is either some (σ.τ)m, or it is not an
initial segment of any such (σ.τ)m. Therefore, by restricting the branches
produced by the tableau for φm to prefixes of the form (σ.τ)m, we have a
simulation of the corresponding branch for φ, while there are some other
prefixes, but we can see that each of those (say π.a) prefixes a set of
formulas, which is a subset of a set of formulas prefixed by another prefix,
which ends at a and is mapped from a prefix of the first tableau. This
means that if φ is satisfiable, than φm is satisfiable. The other direction
is easier.

When |A| = 3, we can use a more straightforward translation, which
resembles than one given to translate from D ⊕⊆ K4 to D42 ⊕⊆ K4. For
{a, b, c} = {x, y, z}, φma is defined recursively: (p)ma = p; (¬p)ma = ¬p;
⊥ma = ⊥; (¬⊥)ma = ¬⊥; (ψ1 ∧ ψ2)ma = ψma

1 ∧ ψma

2 ; (ψ1 ∨ ψ2)
ma =

ψma

1 ∨ ψma

2 ; (✷1ψ)ma = ✷bψ
mb , where if a = x (resp. y, z), then b = y

(resp. z, x); (✷2ψ)ma = ✷cψ
mc , where if a = x (resp. y, z), then c = z

(resp. x, y); finally, (✷3ψ)ma = ✷iψ. As the main translation we can pick
any of φmx ,φmy ,φmz and as in the previous cases, we can simulate one
tableau by the other..

To establish the stated lower bound for 2 when |A| = 3, we can use
the exact same translation as above (from D2 ⊕⊆ K). When |A| = 2 and
A = {x, y}, define ✷(1) = ✷x✷j, ✷(2) = ✷y✷j, and ✷(3) = ✷i✷j. The
translation happens just by replacing ✷a by ✷(a), for all a = 1, 2, 3. The
translations to prove the lower bound for (iii) are just simplified versions
of the above.

To establish the stated upper bounds, we give bounds for the number
of prefixes that a tableau run can produce. For this, assume that all
subformulas of φ are distinct.

If for some σ ✷iψ, the branch produces both σ.x ψ and σ.y ψ (and
x 6= y), then x, y ∈ min(i) and F (x), F (y) have frames with accessibility
relations that are not reflexive, which means we are either in case (i) or
case (ii). On the other hand, if for σ ✷iψ, the branch produces σ.x ✷iψ,
then x ∈ min(i) and F (x) has frames with accessibility relations that
are not reflexive, while F (i) has frames with accessibility relations that
are transitive. If F (x) has frames with accessibility relations that are not
transitive, or there is also some y ∈ min(i) such that F (y) has frames
with accessibility relations that are not reflexive, then we are either in

23

case (i), or in case (iii). Otherwise, σ and σ.x are the only prefixes for
✷iψ and thus the only possible prefixes for ψ – if σ.x′ or σ.x.x′ is another
prefix for ψ, then x′ ∈ min(i), which is a contradiction, because of the
above. This establishes 4, because every subformula of φ can only have
up to 3 prefixes.

Assume we are not in case 1. We give a non-deterministic algorithm
which uses polynomial space to solve satisfiability. The algorithm runs
the tableau procedure and uses non-determinism exactly for the non-
deterministic propositional rule. Since it uses only polynomial space, it
(possibly) cannot hold the whole branch in memory, so it explores the
prefixes in a certain order. This order is what enables the algorithm to
use only polynomial space. Every time the algorithm visits prefix σ, it
applies all the rules that have as premise a formula prefixed by σ = σ′.y.
This possibly results in new sets of formulas that are prefixed by new
prefixes, σ.x1, . . . , σ.xk. If there is some xa such that there is some i ∈ N
for which xa, y ∈ min(i) and F (i) has frames with transitive accessibility
relations, then the algorithm visits σ.xa last (there is at most one) and
σ.xa is called a last prefix.

If σ.xb is not a last prefix, then the maximum modal depth11 of the
formulas prefixed by σ.xb is one less than the maximum modal depth of
the formulas prefixed by σ′. This bounds the number of prefixes that are
not last prefixes and that are initial segments of a current prefix by at
most 2|φ|. The space the algorithm uses at any time is the number of
prefixes it has scheduled to visit (and has not done so yet), times some
quantity which is linear with respect to |φ| (the formulas prefixed by
those prefixes). This number of prefixes is at most |N | times the number
of initial segments of the current prefix that are not last prefixes. But we
argued above that these prefixes are at most |φ|.

Case 4 is given by Corollary 1. ⊓⊔

5 Final Remarks

We examined the complexity of satisfiability for the diamond-free frag-
ments and the diamond-free, 1-variable fragments of multimodal logics
equipped with an inclusion relation ⊂ on the modalities, such that if
i ⊂ j, then in every frame (W,R1, . . . , Rn) of the logic, Ri ⊆ Rj (equiva-
lently, ✷j → ✷i is an axiom). We gave a complete characterization of these
cases (Theorem 1), determining that, depending on ⊂, every logic falls
into one of the following three complexity classes: NP (P for the 1-variable

11 The nesting depth of the boxes in a formula.

24

fragments), PSPACE, and EXP – Theorem 1 actually distinguishes four
possibilities, depending on the way we prove each bound. We argued that
to have nontrivial complexity bounds we need to consider logics based
on frames with at least serial accessibility relations, which is a notable
difference in flavor from the results in [13, 14].

One direction to take from here is to consider further syntactic re-
strictions and Boolean functions in the spirit of [14]. Another would be to
consider different classes of frames. Perhaps it would also make sense to
consider different types of natural relations on the modalities and see how
these results transfer in a different setting. From a Parameterized Com-
plexity perspective there is a lot to be done, such as limiting the modal
depth/width, which are parameters that can remain unaffected from our
ban on diamonds. For the cases where the complexity of the diamond-
free, 1-variable fragments becomes tractable, a natural next step would
be to examine whether we can indeed use the number of diamonds as a
parameter for an FPT algorithm to solve satisfiability.

Another direction which interests us is to examine what happens with
more/different kinds of relations on the modalities. An example would
be to introduce the axiom ✷iφ → ✷j✷iφ, a generalization of Positive
Introspection. This would be of interest in the case of the diamond-free
fragments of these systems, as it brings us back to our motivation in
studying the complexity of Justification Logic, where such systems exist.
Hardness results like the ones we proved in this paper are not hard to
transfer in this case, but it seems nontrivial to immediately characterize
the complexity of the whole family.

Acknowledgments The author is grateful to anonymous reviewers, whose
input has greatly enhanced the quality of this paper.

References

1. Antonis Achilleos. Interactions and Complexity in Multi-Agent Justification Logic.
PhD thesis, The City University of New York, 2015.

2. Sergei Artemov. The logic of justification. The Review of Symbolic Logic, 1(4):477–
513, December 2008.

3. Alexander V. Chagrov and Mikhail N. Rybakov. How many variables does one
need to prove pspace-hardness of modal logics. In Advances in Modal Logic, pages
71–82, 2002.

4. Marcello D’Agostino, Dov M Gabbay, Reiner Hähnle, and Joachim Posegga, editors.
Handbook of tableau methods. Springer, 1999.

5. Stéphane Demri. Complexity of simple dependent bimodal logics. In Roy Dyckhoff,
editor, TABLEAUX, volume 1847 of Lecture Notes in Computer Science, pages
190–204. Springer, 2000.

25

6. Stéphane Demri. The complexity of regularity in grammar logics and related modal
logics. Journal of Logic and Computation, 11(6):933–960, 2001.

7. Stéphane Demri and Hans De Nivelle. Deciding regular grammar logics with
converse through first-order logic. Journal of Logic, Language and Information,
14(3):289–329, 2005.

8. F. Wolter D.M. Gabbay, A. Kurucz and M. Zakharyaschev, editors. Many-

Dimensional Modal Logics Theory and Applications, volume 148 of Studies in Logic

and the Foundations of Mathematics. Elsevier, 2003.
9. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning

About Knowledge. The MIT Press, 1995.
10. Michael J Fischer and Richard E Ladner. Propositional dynamic logic of regular

programs. Journal of computer and system sciences, 18(2):194–211, 1979.
11. Joseph Y. Halpern. The effect of bounding the number of primitive propositions

and the depth of nesting on the complexity of modal logic. Artificial Intelligence,
75:361–372, 1995.

12. Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artif. Intell., 54(3):319–379, 1992.

13. Edith Hemaspaandra. The complexity of poor man’s logic. Journal of Logic and

Computation, 11(4):609–622, 2001.
14. Edith Hemaspaandra, Henning Schnoor, and Ilka Schnoor. Generalized modal

satisfiability. Journal of Computer and System Sciences, 76(7):561 – 578, 2010.
15. Agi Kurucz. Combining modal logics. Studies in Logic and Practical Reasoning,

3:869–924, 2007.
16. Roman Kuznets. Complexity Issues in Justification Logic. PhD thesis, CUNY

Graduate Center, May 2008.
17. Richard E. Ladner. The computational complexity of provability in systems of

modal propositional logic. SIAM Journal on Computing, 6(3):467–480, 1977.
18. Maarten Marx and Yde Venema. Multi-dimensional modal logic. Springer, 1997.
19. Linh Anh Nguyen and Andrzej Sza las. Exptime tableau decision procedures for

regular grammar logics with converse. Studia Logica, 98(3):387–428, 2011.
20. E. Spaan. Complexity of modal logics. PhD thesis, University of Amsterdam, 1993.

26

