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Abstract
We investigate (co-) induction in classical logic under the propositions-as-types paradigm, considering propositional, second-
order and (co-) inductive types. Specifically, we introduce an extension of the Dual Calculus with a Mendler-style (co-)
iterator and show that it is strongly normalizing. We prove this using a reducibility argument.

1 Introduction

The Curry–Howard isomorphism. The interplay between logic and computer science has a long
and rich history. In particular, the Curry–Howard isomorphism, the correspondence between types
and propositions, and between typings and proofs, is a long established bridge through which results
in one field can fruitfully migrate to the other.

Classical calculi. One such example—motivating of the research presented herein—is the use of
programming calculi based on Gentzen’s sequent calculus LK [11]. At its core, LK is a calculus of the
dual concepts of necessary assumptions and possible conclusions—concepts that map neatly, on the
computer science side, to required inputs (or computations) and possible outputs (or continuations).
As an example of the kind of analysis that can be done by focusing on this separation of concepts,
Curien and Herbelin [6] and Wadler [22] devised LK-based calculi that showed, syntacticly, the
duality of the two most common evaluations strategies: call-by-name and call-by-value. While
originally such classical calculi included only propositional types—i.e. conjunction, disjunction,
negation, implication and subtraction (the dual connective of implication)—they were later extended
with second-order types [15, 20] and also with positive (co-) inductive types [15]. The latter
fundamentally depended on the existence of a map operation of the underlying type. Here we do
away with this restriction.

Mendler induction. We take as primitive a more general induction scheme based on the work of
Mendler [17]. He proposed an induction operator for System F that operated in a way akin to the call-
by-name fix-point combinator—thus avoiding direct use of said mapping operations—but ensured
termination by clever use of polymorphic types. Further adding to its generality, it was later shown
that with Mendler’s iterator one could in fact induct on data-types of arbitrary variance—i.e. data-
types whose induction variable may also appear negatively [16, 21]. Due to its generality, Mendler
induction has been applied in a number of different contexts, such as higher-order recursive types
[1, 2] and automated theorem proving [13].

Classical logic and Mendler induction. The central question of this paper is whether Mendler
induction can be lifted to non-functional settings without introducing ill-effects—specifically, non-
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2 Classical logic with Mendler induction

TABLE 1 Syntax of the second-order Dual Calculus.

Terms
t := x, y, . . . ∈ Var | α.(c)

| 〈t, t′
〉 | i1 〈t〉 | i2 〈t〉 | not〈k〉 | λx. (t) | (t#k) | a 〈t〉 | e 〈t〉︸ ︷︷ ︸

Introductions
Co-terms

k := α, β, . . . ∈ Covar | x. (c)
| [k, k′] | fst[k] | snd [k] | not[t] | (t@k) | μα.(k) | a [k] | e [k]︸ ︷︷ ︸

Eliminations
Cuts
c := t • k

termination. Logically, this entails the consistency of a classical system that goes further than the
usual Boolean and second-order propositions. There is no a priori reason to assume this might be
the case: languages based on classical logic have been shown to be quite misbehaved if not handled
properly [12] and certain forms of Mendler induction have been shown to break strong normalization
at higher-ranked types [2].

Here we show that these two constructions are, in fact, compatible. In summary, we:

• develop a second-order Dual Calculus with functional types (Section 2),
• prove its strong normalization (Section 3) via a reducibility argument,
• review Mendler induction in a functional setting (Section 4),
• extend the Dual Calculus with Mendler (co-) inductive types (Section 5) and
• adapt the aforementioned reducibility argument to prove that the extension is also strongly

normalizing (Section 6).

Duality. At every stage—borrowing from one of LK’s design principles—we consider concomitantly
the duals of every type we introduce, viz. subtraction [5] and co-induction. Similarly to LK, this
entails little more than ‘f lipping’ the actions on the left and on the right. The choice to do so was
not merely aesthetic: having subtractions in our system affords us a much more natural definition
of Mendler induction than if we only had implication at our disposal. This is comparable to the use
of existential types as a basis for modeling ad hoc polymorphism in functional languages [18] as
opposed to the more elaborate encoding by means of universal types—and stresses the point that
duality brings forth gains in expressiveness at little cost for the designer.

2 Second-order Dual Calculus

The base calculus. Our base formalism is Wadler’s Dual Calculus [22]—often abbreviated DC We
begin by reviewing the original propositional version extended with second-order types [15] and
subtractive types [5, 6]. Tables 11,2 and 3 respectively summarize the syntax, the types and typing
rules, and the reduction rules of the calculus.

Syntax. The sequent calculus LK is a calculus of multiple assumptions and conclusions, as witnessed

1Unlike Wadler’s presentation, we keep the standard practice of avoiding suffix operators—while lexical duality is lost,
we argue that it improves readability.
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Classical logic with Mendler induction 3

TABLE 2 Typing for the second-order propositional Dual Calculus
(with the structural rules omitted).

Types

T , A, B := X | A ∧ B | A ∨ B | ¬A | A → B | A − B | ∀X . T | ∃X . T

Identity

x:A�x:A | | α:A�α:A

Abstractions

Γ �c�Δ,α:A
Γ �α.(c):A | Δ

x:A,Γ �c�Δ
Γ | x.(c):A�Δ

Cut

Γ �t:A | Δ Γ | k:A�Δ
Γ �t•k�Δ

Conjunction

Γ �t:A | Δ Γ �t′:B | Δ
Γ �〈t,t′〉:A∧B | Δ

Γ | k:A�Δ
Γ | fst[k]:A∧B�Δ

Γ | k:B�Δ
Γ | snd[k]:A∧B�Δ

Disjunction

Γ �t:A | Δ
Γ �i1〈t〉:A∨B | Δ

Γ �t:B | Δ
Γ �i2〈t〉:A∨B | Δ

Γ | k:A�Δ Γ | k′:B�Δ
Γ | [k,k′]:A∨B�Δ

Negation

Γ | k:A�Δ
Γ �not〈k〉:¬A | Δ

Γ �t:A | Δ
Γ | not[t]:¬A�Δ

Implication

x:A,Γ �t:B | Δ
Γ �λx.(t):A→B | Δ

Γ �t:A | Δ Γ | k:B�Δ
Γ | (t@k):A→B�Δ

Subtraction

Γ �t:A | Δ Γ | k:B�Δ
Γ �(t#k):A−B | Δ

Γ | k:A�Δ,α:B
Γ | μα.(k):A−B�Δ

Universal quantification

Γ �t:F(X ) | Δ
Γ �a〈t〉:∀X .F(X ) | Δ

(X not free in Γ , Δ)
Γ | k:F(A)�Δ

Γ | a[k]:∀X .F(X )�Δ

Existential quantification

Γ �t:F(A) | Δ
Γ �e〈t〉:∃X .F(X ) | Δ

Γ | k:F(X )�Δ
Γ | e[k]:∃X .F(X )�Δ

(X not free in Γ , Δ)

by the action of the right and left derivation rules. Similarly, the two main components of DC are
split into two kinds: terms (or computations) which, intuitively, produce values, and co-terms (or
continuations), which consume them. However, whereas in the sequent calculus one can mix the
different kinds of rules in any order, to keep the computational connection, the term and co-term
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4 Classical logic with Mendler induction

TABLE 3 Head reduction for the second-order Dual Calculus.〈
t, t′

〉 • fst[k] � t • k
〈
t, t′

〉 • snd [k] � t′ • k

i1 〈t〉 •
[
k, k′] � t • k i2 〈t〉 •

[
k, k′] � t • k′

not〈k〉 • not[t] � t • k

λx. (t) • (t′@k
)
� t

[
t′/x

] • k (t#k) • μα.
(
k′) � t • k′ [k/α]

a 〈t〉 • a [k] � t • k e 〈t〉 • e [k] � t • k

α.(c) • k � c [k/α] t • x. (c) � c [t/x]

formation rules are restricted in what phrases they expect—e.g. pairs should combine values, while
projections pass the components of a pair to some other continuation. This distinction also forces
the existence of two kinds of variables: variables for terms and co-variables for co-terms; we assume
that they belong to some disjoint and countably infinite sets denoted by Var and Covar, respectively.

Cuts and abstractions. The third and final kind of phrase in the Dual Calculus are cuts. Recall the
famous dictum of computer science:

Data-structures + Algorithms = Programs.

In DC, where terms represent the creation of information and co-terms consume it, we find that
cuts, the combination of a term with a continuation, are analogous to programs:

Terms + Co-terms = Cuts;

they are the entities that are capable of being executed. Given a cut, one can consider the execution
that would ensue if given data for a variable or co-variable. The calculus provides a mechanism to
express such situations by means of abstractions x. (c) and of co-abstractions α.(c) on any cut c.
Abstractions are continuations—they expect values in order to proceed with some execution—and,
dually, co-abstractions are computations.

Subtraction. One novelty of this paper is the central rôle given to subtractive types, A − B [5].
Subtraction is the dual connective to implication; it is to continuations what implication is to terms:
it allows one to abstract co-variables in co-terms—and thereby compose continuations. Given a
continuation k where a co-variable α might appear free, the subtractive abstraction (or catch, due to
its connection with exception handling) is defined by the binding operator μα.(k)—the idea being
that applying (read, cutting) a continuation k′ and value t to it, packed together as (t#k′), yields a cut
of the form t • k[k′/α].

Typing judgments. We present the types and the typing rules in Table 2; we omit the structural
rules here but they can be found in the aforementioned paper by Wadler [22]. We have three forms
of typing judgments that go hand-in-hand with the three different types of phrases: Γ � t : A | Δ for
terms, Γ | k : A � Δ for co-terms and Γ � c � Δ for cuts. The entailment symbol(s) always points
to the phrase under judgment, and it appears in the same position as the entailment symbol in the
logically corresponding sequent of LK. Typing contexts Γ are finite assignments of variables to their
assumed types; dually, typing co-contexts Δ assign co-variables to their types. Tacitly, we assume
that they always include the free (co-) variables in the phrase under consideration. Type-schemes
F(X ) are types in which a distinguished type variable X may appear free; the instantiation of such a
type-scheme to a particular type T is simply the (capture avoiding) substitution of the distinguished
X by T and is denoted F(T).
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Classical logic with Mendler induction 5

TABLE 4 Parallel reduction for the dual calculus.

Example: witness the lack of witness. We can apply the rules in Table 2 to bear proof of valid
formulas in second-order classical logic. One such example at the second-order level is ¬∀X . T →
∃X .¬T :

| not[a 〈α.(e 〈not〈α〉〉 • β)〉] : ¬∀X . T � β : ∃X .¬T .

Note how the existential does not construct witnesses but simply diverts the f low of execution (by
use of a co-abstraction).

Head reduction. The final ingredient of the calculus is the set of reduction rules. Head reduction
rules (Table 3) encode the operational behavior that one would expect from the constructs of
the language. They apply only to cuts and only at the outermost level. Head reduction is non-
deterministic—as a cut made of abstractions and co-abstractions can reduce by either one of the
abstraction rules—and non-confluent [22, p. 195]. Confluence can be reestablished by prioritizing
the reduction of one type of abstraction over the other; this gives rise to two confluent reduction
disciplines that we term abstraction prioritizing and co-abstraction prioritizing. In any case,
reduction of well-typed cuts yields well-typed cuts.2

Parallel reduction. Since the phrases of DC are defined by mutual induction, we can generalize
head-reduction to cuts that occur inside any term, co-term or, indeed, in other cuts (Table 4). Because,
in general, several rules can be applied in parallel to any given phrase, we call this parallel reduction.

3 Strong normalization of the second-order Dual Calculus

The proof of strong normalization. Having surveyed the syntax, types and reduction rules of
DC, we will now give a proof of its strong normalization—i.e. that all reduction sequences of
well-typed phrases terminate in a finite number of steps—for the given non-deterministic parallel
reduction rules. It follows that all manner of reduction sub-strategies, such as head reduction and the
deterministic co- or abstraction prioritizing strategies, are also strongly normalizing.

2As we are not looking at call-by-name and call-by-value, we do not use the same reduction rule for implication as Wadler
[22]; the rule here is due to Curien and Herbelin [6].
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6 Classical logic with Mendler induction

TABLE 5 Second-order type actions for orthogonal pairs.

P ∧ Q =
(〈

(P)T , (Q)T
〉
, fst

[
(P)K

]
∪ snd

[
(Q)K

])
P ∨ Q =

(
i1
〈
(P)T

〉
∪ i2

〈
(Q)T

〉
,
[
(P)K, (Q)K

])
¬P =

(
not

〈
(P)K

〉
, not

[
(P)T

])
P → Q = ∨

x∈Var

(
λx.

((
(Q)T

∣∣(P)T/x
))

,
(
(P)T@(Q)K

))
P − Q = ∧

α∈Covar

((
(P)T#(Q)K

)
, μα.

(
(P)K

∣∣(Q)K/α
))

∀S = ∧
P∈S

(
a
〈
(P)T

〉
, a
[
(P)K

])
∃S = ∨

P∈S

(
e
〈
(P)T

〉
, e
[
(P)K

])

The proof rests on a reducibility argument. Similar approaches for the propositional fragment can
be found in the literature [10, 20]; however, the biggest inf luence on our proof was the one by Parigot
for the second-order extension of the Symmetric Lambda-Calculus [19].

Our main innovation here is the identification of a complete lattice structure with fix-points
suitable for the interpretation of (co-) inductive types. We will, in fact, need to consider two
lattices: OP and ONP . Because types have structure in the form of terms and co-terms, each
element of said lattices is a pair of sets, with terms in one component and co-terms in the other.
These two must be orthogonal—i.e. all cuts formed with those terms and co-terms must be
strongly normalizing. The difference between the two is that in OP , we find terms/co-terms of
arbitrary form; the components of lattice ONP are restricted to having only terms/co-terms that are
introductions/eliminations. Between these two domains, we have type-induced actions from OP to
ONP and a completion operator from ONP to OP that generates all terms/co-terms compatible
with the given introductions/eliminations.

(1)

In this setting, we give (two) mutually induced interpretations for types (one in ONP and the
other in OP) and establish an adequacy result (Theorem 3.21) from which strong normalization
follows as a corollary.

3.1 Operations on sets of syntax

Sets of syntax. The set of all terms formed using the rules in Table 1 will be denoted by T ; similarly,
co-terms will be K and cuts C. We will also need three special subsets of those sets: IT for those
terms whose outer syntactic form is an introduction, EK, dually, for the co-terms whose outer
syntactic form is an eliminator and SN for the set of strongly normalizing cuts.3 Since the proof

3A non-terminating, non-well-typed cut: α.(not〈α〉 • α) • not [α.(not〈α〉 • α)].
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Classical logic with Mendler induction 7

refers to the parallel reduction strategy, we also need the set of strongly normalizing terms, SNT ,
and the set of strongly normalizing co-terms, SNK.

Saturation. These sets above have all in common the property that they are closed under reduction.
They are said to be saturated. For example, a strongly normalizing term must reduce to strongly
normalizing terms and cuts reduce to cuts. Saturation can be expressed in terms of the image, denoted
[−], of the (parallel) reduction relation. In symbols, a set of phrases P ∈ P (T ∪K ∪ C) is saturated
iff (P) ⊆ P .

Syntactic actions on sets. The syntactic constructors give rise to obvious actions on sets of terms,
co-terms and cuts, e.g.

−•− : P (T ) × P (K) → P (C) , T•K = {t • k | t ∈ T , k ∈ K} .

By abuse of notation, these operators shall be denoted as their syntactic counterparts. Apart from
the cut action, which may introduce head reductions, they all preserve saturation.

LEMMA 3.1 (Saturation for (co-) term syntactic operators).
Assume T and U , K and L and C are saturated sets of terms, co-terms and cuts, respectively. Then the
sets constructed from them using the introduction, elimination and structural-abstraction syntactic
operators are all saturated:

(〈T , U〉) ⊆ 〈T , U〉 (fst [K]) ⊆ fst [K] (snd [K]) ⊆ snd [K]

(i1 〈T〉) ⊆ i1 〈T〉 (i2 〈T〉) ⊆ i2 〈T〉 ([K, L]) ⊆ [K, L]

(not〈K〉) ⊆ not〈K〉 (not[T]) ⊆ not[T]

(λx. (T)) ⊆ λx. (T) ((T@K)) ⊆ (T@K)

((T#K)) ⊆ (T#K) (μα.(K)) ⊆ μα.(K)

(a 〈T〉) ⊆ a 〈T〉 (a [K]) ⊆ a [K]

(e 〈T〉) ⊆ e 〈T〉 (e [K]) ⊆ e [K]

(α.(C)) ⊆ α.(C) (x. (C)) ⊆ x. (C)

Substitution and its restriction. The (capture-avoiding) substitution operation lifts point-wise to
the level of sets as a monotone function (−) [(=)/φ] : P(U) × P(V) → P(U) for V the set of
terms (resp. co-terms), φ a variable (resp. co-variable) and U either the set of terms, co-terms or
cuts. We will often need to answer the question of which strongly normalizing phrases are in some
set of ‘good phrases’ after simultaneously substituting for some variables. This is handled by the
following operations of restriction under (simultaneous, capture-avoinding) substitution: given �χ a
finite family of co-/variables and �P a family of sets with each Pi in T or K, as appropriate for the
respective χi; the restriction to T ∈ P(T ) under substitution

[�P/ �χ] is given by

T
∣∣∣�P/ �χ = {

t ∈ SNT
∣∣∀�τ ∈ �P . t [�τ/ �χ ] ∈ T

} ∈ P(SNT ) ;

the restrictions −∣∣�P/ �χ : P(K) → P(SNK) and −∣∣�P/ �χ : P(C) → P(SN ) are defined similarly.
They are clearly antitone on �P and monotone on the set we are restricting to. Furthermore, they

witness an adjoint situation between sets of terms/co-terms/cuts and their strongly normalizing
counterparts.
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8 Classical logic with Mendler induction

PROPOSITION 3.2
Let �χ be a finite family of variables and co-variables and �P a(n equally indexed) family of sets of
phrases, each according with the kind of the respective χ ; then,

V
[�P/ �χ] ⊆P(T ) T iff V ⊆P(SNT ) T

∣∣�P/ �χ .

Substitutivity. The preservation of saturation by this restriction for one (co-) variable requires the
concept substitutivity of reduction–substitution commutes with (parallel) reduction in the following
two ways:

LEMMA 3.3
(I) For any phrases (i.e. terms/co-terms/cuts) p0 p1

p0 p1 �⇒
{

p0 [t/x] p1 [t/x]
p0 [k/α] p1 [k/α] .

(II) For any phrase p

t0 t1 �⇒ p [t0/x] ∗p [t1/x] k0 k1 �⇒ p [k0/α] ∗p [k1/α] .

The first property can take a more algebraic f lavour:

PROPOSITION 3.4
Let P stand for a set of terms, or of co-terms or cuts, U be a set of terms and L a set of co-terms.
Substitutivity I is equivalent to

( (P)) [U/x] ⊆ (P [U/x]) ( (P)) [L/α] ⊆ (P [L/α]) .

Restriction and saturation. And all this algebraic scaffolding affords us a very straightforward
proof of

THEOREM 3.5
Let P be a saturated set of either terms, co-terms or cuts; then, for any T ⊆ T and any K ⊆ K, the
sets P

∣∣T/x and P
∣∣K/α are saturated.

PROOF. Note that P
∣∣T/x ⊆ SN /SNT /SNK so, also,

(
P
∣∣T/x) ⊆ SN /SNT /SNK (likewise

for P
∣∣K/α). Then, for either case, a simple algebraic derivation—using the adjointness of the

restrictions, monotonicity of the image of a relation, substitutivity and saturation—suffices.

P
∣∣T/x ⊆ P

∣∣T/x

�⇒ P
∣∣T/x[T/x] ⊆ P (Prop. 3.2)

�⇒ (
P
∣∣T/x[T/x]

) ⊆ (P) (Mon. of image)

�⇒ ( (
P
∣∣T/x))[T/x] ⊆ (P) (Prop. 3.4)

�⇒ ( (
P
∣∣T/x))[T/x] ⊆ P (Saturation)

�⇒ (
P
∣∣T/x) ⊆ P

∣∣T/x
(Prop. 3.2). �

3.2 Orthogonal pairs

Orthogonal pairs. Whenever a term t and a co-term k—necessarily strongly normalizing—form a
strongly normalizing cut t • k, we say that they are orthogonal. Similarly, for sets T of terms and
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Classical logic with Mendler induction 9

K of co-terms, we say that they are orthogonal if T • K ⊆ SN . We use the name orthogonal pairs
for pairs of orthogonal sets that are saturated and denote the set of all such pairs by OP . For any
orthogonal pair P ∈ OP , its set of terms is denoted (P)T and its set of co-terms by (P)K. Note that
no type restriction is in play in the definition of orthogonal pairs, e.g. a cut of an injection with a
projection is by definition orthogonal as no reduction rule applies.

Lattices. Recall that a lattice L is a partially ordered set such that every non-empty finite subset S
of the carrier of L has a least upper bound (or join, or lub) and a greatest lower-bound (or meet,
or glb), respectively, denoted by

∨
S and

∧
S. By abuse of notation, we conflate lattices with their

carrier sets unless otherwise noted. If the bounds exist for any subset of L, one says that the lattice is
complete. In particular, this entails the existence of a bottom and a top element for the partial order.
The powerset P(S) of a set S ordered by inclusion, together with set-union and set-intersection, is
a complete lattice with bounds given by S and the empty set. The dual Lop of a (complete) lattice L
(where we take the opposite order and invert the bounds) is a (complete) lattice, as is the point-wise
product of any two (complete) lattices.

PROPOSITION 3.6 (Lattice structure of OP).
The set of orthogonal pairs forms a complete sub-lattice of the lattice P (SNT ) ×Pop (SNK), i.e.
for P, Q ∈ OP ,

P ≤ Q iff (P)T ⊆ (Q)T and (P)K ⊇ (Q)K ;

the join and meet of arbitrary sets S ⊆ OP are

∨
S ≡

(⋃
P∈S

(P)T,
⋂
P∈S

(P)K

) ∧
S ≡

(⋂
P∈S

(P)T,
⋃
P∈S

(P)K

)
,

and, explicitly, the empty joins and meets are

⊥ ≡ (∅,SNK) � ≡ (SNT ,∅) .

Orthogonal normal pairs. The other lattice we are interested in is the lattice ONP of what we
call orthogonal normal pairs. These are orthogonal pairs that are made out at the outermost level of
either introductions or eliminators. Logically speaking, they correspond to those proofs whose last
derivation is a left or right operational rule; computationally, they would intuitively correspond to
‘(co-) normal forms’ of a type. Orthogonal normal pairs inherit the lattice structure of OP but for
the empty lub and glb that become ⊥ ≡ (∅, EK ∩ SNK) and � ≡ (IT ∩ SNT ,∅).

PROPOSITION 3.7 (Lattice structure of ONP).
The set ONP can be turned into a sub-lattice of OP . It is complete with extrema given by

⊥ = (∅, EK ∩ SNK) and � = (IT ∩ SNT ,∅) .

LEMMA 3.8 (Saturation and orthogonality).
Let T ⊆ SNT and K ⊆ SNK be saturated sets of terms and co-terms, respectively, satisfying
[� ] (T • K) ⊆ SN , then T • K ⊆ SN .

PROOF. We prove the result indirectly by proving instead that for any finite subsets T ′ ⊆ T and
K ′ ⊆ K one has T ′ •K ′ ⊆ SN . Given that both T and K are equal to the union of their finite subsets
(and these are preserved by the syntactic operation of cutting, −•−) the result will follow. The proof
for these will be by induction on the sum of the depths of all possible reduction paths of all phrases
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10 Classical logic with Mendler induction

in the sets T ′ and K ′. As the sets are finite and the (co-) terms terminating (by virtue of being in
SNT or SNK, as appropriate), we are guaranteed that this measure is either zero—and only head
reductions apply—or strictly reducing when we execute a single step of parallel reduction.

For the zero case, we have that

[�] (T • K) ⊆ SN and
( (

T ′)) • K ′ = ∅ ⊆ SN

and T ′ • ( (
K ′)) = ∅ ⊆ SN

�⇒ [�]
(
T ′ • K ′) ⊆ SN and

( (
T ′)) • K ′ ⊆ SN and T ′ • ( (

K ′)) ⊆ SN

�⇒ [�]
(
T ′ • K ′) ∪ (( (

T ′)) • K ′) ∪ (
T ′ • ( (

K ′))) ⊆ SN

�⇒ (
T ′ • K ′) ⊆ SN

�⇒ T ′ • K ′ ⊆ SN .

The induction step is proved with measured aid of the induction hypothesis. Assume the sum of
the depths of all reduction paths for terms and co-terms in T ′ and K ′ is non-zero; it therefore follows
that either ( (

T ′)) • K ′ and T ′ • ( (
K ′))

both have smaller sum than T ′ • K ′, or the sum of depths of reduction for one of them is zero and
for the other it is smaller that that of T ′ • K ′. Saturation now takes on a critical rôle; because of
it we know that both

( (
T ′)) and

( (
K ′)) are subsets of T and K, and, since they are finite,

the induction hypothesis can be applied to them. In any of the cases above, be it by the induction
hypothesis or by virtue of not having any reducible terms, we have that( (

T ′)) • K ′ ⊆ SN and T ′ • ( (
K ′)) ⊆ SN ,

whence it follows that

[�] (T • K) ⊆ SN and
( (

T ′)) • K ′ ⊆ SN and T ′ • ( (
K ′)) ⊆ SN

�⇒ [�]
(
T ′ • K ′) ⊆ SN and

( (
T ′)) • K ′ ⊆ SN and T ′ • ( (

K ′)) ⊆ SN

�⇒ [�]
(
T ′ • K ′) ∪ (( (

T ′)) • K ′) ∪ (
T ′ • ( (

K ′))) ⊆ SN

�⇒ (
T ′ • K ′) ⊆ SN

�⇒ T ′ • K ′ ⊆ SN .
�

LEMMA 3.9 (Preservation of orthogonality).
Let T , T ′ ⊆ SNT , K, K ′ ⊆ SNK be saturated sets such that T •K ⊆ SN and T ′ •K ′ ⊆ SN ; then:〈

T , T ′〉 • fst [K] ⊆ SN
〈
T , T ′〉 • snd

[
K ′] ⊆ SN

i1 〈T〉 • [K, K ′] ⊆ SN i2
〈
T ′〉 • [K, K ′] ⊆ SN

not〈K〉 • not[T] ⊆ SN

λx.
(
T ′∣∣T/x) • (T@K ′) ⊆ SN

(
T#K ′) • μα.

(
K
∣∣K ′/α) ⊆ SN

a 〈T〉 • a [K] ⊆ SN e 〈T〉 • e [K] ⊆ SN .
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Classical logic with Mendler induction 11

TABLE 6 Interpretations of the second-order Dual Calculus in ONP and OP .

�T�(γ ) : ONP �A ∧ B�(γ ) = �A�(γ ) ∧ �B�(γ )

�X �(γ ) = γ (X ) �A ∨ B�(γ ) = �A�(γ ) ∨ �B�(γ )

�A → B�(γ ) = �A�(γ ) → �B�(γ ) �A − B�(γ ) = �A�(γ ) − �B�(γ )

�¬A�(γ ) = ¬�A�(γ )

�∀X . A�(γ ) = ∀{�A�(γ [X �→ N])
∣∣N ∈ ONP

}
�T�(γ ) : OP

�∃X . A�(γ ) = ∃{�A�(γ [X �→ N])
∣∣N ∈ ONP

}
�T�(γ ) = [ ]

(
�T�(γ )

)

PROOF. Apart from the implicative and subtractive cases, by Lemma 3.1, all the sets parametrizing
the cuts are saturated—and clearly strongly normalizing as well. For the other two cases, we appeal

first to Theorem 3.5 for the saturated T ′ and K to show that T ′∣∣T/x and K
∣∣K ′/α are also saturated—and

by definition strongly normalizing.
By Lemma 3.8, it suffices to show that after head-reduction the resulting cuts are strongly

normalizing—e.g. using adjointness (Prop. 3.2):

[�]
(
λx.

(
T ′∣∣T/x

)
• (T@K ′)) =

(
T ′∣∣T/x [T/x]

)
• K ′ ⊆ T ′ • K ′ ⊆ SN

[�]
((

T#K ′) • μα.
(

K
∣∣K ′/α)) = T •

(
K
∣∣K ′/α [K ′/α

]) ⊆ T • K ⊆ SN .

The remaining cases are even easier. �
Type actions. Pairing together the actions of the introductions and eliminations of a given type
allows us to construct elements of ONP whenever we apply them to orthogonal pairs. These type
actions are defined in Table 5.

PROPOSITION 3.10 (Orthogonality for actions).
For any P, Q ∈ OP

P ∧ Q ∈ ONP P ∨ Q ∈ ONP ¬P ∈ ONP
P → Q ∈ ONP P − Q ∈ ONP

For any S ⊆ ONP
∀S ∈ ONP ∃S ∈ ONP

PROOF. Using the lattice properties of ONP (Proposition 3.7), the proof reduces to repeated use
of Lemma 3.9 to establish the orthogonality of the given sets. For that, we need the orthogonality
and the saturation properties of the components of OP . It also follows from the latter that they are
saturated (Lemma 3.1). By construction, they are all made at the outermost level out of constructors/
eliminators. �
Orthogonal completion. Now that we have interpretations for the actions that construct values/co-
values of a type in ONP , we need to go the other way (as per diagram 1, above) to OP , so that we
also include (co-) variables and (co-) abstractions in our interpretations. So, for saturated orthogonal
sets of values T and of co-values K, the term and co-term completions of T and K are respectively
defined as:

[T](L) = Var ∪ T ∪
⋃

α∈Covar

α.
(
SN

∣∣L/α
)

, [K](U) = Covar ∪ K ∪
⋃

x∈Var

x.
(
SN

∣∣U/x
)

.
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12 Classical logic with Mendler induction

Due to the non-determinism associated with the reduction of abstractions, we need guarantee that
all added (co-) abstractions are compatible not only with the initial set of values, but also with any
(co-) abstractions that have been added in the process—and vice-versa. In other words, we need to
iterate this process by taking the least fix-point in the complete lattice of subsets of terms–and then,
from it, obtain the continuations:

(T‖K) = (
lfp[T] ◦ [K]), [K] (lfp([T] ◦ [K]))

)
.

(In fact, as has been remarked elsewhere [3, 19], all one needs is a fix-point.) That the fix-point
exists is a consequence of the next proposition; that it always yields an orthogonal pair when applied
to elements N ∈ ONP , is proven in Proposition 3.14—and in this case, we term it the structural
completion of N .

PROPOSITION 3.11 (Contra-variance of co- and term completions).
For any T ⊆ T and K ⊆ K the functions

[T] : P(K) → P(T ) and [K] : P(T ) → P(K)

are contra-variant under inclusion of sets. Consequently, the compositions

[T] ◦ [K] : P(T ) → P(T ) and [K] ◦ [T] : P(K) → P(K)

are monotone (covariant) functions.

LEMMA 3.12
For any set of co-terms L (resp. of terms U), if T (resp. K) is saturated, then so is [T] (L) (resp.
[K] (U)).

PROOF. The set SN is saturated, hence, by Theorem 3.5, so is SN
∣∣L/α for any co-term set L, and, by

Lemma 3.1, α.
(
SN

∣∣L/α
)

is, therefore, also saturated. The set of variables Var is, trivially, saturated,

as is T (by assumption); the union of these sets for any choice of co-variable in the abstraction

[T](L) = Var ∪ T ∪
⋃

α∈Covar

α.
(
SN

∣∣L/α
)

is also saturated. (Likewise for the co-term closure.) �
LEMMA 3.13
For an arbitrary set of terms T and an arbitrary set of co-terms K, let P = (T‖K). The following
equalities hold:

(P)T = [T]
(
(P)K

)
(P)K = [K]

(
(P)T

)
.

And from these, it follows easily that

Var, T ⊆ (P)T Covar, K ⊆ (P)K .

PROPOSITION 3.14
Let N ∈ ONP be an orthogonal normal pair. Its structural completion is an orthogonal pair:

N =
(
(N)T ‖ (N)K

)
∈ OP .
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Classical logic with Mendler induction 13

3.3 Orthogonal interpretations

Interpretations. Given a type T and a finite mapping γ containing its free type variables, ftv(T),
to ONP—called the interpretation context—we define (Table 6) two interpretations, �T�(γ ) in
orthogonal pairs and �T�(γ ) in orthogonal normal pairs, by mutual induction on the structure of
T (bound variables are, as usual, taken fresh). They both satisfy the weakening and substitution
properties. The extension of an interpretation context γ where a type-variable X is mapped to
N ∈ ONP is denoted by γ [X �→ N].

THEOREM 3.15 (Well-definedness).
For any DC type T and for any suitable interpretation context γ (i.e. finite dom(γ ) and ftv(T) ⊆
dom(γ )):

�T�(γ ) ∈ ONP and �T�(γ ) ∈ OP .

LEMMA 3.16
The two interpretations can be easily related in the following way:

Var,
(
�T�(γ )

)T ⊆ (
�T�(γ )

)T Covar,
(
�T�(γ )

)K ⊆ (
�T�(γ )

)K .

Second-order properties. In addition to being orthogonal, the two interpretations of Table 6 also
satisfy the two (standard) properties of any second-order system: weakening and substitution. The
first is paramount in the generalization rules (right-rule for universal quantification, left-rule for
existential quantification), the second conflates type instantiation (substitution) at the syntactic level
with instantiation of interpretation at the semantic level.

LEMMA 3.17 (Weakening).
Let N ∈ ONP and Y /∈ ftv(T):

�T�(γ [Y �→ N]) = �T�(γ ) �T�(γ [Y �→ N]) = �T�(γ ).

LEMMA 3.18 (Substitution).
Let T , T ′ be types, ftv(T) − {Y } ⊆ dom(γ ) and ftv(T ′) ⊆ dom(γ ):

�T
[
T ′/Y

]
�(γ ) = �T�(γ

[
Y �→ �T ′�(γ )

]
)

�T
[
T ′/Y

]
�(γ ) = �T�(γ

[
Y �→ �T ′�(γ )

]
).

Syntactic lifting. The final results that we need relate the structure of the calculus—its operators—
with the interpretation of types. Concretely, the former are ‘morphisms’ between the latter.

LEMMA 3.18 (Conservation).
The syntactic introduction and elimination operators of the second-order Dual Calculus conserve the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa004/5775548 by guest on 05 M

arch 2020



14 Classical logic with Mendler induction

interpretations in the following sense:〈(
�A�(γ )

)T ,
(
�B�(γ )

)T〉 ⊆ (
�A ∧ B�(γ )

)T
fst

[(
�A�(γ )

)K] ⊆ (
�A ∧ B�(γ )

)K snd
[(

�B�(γ )
)K] ⊆ (

�A ∧ B�(γ )
)K

i1
〈(

�A�(γ )
)T〉 ⊆ (

�A ∨ B�(γ )
)T i2

〈(
�B�(γ )

)T〉 ⊆ (
�A ∨ B�(γ )

)T[(
�A�(γ )

)K ,
(
�B�(γ )

)K] ⊆ (
�A ∨ B�(γ )

)K
not

〈(
�A�(γ )

)K〉 ⊆ (
�¬A�(γ )

)T not
[(

�A�(γ )
)T] ⊆ (

�¬A�(γ )
)K

λx.
((

�B�(γ )
)T ∣∣(�A�(γ ))

T
/x
)

⊆ (
�A → B�(γ )

)T((
�A�(γ )

)T@
(
�B�(γ )

)K) ⊆ (
�A → B�(γ )

)K((
�A�(γ )

)T#
(
�B�(γ )

)K) ⊆ (
�A − B�(γ )

)T
μα.

((
�A�(γ )

)K ∣∣(�B�(γ ))
K
/α
)

⊆ (
�A − B�(γ )

)K
and for S = {

�A�(γ [X �→ N])
∣∣N ∈ ONP

}
with X fresh for γ :

a

〈⋂
P∈S

(P)T

〉
⊆ (

�∀X . A�(γ )
)T a

[⋃
P∈S

(P)K

]
⊆ (

�∀X . A�(γ )
)K

e

〈⋃
P∈S

(P)T

〉
⊆ (

�∃X . A�(γ )
)T e

[⋂
P∈S

(P)K

]
⊆ (

�∃X . A�(γ )
)K .

LEMMA 3.20 (Conservation for abstractions).
The abstraction operation takes the interpretation for terms into a subset of the interpretation for
co-terms—and vice-versa for co-abstractions:

x.
(
SN

∣∣(�A�(γ ))
T
/x
)

⊆ (
�A�(γ )

)K
α.
(
SN

∣∣(�A�(γ ))
K
/α
)

⊆ (
�A�(γ )

)T .

3.4 Adequacy

Substitutions. The result of a (head) reduction is not necessarily composed of sub-phrases of
the original cut; for abstractions, it depends on the result of a substitution. The proof of strong
normalization cannot simply rest on a direct induction on the property of being strongly normalizing.
We must additionally show that said property is invariant whenever we make some substitution that
respects the interpretations of the given types.

Given typing (co-) contexts Γ and Δ, and an interpretation context γ containing all the free-
variables in those contexts, we define a (bi-) substitution σ for Γ , Δ, γ as being a finite mapping of
(co-) variables into the parametrized interpretation of their types in the contexts, i.e.

(x : T) ∈ Γ �⇒ σ(x) ∈ (
�T�(γ )

)T , (α : T) ∈ Δ �⇒ σ(α) ∈ (
�T�(γ )

)K .

The application of a substitution to a phrase p is denoted p[σ ]. With this in hand, we can express the
adequate strong normalization theorem as follows.
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Classical logic with Mendler induction 15

THEOREM 3.21 (Adequacy).
Let t, k and c stand for terms, co-terms and cuts of the dual calculus. For any typing contexts and
co-contexts Γ and Δ, s.t.

Γ � t : T | Δ Γ | k : T � Δ Γ � c � Δ,

for any (suitable) interpretation context γ for Γ , Δ and T , and correspondingly suitable substitution
σ , we have that

t[σ ] ∈ (
�T�(γ )

)T , k[σ ] ∈ (
�T�(γ )

)K and c[σ ] ∈ SN .

PROOF. Formally, by rule induction on the typing trees. We show the cases for subtraction. Terms
are handled straightforwardly using the induction hypothesis:

t[σ ] ∈ (
�A�(γ )

)T and k[σ ] ∈ (
�B�(γ )

)K
�⇒ (t[σ ]#k[σ ]) ∈ (

�A − B�(γ )
)T

�⇒ ((t#k)) [σ ] ∈ (
�A − B�(γ )

)T .

On the continuation side, we assume that co-variable α is chosen fresh everywhere. As the typing
context on the assumption of the typing rule has an extra α : B, we have that for any substitution σ

for the conclusion and k′ ∈ (
�B�(γ )

)K, the substitution σ
[
k′/α

]
is in the conditions of the theorem,

and, therefore the induction hypothesis yields:

k
[
σ
[
k′/α

]] = k[σ ]
[
k′/α

] ∈ (
�A�(γ )

)K ,

and also, because Covar ⊆ (
�B�(γ )

)K,

k [σ [α/α]] = k[σ ] ∈ (
�A�(γ )

)K ⊆ SNK,

by definition of restriction, we conclude

k[σ ] ∈ (
�A�(γ )

)K ∣∣(�B�(γ ))
K
/α ,

and thereby

μα.(k[σ ]) ∈ μα.
((

�A�(γ )
)K ∣∣(�B�(γ ))

K
/α
)

�⇒ μα.(k[σ ]) ∈ (
�A − B�(γ )

)K
�⇒ μα.(k) [σ ] ∈ (

�A − B�(γ )
)K . �

COROLLARY 3.22 (Strong normalization).
Every well-typed phrase of DC is strongly normalizing.

4 Mendler induction

Having covered the first theme of the paper, classical logical in its Dual Calculus guise, let us focus
in this section on the second theme we are exploring: Mendler induction. As the concept may be
rather foreign, it is best to review it informally in the familiar functional setting.
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16 Classical logic with Mendler induction

Inductive definitions. Roughly speaking, an inductive definition of a function is one in which the
function being defined can be used in its own definition provided that it is applied only to values of
strictly smaller character than the input. The fix-point operator

fix :
(
(μX .F(X ) → A) → μ X .F(X ) → A

) → μ X .F(X ) → A

fix f x = f (fix f ) x

associated to the inductive type μ X .F(X ) arising from a type scheme F(X ), clearly violates
induction and indeed breaks strong normalization: one can feed it the identity function to yield a
looping term. One may naively attempt to tame this behavior by considering the following modified
fix-point operator

fix′ :
(
(μX .F(X ) → A) → F

(
μX .F(X )

) → A
) → μX .F(X ) → A

fix′ f (in x′) = f (fix′ f ) x′

in which, for the introduction in : F
(
μX .F(X )

) → μX .F(X ), one may regard x′ as being of strictly
smaller character than in(x′). Of course, this is still unsatisfactory as, for instance, we have the
looping term fix′ (λf . f ◦ in). The problem here is that the functional λf . f ◦ in : (μX .F(X ) →
A) → F

(
μX .F(X )

) → A of which we are taking the fix-point takes advantage of the concrete type
F
(
μX .F(X )

)
of x′ used in the recursive call.

Mendler induction. The ingenuity of Mendler induction is to ban such perversities by restricting
the type of the functionals that the iterator can be applied to: these should not rely on the inductive
type but rather be abstract—in other words, be represented by a fresh type variable X as in the typing
below4:

mitr :
(
(X → A) → F(X ) → A

) → μX .F(X ) → A

mitr f (min x) = f (mitr f ) x

for min the introduction F
(
μX .F(X )

) → μX .F(X ).
Note that if the type scheme F(X ) is endowed with a polymorphic mapping operation mapF :

(A → B) → F(A) → F(B), every term a : F(A) → A has as associated catamorphism cata(a) ≡
mitr

(
λf . a ◦ (mapF f )

)
: μX .F(X ) → A. In particular, one has cata(mapF min) : μX .F(X ) →

F
(
μX .F(X )

)
.

5 Dual calculus with Mendler induction

Mendler induction. We shall now formalize Mendler induction in the classical calculus of Section 2.
Additionally, we shall also introduce its dual, Mendler co-induction. This requires type constructors,
syntactic operations corresponding to the introductions and eliminations and their typing rules and
reduction rules. These are summarized in Table 7. First, we take a type scheme F(X ) and represent
its inductive type by μ X .F(X )—dually, we represent the associated co-inductive type by ν X .F(X ).

Syntax. As usual, the inductive introduction, min 〈−〉, witnesses that the values of the unfolding of
the inductive type F(μ X . F(X )) are injected in the inductive type μ X .F(X ). It is in performing

4We note that the original presentation of this inductive operator [17] was in System F and, accordingly, the operator
considered instead functionals of type ∀X . (X → A) → F(X ) → A. Cognoscenti will recognize that this type is the type-
theoretic Yoneda reformulation ∀X . (X → A) → T(X ) of T(A) = F(A) → A for T(X ) = F(X ) → A.
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Classical logic with Mendler induction 17

TABLE 7 Extension of the second-order Dual Calculus with Mendler induction.

Types
T := . . . | μ X .F(X ) | ν X .F(X )

Syntax
t := . . . | . . . | min 〈t〉 | mcoitrr,x

〈
t, t′

〉︸ ︷︷ ︸
Introductions

| . . .

k := . . . | . . . | mitrρ,α
[
k, k′] | mout[k]︸ ︷︷ ︸

Eliminations

| . . .

Head reduction
min 〈t〉 • mitrρ,α [k, l] � t • k

[
μα.

(
mitrρ,α [k, α]

)
/ρ
]

[l/α]
mcoitrr,x 〈t, u〉 • mout[k] � t

[
λx.

(
mcoitrr,x 〈t, x〉) /r

]
[u/x] • k

Parallel reduction

t0 t1 �⇒
⎧⎨
⎩

min〈t0〉 min〈t1〉
mcoitrr,x 〈t0, t〉 mcoitrr,x 〈t1, t〉
mcoitrr,x 〈t, t0〉 mcoitrr,x 〈t, t1〉

k0 k1 �⇒
⎧⎨
⎩

mout[k0] mout[k1]
mitrρ,α[k, k0] mitrρ,α[k, k1]
mitrρ,α[k0, k] mitrρ,α[k1, k]

Typing rules
Γ �t:F(μ X .F(X )) | Δ

Γ �min〈t〉:μ X .F(X ) | Δ

Γ | k:F(X )�Δ,ρ:X−A,α:A Γ | l:A�Δ
Γ | mitrρ,α[k,l]:μ X .F(X )�Δ

(X not free in Γ , Δ, A)

x:A,r:A→X ,Γ �t:F(X ) | Δ Γ �u:A | Δ
Γ �mcoitrr,x〈t,u〉:ν X .F(X ) | Δ

(X not free in Γ , Δ, A)

Γ | k:F(ν X .F(X ))�Δ
Γ | mout[k]:ν X .F(X )�Δ

induction that we consume values of inductive type and, hence, the induction operator (or iterator,
or inductor), mitrρ,α [k, l] corresponds to an elimination. It is comprised of an iteration step k, an
output continuation l and two distinct induction co-variables, ρ and α. We postpone the explanation
of their significance for the section on reduction below, but note now that the iterator binds ρ and α

in the iteration continuation but not in the output continuation, thus, e.g.(
mitrρ,α [k, l]

) [
k′/ρ

] [
l′/α

] = mitrρ,α
[
k, l

[
k′/ρ

] [
l′/α

]]
.

The co-inductive operators, mcoitrr,x 〈t, u〉 and mout[k], are obtained via dualization. In particular,
the co-inductive eliminator, mout[k], witnesses that the co-values k of type F(ν X .F(X )) determine
the ‘proper’ (i.e. those that are not abstractions) co-values of ν X .F(X ).

Reduction. To reduce an inductive cut min 〈t〉 • mitrρ,α [k, l], we start by passing the unwrapped
inductive value t to the induction step k. However, in the spirit of Mendler induction, the induction
step must be instantiated with the induction itself and, because we are in a classical calculus, with the
output continuation—this is where the parameter co-variables come into play. The first co-variable,
ρ, receives the induction; the induction step may call this co-variable (using a cut) arbitrarily and
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18 Classical logic with Mendler induction

it must also be able to capture the output of those calls—in other words, it needs to compose this
continuation with other continuations; therefore, one needs to pass μα.

(
mitrρ,α [k, α]

)
, the induction

with the output continuation (subtractively) abstracted. The other co-variable, α, represents in k
the output of the induction—which for a call mitrρ,α [k, l] is l.5 For co-induction, we dualize—in
particular, the co-inductive call expects the lambda-abstraction of the co-inductive step.

Typing. Lastly, we have the typing rules that force induction to be well founded. Recall that this
was achieved in the functional setting by forcing the inductive step to take an argument of arbitrary
instances of the type scheme F(X ). Here we do the same. In typing mitrρ,α [k, l] for μ X .F(X ), we
require k to have type F(X ) where X is a variable that appears nowhere in the derivation except in
the (input) type of the co-variable ρ.

Example: naturals. Let us look at a concrete example: natural numbers under the abstraction
prioritizing strategy. We posit a distinguished type variable B and from it construct the type
1 ≡ B ∨ ¬B, which is inhabited by the witness of the law of the excluded middle, ∗ ≡
α.(i2 〈not〈x. (i1 〈x〉 • α)〉〉 • α). The base type scheme for the naturals is F(X ) ≡ 1 ∨ X , and the
naturals are then defined as N ≡ μX .F(X ). Examples of values of this type are:

zero ≡ min 〈i1 〈∗〉〉 , one ≡ min 〈i2 〈zero〉〉 and two ≡ min 〈i2 〈one〉〉 .

For any continuation k on N , the successor ‘function’ is defined as the following continuation
for N

succkk ≡ x. (min 〈i2 〈x〉〉 • k) (x /∈ fv(k)).

Example: addition. The above primitives are all we need to define addition of these naturals. The
inductive step ‘return m for zero, or induct and then add one’ is encoded as

Stepm
ρ,α ≡ [

x. (m • α), x.
((

x#succkα
) • ρ

)]
.

THEOREM 5.1
Let n and m stand for the encoding of two natural numbers and the encoding of their sum be (by
abuse of notation) n + m. Under the abstraction prioritizing reduction rule,

n • mitrρ,α
[
Stepm

ρ,α , l
]
�∗ (n + m) • l.

PROOF. Inducting on n: for n = 0,
zero • mitrρ,α

[
Stepm

ρ,α , l
]
� i1 〈∗〉 • Stepm

ρ,α

[
μα.

(
mitrρ,α

[
Stepm

ρ,α , α
])

/ρ
]

[l/α]

� ∗ • x. (m • l)

� m • l ;

5One may wonder if the output continuation is strictly necessary. As outputs appear on the right of sequents, and the
induction is already a left-rule, the only possible alternative would be to add a co-variable to represent it. However, under this
rule the system would no longer be closed under substitutions [15].
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Classical logic with Mendler induction 19

for n + 1 = min 〈i2 〈n〉〉
min 〈i2 〈n〉〉 • mitrρ,α

[
Stepm

ρ,α , l
]

� i2 〈n〉 • Stepm
ρ,α

[
μα.

(
mitrρ,α

[
Stepm

ρ,α , α
])

/ρ
]

[l/α]

� n • x.
((

x#succkl
)
• μα.

(
mitrρ,α

[
Stepm

ρ,α , α
]))

�
(

n#succkl
)
• μα.

(
mitrρ,α

[
Stepm

ρ,α , α
])

� n • mitrρ,α

[
Stepm

ρ,α , succkl
]

� (n + m) • succkl (IH)

� min 〈i2 〈n + m〉〉 • l. �
Notice how the inductive operator works by accumulating future actions in the continuation

parameter as it consumes the value—this is characteristic of this style of programming.

Splitting the naturals. Let us take a slight generalization of the naturals, μ X . A ∨ X , where 1 is
replaced by some fixed type A (not containing X free) and zero can be parametrized by a term of
that type instead of the fixed witness ∗,

zero〈t〉 ≡ min 〈i1 〈t〉〉 succ 〈t〉 ≡ min 〈i2 〈t〉〉 .

Another well-known operation on naturals is the witness split : N → N ∨ N of the partition of
naturals between evens and odds. This is an inductive function that tells of a natural number not only
if it is even or odd but also which nth even or odd it is. Since it consumes a natural, it will be a
continuation; to simulate returning, we also must parametrize it with a continuation on N ∨ N with
the relevant component being called correspondingly:

split [k] ≡ mitrρ,α
[
[baseα , indα

ρ ], k
]

,

where

baseα ≡ x. (i1 〈zero〈x〉〉 • α)

indα
ρ ≡ x. ((x#[y. (i2 〈y〉 • α), y. (i1 〈succ 〈y〉〉 • α)]) • ρ) .

PROPOSITION 5.2
Define

succn 〈a〉 ≡ succ〈succ〈. . .︸ ︷︷ ︸
n times

〈zero〈a〉〉〉〉.

under the abstraction prioritizing reduction strategy, for any pairing of continuations [e, o]

succm 〈a〉 • split [[e, o]] �∗
{

succn 〈a〉 • e if m = 2n
succn 〈a〉 • o if m = 2n + 1.

Co-induction ‘via’ induction. The example above is more than simply an arithmetic curiosity. If we
straightforwardly take the syntactic dual—replacing induction with co-induction, disjunctions with
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20 Classical logic with Mendler induction

conjunctions and inputs with outputs—we arrive at the following definitions:

head[k] ≡ mout[fst[k]] tail[k] ≡ mout[snd [k]]

merge 〈p〉 ≡ mcoitrr,x
〈〈

cobasex, coindx
r

〉
, p
〉
,

where

cobasex ≡ α.(x • fst[head[α]])

coindx
r ≡ α.(r • (〈β. (x • snd [β]) , β. (x • fst[tail[β]])〉@α)) .

As their names suggest, they form the basis of the merging of co-inductive streams of some type
A [14]. Their associated co-inductive type is ν X . A ∧ X . Going forward, dualizing Prop. 5.2 as well,
we can see this operator satisfies the specification we would expect from the merging operator: if we
try to take out (read, pass to a continuation k) the element at position 2n (zero based) of the merged
stream, we get element n of the first stream, and if we try to take out the element at position 2n + 1,
we get the element at position n of the second stream.

PROPOSITION 5.3
Define

tailn[k] ≡ tail[tail[. . .︸ ︷︷ ︸
n times

[head[k]]]],

under the co-abstraction prioritizing reduction, for any pair of streams 〈a, b〉

merge 〈〈a, b〉〉 • tailm[k] �∗
{

a • tailn[k] if m = 2n
b • tailn[k] if m = 2n + 1.

PROOF. Either directly or by dualizing Prop. 5.2. �
It may seem odd that we can encode infinite streams in a language that is—as we shall shortly

see—strongly normalizing. The strict duality of the Dual Calculus makes it possible to re-frame
any co-inductive problem into a more familiar inductive one. In this case, induction is strongly
normalizing because we ever only apply it to finite values; conversely, co-inductive values may be
‘infinite’ but can only ever be analyzed using finite sequences of mout[−] operations.

6 Strong normalization for Mendler induction

We now come to the main contribution of the paper: the extension of the orthogonal pairs
interpretation of the second-order Dual Calculus (Section 3) to Mendler induction—and the proof,
thereby, that the extension is also strongly normalizing.

6.1 Sets of syntax

Set and lattice structure. The extension begins with the reformulation of the sets T , K and
C, SNT , SNK and SN , IT and EK so that they accommodate the (co-) inductive operators.
Modulo these changes, the definitions of OP and ONP remain the same, and so do the actions for
propositional and second-order types and the orthogonal completion, . All that remains is to give
suitable definitions for the (co-) inductive actions and the interpretations of (co-) inductive types. As
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Classical logic with Mendler induction 21

before, we lift syntactic operators to the level of sets by taking the image of their actions on phrases,
confusing the notation for both. These operators preserve saturation.

LEMMA 6.1
Let T and U be saturated sets of terms, K and L be saturated sets of co-terms. Inductive and co-
inductive terms and co-terms built out of them and the inductive and co-inductive introductions and
eliminations are saturated:

(min 〈T〉) ⊆ min 〈T〉 (
mitrρ,α [K, L]

) ⊆ mitrρ,α [K, L](
mcoitrr,x 〈T , U〉) ⊆ mcoitrr,x 〈T , U〉 (mout[K]) ⊆ mout[K].

Inductive restrictions. The reduction rule for Mendler induction is unlike any other of the calculus.
When performing an inductive step for mitrρ,α [k, l], the bound variable ρ will be only substituted
by one specific term, namely μα.

(
mitrρ,α [k, α]

)
. One needs a different kind of restriction to encode

this invariant: take K and L to be sets of co-terms (intuitively, where the inductive step and output
continuation live) and define the inductive restriction by

K/ρ
αL ≡ {

k ∈ SNK
∣∣ for all l ∈ L, k

[
μα.

(
mitrρ,α [k, α]

)
/ρ
]

[l/α] ∈ K
}

,

and also for co-induction, for sets of terms T and U ,

T/r
xU ≡ {

t ∈ SNT
∣∣ for all u ∈ U , t

[
λx.

(
mcoitrr,x 〈t, x〉) /r

]
[u/x] ∈ T

}
.

LEMMA 6.2 (Saturation for Mendler restrictions).
Let T be a set of terms, and K a set of co-terms—both of them saturated—and let U and L be any set
of terms and any set of co-terms, respectively. For any (distinct) variables r and x, and co-variables
ρ and α,

K/ρ
αL and T/r

xU

are saturated.

LEMMA 6.3 (Preservation of (head) orthogonality).
Take T , U ⊆ SNT to be saturated sets of terms, K, L ⊆ SNK to be saturated sets of co-terms and
assume that T • K ⊆ SN ; it then follows that

[�]
(
min 〈T〉 • mitrρ,α

[
K/ρ

αL, L
]) ⊆ SN (ρ �=α ∈ Covar)

[�]
(
mcoitrr,x

〈
T/r

xU , U
〉 • mout[K]

) ⊆ SN (r �= x ∈ Var).

LEMMA 6.4 (Preservation of orthogonality).
Take T , U ⊆ SNT to be saturated sets of strongly normalizing terms, K, L ⊆ SNK to be saturated
sets of strongly normalizing co-terms and assume that T • K ⊆ SN ; it then follows that

min 〈T〉 • mitrρ,α
[
K/ρ

αL, L
] ⊆ SN (ρ �=α ∈ Covar)

mcoitrr,x
〈
T/r

xU , U
〉 • mout[K] ⊆ SN (r �= x ∈ Var).

6.2 Orthogonal pairs

Mendler pairing. Combining the inductive restriction with the inductive introduction/elimination
set operations, we can easily create orthogonal normal pairs—much as we did for the proposi-
tional actions—from two given orthogonal pairs: one intuitively standing for the interpretation of
F(μF . F(X )) and the other for the output type. However, the interpretation of the inductive type
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22 Classical logic with Mendler induction

should not depend on a specific choice of output type but should accept all instantiations of output,
as well as all possible induction co-variables; model-wise this corresponds to taking a meet over all
possible choices for the parameters:

MuP(P) =
∧

Q∈OP
ρ �=α∈Covar

(
min

〈
(P)T

〉
, mitrρ,α

[
(P)K/ρ

α(Q)K, (Q)K
])

∈ ONP ,

and similarly for its dual:

NuP(P) =
∨

Q∈OP
r �= x∈Var

(
mcoitrr,x

〈
(P)T/r

x(Q)T, (Q)T
〉
, mout

[
(P)K

])
∈ ONP .

Monotonization. The typing constraints on Mendler induction correspond—model-wise—to a
monotonization step. This turns out to be what we need to guarantee that an inductive type can
be modeled by a least fix-point; without this step, the interpretation of a type scheme would be
a function on complete lattices that would not necessarily be monotone. There are two possible
universal ways to induce monotone endo-functions from a given endo-function f on a complete
lattice: the first one, �f �, we call the monotone extension and use it for inductive types; the other
one, the monotone restriction  f !, will be useful for co-inductive types. Their definitions6 are:

�f � x ≡
∨
y≤x

f y and  f ! x ≡
∧
x≤y

f y.

They are, respectively, the least monotone function above and the greatest monotone function below
f . Necessarily, by Tarski’s fix-point theorem, they both have least and greatest fix-points, i.e. we
have lfp (�f �) and gfp ( f !).
LEMMA 6.5 (Characterization of monotonizations).
If f is an arbitrary endo-function on a complete lattice L then its monotone extension, �f � : L → L,
is the least monotone function above f while its monotone restriction  f ! : L → L is the greatest
monotone function below f .

COROLLARY 6.6
The monotone extension �f � : ONP → ONP and the monotone restriction  f ! : ONP → ONP
of any endo-function f on orthogonal normal pairs both have fix-point points. Further, the sets of
their respective fix-points form themselves sub-lattices of ONP , with greatest and least elements.

Inductive actions. Combining the above ingredients, one can define the actions corresponding to
inductive and to co-inductive types. They are parametrized by functions f : ONP → OP ,

μf ≡ lfp (�MuP ◦ f �) ∈ ONP and νf ≡ gfp ( NuP ◦ f !) ∈ ONP .

THEOREM 6.7 (Orthogonality for actions).
For any arbitrary function f : ONP → OP ,

μf ∈ ONP and νf ∈ ONP .

6Cognoscenti will recognize that they are point-wise Kan extensions.
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Classical logic with Mendler induction 23

PROOF. For f : ONP → OP , both MuP ◦ f and NuP ◦ f are functions ONP → ONP , so
Corollary 6.6 witnesses the existence of the claimed fix-points for

�MuP ◦ f � and  NuP ◦ f ! . �

6.3 Orthogonal interpretations

Interpretations. The normal interpretations for (co-) inductive types associated to some type-
scheme F(X ) given a (suitable) interpretation context gamma is

�μ X .F(X )�(γ ) = μ(�F(X )�(γ [X �→ −]))

�ν X .F(X )�(γ ) = ν(�F(X )�(γ [X �→ −]))

while the respective orthogonal interpretations are as before. These interpretations also satisfy the
weakening and substitution properties.

THEOREM 6.8 (Well-definedness).
For any type T of the Mendler-inductive extension of DC and for any suitable interpretation context
γ (dom(γ ) finite and ftv(T) ⊆ dom(γ )),

�T�(γ ) ∈ ONP and �T�(γ ) ∈ OP .

LEMMA 6.9
The two interpretations are still related (Lemma 3.16) by

Var,
(
�T�(γ )

)T ⊆ (
�T�(γ )

)T and Covar,
(
�T�(γ )

)K ⊆ (
�T�(γ )

)K .

LEMMA 6.10 (Weakening).
Let N ∈ ONP and Y /∈ ftv(T):

�T�(γ [Y �→ N]) = �T�(γ ) �T�(γ [Y �→ N]) = �T�(γ ).

LEMMA 6.11 (Substitution).
Let T , T ′ be types, and ftv(T) − {Y } ⊆ dom(γ ) and ftv(T ′) ⊆ dom(γ ):

�T
[
T ′/Y

]
�(γ ) = �T�(γ

[
Y �→ �T ′�(γ )

]
) �T

[
T ′/Y

]
�(γ ) = �T�(γ

[
Y �→ �T ′�(γ )

]
).

6.4 An inductive principle

Classically reasoning about Mendler induction. The issue now centers around the co-term
component of the interpretation of inductive types (and, dually, the term component of co-inductive
types) and the conditions in which they create co-terms in the interpretation of inductive types.
Roughly, the induction hypothesis of the adequacy theorem states that for any N ∈ ONP ,
m ∈ (

�X − A� (γ [X �→ N])
)K, l ∈ (

�A� (γ )
)K and suitable substitution σ we have

k [σ [ρ �→ m][α �→ l]] ∈ (
�F(X )� (γ [X �→ N])

)K , (2)

and if we were to prove that mitrρ,α [k[σ ], l[σ ]] ∈ (
�μ X .F(X )� (γ )

)K just by the fix-point property
of the interpretation, we would need to have

(k[σ ])
[
μα.(mitrρ,α [k[σ ], α])/ρ

]
[l/α] ∈ (

�F(X )�
(
γ
[
X �→ �μX .F(X )� (γ )

]))K
for arbitrary l ∈ (

�A� (γ )
)K. Instantiating Formula 2 to the case when N is the interpreta-

tion of our fix-point, �μ X .F(X )� (γ ), we see that in order to prove that mitrρ,α [k[σ ], l[σ ]] ∈
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24 Classical logic with Mendler induction

(
�μ X .F(X )� (γ )

)K the interpretation of subtractive types requires that for any l′ ∈ (
�A� (γ )

)K we

already know mitrρ,α
[
k[σ ], l′

] ∈ (
�μ X .F(X )� (γ )

)K—a circularity!
For ω-complete posets there is an alternative characterization of the least fix-point of a continuous

function as the least upper bound of a countable chain. The completion operation used in the
definition of the OP interpretation is not continuous. However, classically, the least fix-point of any
monotone function f on a complete lattice exists and lies somewhere in the transfinite chain [7]

dα+1 = f (dα) and dλ =
∨
α<λ

dα (for limit λ)

(and dually for co-induction).

Admissibility. This least fix point comes with a useful induction principle. Because we work with
least upper and greatest lower bounds, we need to think in terms of their preservation. We say of a
proposition (seen as a set) that it is admissible iff it satisfies:

1. Lub preservation: S ⊆ P �⇒ P
(∨

S
)

2. Downward closure: a ≤ b and P(b) �⇒ P(a).

THEOREM 6.12 (Induction principle for monotone extensions of endofunctions).
Take L to be a complete lattice, let f : L → L be an endo-function (not necessarily a homomorphism)
and P be an admissible property on (read, subset of) L. if

P(a) �⇒ P(f a),

then property P holds for the least fix-point of its monotone extension,

P (lfp (�f �)) .

COROLLARY 6.13
Let g : M → M be an endo-function (not necessarily a homomorphism) and P be a property
(alternatively read subset) on a complete lattice M for which:

1. Glb preservation: S ⊆ P �⇒ P
(∧

S
)

2. Upward closure: a ≤ b and P(a) �⇒ P(b)

3. Function preservation: P(a) �⇒ P(ga).

The property holds for the greatest fix-point of its monotone restriction,

P (gfp ( g! |)) .

PROOF. Apply Theorem 6.12 to L = Mop. �

6.5 Adequacy

As in Section 3, we establish strong normalization via conservation and adequacy results for the
Mendler-inductive extension.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa004/5775548 by guest on 05 M

arch 2020



Classical logic with Mendler induction 25

LEMMA 6.14 (Conservation).
For any typescheme F, type A and interpretation context γ suitable for both,

min
〈(

�F (μ X .F(X ))�(γ )
)T〉 ⊆ (

�μ X .F(X )�(γ )
)T

mitrρ,α

[ ⋂
N∈ONP

(
�F(X )�(γ [X �→ N])

)K ∣∣∣∣∣
(
�X − A�(γ [X �→ N])

)K
/ρ(

�A�(γ )
)K

/α
,
(
�A�(γ )

)K]

⊆ (
�μ X .F(X )�(γ )

)K
mcoitrr,x

〈 ⋂
N∈ONP

(
�F(X )�(γ [X �→ N])

)T ∣∣∣∣∣
(
�A − X �(γ [X �→ N])

)T
/r(

�A�(γ )
)T

/x
,
(
�A�(γ )

)T〉

⊆ (
�ν X .F(X )�(γ )

)T
mout

[(
�F (ν X .F(X ))�(γ )

)K] ⊆ (
�ν X .F(X )�(γ )

)K ,

where X is fresh for type A.

PROOF. We focus here solely on the eliminator for inductive types. The challenge we are faced
with is to recast the statement of conservation as a proposition within the confines of our induction
principle (Theorem 6.12). Using the—by now familiar—fact that the terms (and co-terms) in the
normal interpretation are included in the orthogonal one and defining the abbreviation

F (N) ≡ (
�F(X )�(γ [X �→ N])

)K ∣∣∣∣∣
(
�X − A�(γ [X �→ N])

)K
/ρ;(

�A�(γ )
)K

/α
⊆ SNK

our goal can be re-framed as

mitrρ,α

[ ⋂
N∈ONP

F (N),
(
�A�(γ )

)K] ⊆ (
�μ X .F(X )�(γ )

)K
with the ONP interpretation of the inductive type being the least fixed point

lfp
(⌈

MuP ◦ (
�F(X )�(γ [X �→ −])

)⌉)
.

Take then P to be

P(N) iff mitrρ,α

[ ⋂
N∈ONP

F(N),
(
�A�(γ )

)K] ⊆ (N)K .

To use the induction principle (Theorem 6.12), we need to prove that P is admissible (downward and
least upper bound closed) and that it is preserved by MuP ◦ �F(X )�(γ [X �→ −]).

Let M ≤ N ∈ ONP . For downward closure, by contra-variance of the order for the continuation
side, it follows that (N)K ⊆ (M)K; whence, if P(N) holds, we have that

mitrρ,α

[ ⋂
N∈ONP

F(N),
(
�A�(γ )

)K] ⊆ (N)K ⊆ (M)K
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26 Classical logic with Mendler induction

or, equivalently, P(M), as needed. For the least upper bound property, for S ⊆ P we consider the
empty and non-empty cases separately. If S = ∅ then, trivially,

mitrρ,α

[ ⋂
N∈ONP

F(N),
(
�A�(γ )

)K] ⊆ SNK = (⊥)K ;

otherwise,

for any N ∈ S, mitrρ,α

[ ⋂
N∈ONP

F(N),
(
�A�(γ )

)K] ⊆ (N)K

iff mitrρ,α

[ ⋂
N∈ONP

F(N),
(
�A�(γ )

)K] ⊆
⋂
N∈S

(N)K

iff mitrρ,α

[ ⋂
N∈ONP

F(N),
(
�A�(γ )

)K] ⊆
(∨

N∈S

N

)K

iff P
(∨

S
)

.

The core of the proof lies in showing preservation of P by MuP ◦ �F(X )�(γ [X �→ −]). Assume, to
this end, that N ∈ ONP is such that P(N), whence we gather that

mitrρ,α

[⋂
N∈ONP

F(N),
(
�A�(γ )

)K] ⊆ (N)K

iff mitrρ,α

[⋂
N∈ONP

F(N),
(
�A�(γ )

)K] ⊆ (
�X � (γ [X �→ N])

)K
�⇒ mitrρ,α

[⋂
N∈ONP

F(N),
(
�A�(γ )

)K] ⊆ (
�X �(γ [X �→ N])

)K
iff mitrρ,α[. . . , α]

[(
�A�(γ )

)K
/α
]

⊆ (
�X �(γ [X �→ N])

)K
{for any N , F(N) ⊆ SNK, so also mitrρ,α

[⋂
. . . , . . .

]
⊆ SNK; then by prop. 2}

iff mitrρ,α

[⋂
N∈ONP

F(N), α
]

⊆ (
�X �(γ [X �→ N])

)K ∣∣(�A�(γ ))
K
/α

iff μα.
(

mitrρ,α

[⋂
N∈ONP

F(N), α
])

⊆ μα.
((

�X �(γ [X �→ N])
)K ∣∣(�A�(γ ))

K
/α
)

iff μα.
(

mitrρ,α

[⋂
N∈ONP

F(N), α
])

⊆ μα.
(

(. . .)K
∣∣(�A�(γ [X �→N]))

K
/α
)

�⇒ μα.
(

mitrρ,α

[⋂
N∈ONP

F(N), α
])

⊆ (
�X − A� (γ [X �→ N])

)K
�⇒ μα.

(
mitrρ,α

[⋂
N∈ONP

F(N), α
])

⊆ (
�X − A�(γ [X �→ N])

)K (�)

This will put us in a position to prove that the inductive calls that comprise the left-hand side of the
inclusion satisfy the inductive restriction. To see this, take

mitrρ,α [k, l] ∈ mitrρ,α

[ ⋂
N∈ONP

F(N),
(
�A�(γ )

)K]
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from which we have that k ∈ ⋂
N∈ONP

F(N). Specifically for our assumed N that satisfies property

P

k ∈ (
�F(X )�(γ [X �→ N])

)K ∣∣∣∣∣
(
�X − A�(γ [X �→ N])

)K
/ρ(

�A�(γ )
)K

/α
,

and, from �,

μα.
(
mitrρ,α [k, α]

) ∈ (
�X − A�(γ [X �→ N])

)K .

Combining these two observations with the definition of the substitution restriction yields

for any l′ ∈ (
�A�(γ )

)K, k
[
μα.

(
mitrρ,α [k, α]

)
/ρ
] [

l′/α
]

= k
[
μα.

(
mitrρ,α [k, α]

)
/ρ, l′/α

]
∈ (

�F(X )�(γ [X �→ N])
)K .

As claimed, then, since, k ∈ SNK

k ∈ (
�F(X )�(γ [X �→ N])

)K
/ρ
α

(
�A�(γ )

)K.

From this we conclude that

mitrρ,α

[ ⋂
N∈ONP

F(N),
(
�A�(γ )

)K]

⊆ mitrρ,α

[(
�F(X )�(γ [X �→ N])

)K
/ρ
α

(
�A�(γ )

)K,
(
�A�(γ )

)K]
⊆

⋃
Q∈OP

ρ �=α∈Covar

mitrρ,α

[(
�F(X )�(γ [X �→ N])

)K
/ρ
α(Q)K, (Q)K

]

= (
MuP

(
�F(X )�(γ [X �→ N])

))K
= ((

MuP ◦ �F(X )�(γ [X �→ −])
)

N
)K

which is nothing but P
((

MuP ◦ �F(X )�(γ [X �→ −])
)

N
)
. �

THEOREM 6.15 (Adequacy).
Let t be a term, k a co-term and c a cut of the second-order Dual Calculus extended with Mendler
induction. For any contexts Γ and Δ, and types T for which they are well-typed,

Γ � t : T | Δ, Γ | k : T � Δ, and Γ � c � Δ,

any interpretation context γ and substitution σ for Γ and Δ validate

t[σ ] ∈ (
�T�(γ )

)T , k[σ ] ∈ (
�T�(γ )

)K , and c[σ ] ∈ SN .

PROOF. By extending the argument of Theorem 3.21. For the iterator, the proof almost exactly boils
down to proving that the induction hypothesis on k[σ ] (and l[σ ]) implies the relevant pre-conditions
of conservation (Lemma 6.14). A slight complication arises from the fact that the free type variables
in A need not appear in the conclusion, and therefore, a context γ which satisfies the adequacy
conditions for the conclusion, need not be suitable for the antecedents. To guarantee that that is the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exaa004/5775548 by guest on 05 M

arch 2020



28 Classical logic with Mendler induction

case, we extend any such γ with those type variables that appear in A but were not contemplated
in γ . Denoting the set of these by C = ftv(A) − dom(γ ) we get a new context by assigning ⊥7 to
those variables:

γ ′ = γ [C �→ ⊥] .

We shall also need to consider a further extension that accounts for the extra (fresh) type variable X ;
this freshness can be used— by the weakening property—to assign an arbitrary N ∈ ONP to it. The
set C is necessarily finite as it is bound by the free type variables that appear in the (finite) type A.
By repeated applications of weakening, we have that any substitution σ in the adequacy conditions
for the conclusion w.r.t. context γ is also valid for γ ′ as

x : T ∈ Γ �⇒ σ(x) ∈ (
�T�(γ )

)T = (
�T�(γ ′)

)T = (
�T�(γ ′ [X �→ N])

)T ,

α : T ∈ Δ �⇒ σ(α) ∈ (
�T�(γ )

)K = (
�T�(γ ′)

)K = (
�T�(γ ′ [X �→ N])

)K .

For the return continuation l, we immediately get from the induction hypothesis and weakening that

l[σ ] ∈ �A�(γ ′) = �A�(γ ′ [X �→ N]) .

For the inductive step k, for fresh ρ �=α ∈ Covar and any

k′ ∈ �X − A�(γ ′ [X �→ N]) and l′ ∈ �A�(γ ′) = �A�(γ ′ [X �→ N])

we have, then, that σ [ρ �→ k′][α �→ l′] is a substitution for k in the conditions of the theorem for
γ ′ [X �→ N]; therefore

k[σ ][k′/ρ, l′/α] = k[σ [ρ �→ k′][α �→ l′]] ∈ (
�F(X )�(γ ′ [X �→ N])

)K ,

and in particular, this holds for k′ = ρ and l′ = α, so k[σ ] ∈ SNT . Then, from the definition of the
restriction, and because the N above was chosen arbitrary,

k[σ ] ∈
⋂

N∈ONP

(
�F(X )�(γ ′ [X �→ N])

)K ∣∣∣∣∣
(
�X − A�(γ [X �→ N])

)K
/ρ(

�A�(γ )
)K

/α
.

The conservation lemma then yields

mitrρ,α [k, l] [σ ] = mitrρ,α [k[σ ], l[σ ]] ∈ (
�μ X . F(X )�(γ ′)

)K ,

which, by weakening (ftv(μ X .F(X )) ⊆ dom(γ )), is equivalent to

mitrρ,α [k, l] [σ ] = mitrρ,α [k[σ ], l[σ ]] ∈ (
�μ X . F(X )�(γ )

)K .

The (co-) injection cases are simple; the co-inductor is dealt similarly to the above. �
COROLLARY 6.16 (Strong normalization).
Every well-typed phrase of DC with Mendler induction is strongly normalizing.

7Indeed any arbitrary but fixed element of ONP would do.
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7 Concluding remarks

We have investigated classical logic with Mendler induction, presenting a classical calculus with very
general (co-) inductive types. Our work borrows from and generalizes systems based on Gentzen’s
LK under the Curry–Howard correspondence. Despite its generality, and as determined by means
of a reducibility argument, our Dual Calculus with Mendler induction is well behaved in that its
well-typed cuts are guaranteed to terminate. We expect—but have yet to fully confirm—that other
models fit within our framework for interpreting Mendler induction; our prime example is based
on inf lationary fix-points like those used in complexity theory [8] that also apply to non-monotone
interpretations.

It is known that LK-based calculi can encode various other calculi [6, 22]. Our calculus supports
map operations for all positive (co-) inductive types. This may be used to encode Kimura and
Tatsuta’s [15] extension of the Dual Calculus with positive (co-) inductive types [9, ch. 5].

One avenue of research that remains unexplored is how one may extract proofs from within
our system—in previous work, Berardi, et al. [4] showed how, embracing the non-determinism of
reduction inherent in the Symmetric Lambda-Calculus (and also present in DC), one could express
proof witnesses that behave like processes for a logic based on Peano arithmetic. A further direction
would take these investigations into the realm of linear logic, where the connection with processes
may be more salient.
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