Skip to main content

Aerial Vehicle Path Planning for Monitoring Wildfire Frontiers

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 113))

Abstract

This paper explores the use of unmanned aerial vehicles (UAVs) in wildfire monitoring. To begin establishing effective methods for autonomous monitoring, a simulation (FLAME) is developed for algorithm testing. To simulate a wildfire, the well established FARSITE fire simulator is used to generate realistic fire behavior models. FARSITE is a wildfire simulator that is used in the field by Incident Commanders (IC’s) to predict the spread of the fire using topography, weather, wind, moisture, and fuel data. The data obtained from FARSITE is imported into FLAME and parsed into a dynamic frontier used for testing hotspot monitoring algorithms. In this paper, points of interest along the frontier are established as points with a fireline intensity (British-Thermal-Unit/feet/second) above a set threshold. These interest points are refined into hotspots using the Mini-Batch K-means Clustering technique. A distance threshold differentiates moving hotspot centers and newly developed hotspots. The proposed algorithm is compared to a baseline for minimizing the sum of the max time untracked J(t). The results show that simply circling the fire performs poorly (baseline), while a weighted-greedy metric (proposed) performs significantly better. The algorithm was then run on a UAV to demonstrate the feasibility of real world implementation.

This work was supported in part by NASA grant NNX14AI10G and ONR grant N00014-14-1-0509.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bajcsy, R.: Active perception. Proc. IEEE 76(8), 966–1005 (1988)

    Article  Google Scholar 

  2. Bertozzi, A.L., Kemp, M., Marthaler, D.: Determining environmental boundaries: asynchronous communication and physical scales. In: Cooperative Control, pp. 25–42. Springer (2005)

    Google Scholar 

  3. Casbeer, D.W., Beard, R., McLain, T., Li, S.M., Mehra, R.K.: Forest fire monitoring with multiple small uavs. In: Proceedings of the American Control Conference 2005, pp. 3530–3535. IEEE (2005)

    Google Scholar 

  4. Cassandras, C., Ding, X.C., Lin, X.: An optimal control approach for the persistent monitoring problem. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 2907–2912 (2011)

    Google Scholar 

  5. Cassandras, C., Lin, X., Ding, X.: An optimal control approach to the multi-agent persistent monitoring problem. IEEE Trans. Autom. Control 58(4), 947–961 (2013)

    Article  MathSciNet  Google Scholar 

  6. Center, N.I.F.: Federal fire fighting costs (2015). http://www.nifc.gov/fireInfo/fireInfo_documents/SuppCosts.pdf. Accessed 26 Sep 2014

  7. Dunbabin, M., Marques, L.: Robots for environmental monitoring: significant advancements and applications. IEEE Robot. Autom. Mag. 19(1), 24–39 (2012)

    Article  Google Scholar 

  8. Farsite: Fire, fuel and smoke (2014). http://www.firelab.org/project/farsite. Accessed 27 Sep 2014

  9. Group, N.W.C.: Wildland fire suppression tactics reference guide (1996). http://www.coloradofirecamp.com/suppression-tactics/suppression-tactics-guide.pdf. Accessed 26 Sep 2014

  10. Hollinger, G., Choudhary, S., Qarabaqi, P., Murphy, C., Mitra, U., Sukhatme, G., Stojanovic, M., Singh, H., Hover, F.: Underwater data collection using robotic sensor networks. IEEE J. Sel. Areas Commun. 30(5), 899–911 (2012)

    Article  Google Scholar 

  11. Hollinger, G.A., Sukhatme, G.: Sampling-based motion planning for robotic information gathering. In: Robotics: Science and Systems (2013)

    Google Scholar 

  12. Koulas, C.E.: Extracting wildfire characteristics using hyperspectral, lidar, and thermal ir remote sensing systems. In: SPIE Defense, Security, and Sensing, pp. 72,983Q–72,983Q (2009)

    Google Scholar 

  13. Kremens, R., Seema, A., Fordham, A., Luisi, D., Nordgren, B., VanGorden, S., Vodacek, A.: Networked, autonomous field-deployable fire sensors. In: Proceedings of the International Wildland Fire Safety Summit (2001)

    Google Scholar 

  14. Lan, X., Schwager, M.: Planning periodic persistent monitoring trajectories for sensing robots in gaussian random fields. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 2415–2420 (2013)

    Google Scholar 

  15. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marthaler, D., Bertozzi, A.L.: Tracking environmental level sets with autonomous vehicles. In: Recent developments in cooperative control and optimization, pp. 317–332. Springer (2004)

    Google Scholar 

  17. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

    Google Scholar 

  18. Smith, R.N., Schwager, M., Smith, S.L., Jones, B.H., Rus, D., Sukhatme, G.S.: Persistent ocean monitoring with underwater gliders: adapting sampling resolution. J. Field Robot. 28(5), 714–741 (2011)

    Article  Google Scholar 

  19. Smith, S.L., Rus, D.: Multi-robot monitoring in dynamic environments with guaranteed currency of observations. In: 2010 49th IEEE Conference on Decision and Control (CDC), IEEE, pp. 514–521 (2010)

    Google Scholar 

  20. Smith, S.L., Schwager, M., Rus, D.: Persistent robotic tasks: monitoring and sweeping in changing environments. IEEE Trans. Robot. 28(2) (2012)

    Google Scholar 

  21. Soltero, D.E., Smith, S., Rus, D.: Collision avoidance for persistent monitoring in multi-robot systems with intersecting trajectories. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3645–3652 (2011)

    Google Scholar 

  22. Susca, S., Bullo, F., Martínez, S.: Monitoring environmental boundaries with a robotic sensor network. IEEE Trans. Control Syst. Technol. 16(2), 288–296 (2008)

    Article  Google Scholar 

  23. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan C. Skeele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skeele, R.C., Hollinger, G.A. (2016). Aerial Vehicle Path Planning for Monitoring Wildfire Frontiers. In: Wettergreen, D., Barfoot, T. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-27702-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27702-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27700-4

  • Online ISBN: 978-3-319-27702-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics