
Monocular Visual Teach and Repeat Aided by
Local Ground Planarity

Lee Clement, Jonathan Kelly, and Timothy D. Barfoot

Abstract Visual Teach and Repeat (VT&R) allows an autonomous vehicle to repeat
a previously traversed route without a global positioning system. Existing imple-
mentations of VT&R typically rely on 3D sensors such as stereo cameras for map-
ping and localization, but many mobile robots are equipped with only 2D monocular
vision for tasks such as teleoperated bomb disposal. While simultaneous localiza-
tion and mapping (SLAM) algorithms exist that can recover 3D structure and mo-
tion from monocular images, the scale ambiguity inherent in these methods com-
plicates the estimation and control of lateral path-tracking error, which is essential
for achieving high-accuracy path following. In this paper, we propose a monocular
vision pipeline that enables kilometre-scale route repetition with centimetre-level
accuracy by approximating the ground surface near the vehicle as planar (with some
uncertainty) and recovering absolute scale from the known position and orientation
of the camera relative to the vehicle. This system provides added value to many
existing robots by allowing for high-accuracy autonomous route repetition with a
simple software upgrade and no additional sensors. We validate our system over 4.3
km of autonomous navigation and demonstrate accuracy on par with the conven-
tional stereo pipeline, even in highly non-planar terrain.

1 Introduction

Visual Teach and Repeat (VT&R) is an effective tool for autonomously navigat-
ing previously traversed paths using only on-board visual sensors. In an initial teach
pass, a human operator manually drives an autonomous vehicle along a desired route
while the VT&R system uses imagery from a camera to build a map of the route.
In the subsequent repeat pass, the system localizes against the stored map to auton-
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omously repeat the route, sometimes combining map-based localization with visual
odometry (VO) to estimate relative motion in cases where map-based localization
is temporarily unavailable [8]. VT&R is well-suited to repetitive navigation tasks
where GPS is unavailable or insufficiently accurate, and has found applications in
autonomous tramming for mining operations [14] and sample return missions [8].

The map representation in a VT&R system may be purely topological, purely
metric, or a mixture of the two (sometimes called topometric). Purely topological
VT&R [9, 15, 20] uses a network of reference images (keyframes) where the nav-
igation goal is to match the current image to the nearest keyframe using a visual
homing procedure. These systems are restricted to heading-based control, which
only loosely bounds lateral path-tracking error. Purely metric maps are uncommon
in VT&R systems due to the high computational cost of creating globally consistent
maps for long routes, but successful applications do exist [11, 21]. Topometric sys-
tems [8, 14, 22, 23] reap the benefits of both mapping strategies by decoupling map
size from path length while still retaining metric information.

Furgale and Barfoot [8] developed the first VT&R system capable of auton-
omously repeating multi-kilometre routes in unstructured outdoor terrain using only
a stereo camera. Their system creates a topometric map of metric keyframes con-
nected by 6DOF VO estimates, which are combined via local bundle adjustment
into locally consistent metric submaps for localization in the repeat pass.

Furgale and Barfoot’s system has been extended to other 3D sensors such as lidar
[16] and RGB-D cameras, but a monocular implementation has not been forthcom-
ing. While monocular cameras are appealing in terms of size, cost, and simplic-
ity, perhaps the most compelling motivation for using monocular vision for VT&R
is the plethora of existing mobile robots that would benefit from it. Indeed, vehi-
cles equipped with monocular vision, typically for teleoperation, run the gamut of
robotics applications, and in many cases – search and rescue, mining, construction,
and personal assistive robotics, to name a few – would benefit from accurate au-
tonomous route-repetition, especially if it were achievable with existing sensors.

Fig. 1 Our field robot during a 140 m autonomous traverse in the UTIAS MarsDome indoor rover
testing environment, with the path overlaid for illustration. In order to compare the performance of
stereo and monocular VT&R with the same hardware, we equipped our rover with a stereo camera
and used only the left image stream for our monocular traverses.



Monocular Visual Teach and Repeat Aided by Local Ground Planarity 3

Several techniques exist for accomplishing online 3D simultaneous localization
and mapping (SLAM) with monocular vision, ranging from filter-based approaches
[4, 5] to online batch techniques that make use of local bundle adjustment [10, 12,
25]. Such algorithms are capable of producing accurate 3D maps, but only up to
an unknown scale factor. This scale ambiguity complicates threshold-based outlier
rejection, as well as the estimation and control of lateral path-tracking error during
the repeat pass, which are essential for achieving high-accuracy route-following.

In this paper, we extend Furgale and Barfoot’s VT&R system to monocular vision
by using the approximately known position and orientation of a camera mounted on
a rover to estimate the 3D positions of keypoints near the ground with absolute
scale. Similar techniques have succeeded in computing VO with a monocular cam-
era using both sparse feature tracking [3, 6, 24] and dense image alignment [13], but
have not considered the problem of map construction. We show that by treating the
ground surface near the vehicle as approximately planar and applying an appropriate
uncertainty model, we can generate local metric maps that are accurate enough to
achieve centimetre-level accuracy during the repeat pass, even on highly non-planar
terrain. Although the flat-ground assumption is not globally valid, it is sufficient for
our purposes since VT&R uses metric information only locally.

The main contribution of this paper is an extensive comparison of the perfor-
mance of monocular and stereo VT&R in a variety of conditions, including an eval-
uation of their robustness to common failure cases. To this end, we present exper-
imental results comparing the two systems over 4.3 km of autonomous navigation.
While our results show that both systems achieve similar path-tracking accuracy
when functioning normally, the monocular system suffers a reduction in robustness
compared to its stereo counterpart in certain conditions. We argue that, for many
applications, the benefit of deploying VT&R without a potentially costly sensor up-
grade far outweighs the associated reduction in robustness.

2 Monocular Depth Estimation

We estimate the 3D coordinates of features observed by a camera pointed down-
ward, but not directly at the ground surface, by approximating the local ground
surface near the vehicle as planar and recovering absolute scale from the known po-
sition and orientation of the camera relative to the vehicle. We account for variations
in terrain shape by applying an appropriate uncertainty model. In what follows, zi

j
denotes the 3D coordinates of feature i expressed in coordinate frame F j.

2.1 Locally Planar Ground Surfaces

For a monocular camera observing the ground, we can estimate the 3D coordinates
of features near the ground by making the following assumptions (see Figure 2(a)):
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1. all features of interest lie in the xy-plane of a local ground frame Fg defined
such that its z-axis is normal to the ground and always intersects the origin of the
vehicle coordinate frame Fv (for a ground vehicle, this is the vehicle’s footprint);

2. the transformation Tc,v ∈ SE(3) from Fv to the camera-centric coordinate frame
Fc is known; and

3. the transformation Tv,g ∈ SE(3) from Fg to Fv is known.

Camera frame Fc

Fg Local ground frame

Vehicle frameFv

(Measured)

(Measured)

Feature

Tc,v

Tv,g

(a) Coordinate frames in our monocular
depth estimation scheme. The local ground
frame Fg is defined relative to the vehicle
frame Fv and travels with the vehicle.

Camera
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Image Features

(b) Evenly-spaced synthetic image features
(top right) and estimated 3D coordinates with
1σ uncertainty ellipses for the experimental
configuration described in Section 4.

Fig. 2 Geometry and uncertainty model of our monocular depth estimation scheme.

Assuming that incoming images have been de-warped and rectified in a pre-
processing step, we can model the camera as an ideal pinhole camera with calibrated
camera matrix K such that the image coordinates yi of zi

c are given by

yi :=
[
ui vi 1

]T
= Kpi , (1)

where
pi :=

[
pi

x pi
y 1
]T

=
1
zi

c

[
xi

c yi
c zi

c
]T (2)

represents the (unitless) normalized coordinates of zi
c on the image plane. Note that

although ui,vi represent pixel coordinates, they are not necessarily integer-valued.
By assumption 1, zi

g = 0,∀i, so we can write

zi
c :=

[
xi

c yi
c zi

c 1
]T

= Tc,g
[
xi

g yi
g 0 1

]T , (3)

where Tc,g = Tc,vTv,g. We can therefore obtain the feature depth zi
c as a function of

pi by substituting xi
c = zi

c pi
x and yi

c = zi
c pi

y according to Equation (2), and solving
the third component of Equation (3) for zi

c, yielding

zi
c =

k1

k2 + k3 pi
x + k4 pi

y
, (4)
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where, using Tmn as shorthand for the mth row and nth column of Tc,g,

k1 = T11 (T22T34−T24T32) k2 = T11T22−T12T21

+T12 (T24T31−T21T34) k3 = T21T32−T22T31

+T14 (T21T32−T22T31) k4 = T12T31−T11T32 .

Finally, using Equations (1) and (2) with zi
c as in Equation (4), we can express

the Cartesian coordinates of zi
c in terms of yi as

zi
c = zi

cK−1yi . (5)

2.2 Uncertainty Considerations

A crucial component of enabling monocular VT&R using this depth estimation
scheme is an appropriate model of the uncertainty in each observation zi

c. We con-
sider two important factors: uncertainty in image coordinates yi, and uncertainty in
ground shape far from the vehicle. In early experiments, we found that image co-
ordinate uncertainty alone did not permit reliable feature tracking since there was
little overlap in 3D feature coordinate estimates across multiple frames.

We model feature coordinates in image space as Gaussian distributions cen-
tred on yi with covariance Ryi := diag{(σ i

u)
2,(σ i

v)
2}. We use SURF features [2]

in our system and determine σ i
u,σ

i
v from the image pyramid level at which each

feature is detected. To incorporate uncertainty in ground shape far from the vehi-
cle, we represent the ground-to-vehicle transformation as a Gaussian distribution on
SE(3) with mean Tv,g and covariance RTv,g := diag{σ2

1 ,σ
2
2 ,σ

2
3 ,σ

2
4 ,σ

2
5 ,σ

2
6 }, where

σ1 . . .σ6 are tunable parameters corresponding to the six generators of SE(3). To-
gether these factors form an 8-dimensional Gaussian distribution with covariance
Ri := diag{Ryi ,RTv,g}, which we propagate via the combined Jacobian

Gi :=
[

∂zi
c

∂yi
∂zi

c

∂Tv,g

]
to approximate zi

c as a Gaussian in 3D space with covariance Qi = GiRiGT
i .

Using the Cartesian coordinates of zi
c and yi to compute the Jacobian, we have

∂zi
c

∂yi =
zi

c

k1


(
k1 + k3xi

c
)
/ fu k4xi

c/ fv

k3yi
c/ fu

(
k1 + k4yi

c
)
/ fv

k3zi
c/ fu k4zi

c/ fv

 (6)

and

∂zi
c

∂Tv,g
=

∂zi
c

∂Tc,g

∂Tc,g

∂Tv,g
=
[
1 (−zi

c)
×]Ad(Tc,v) . (7)
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In the above, we adopt the notation of [1]: 1 denotes the (3× 3) identity matrix,
Ad(·) the adjoint in SE(3), and (·)× the skew-symmetric cross-product matrix.

Figure 2(b) shows 1σ uncertainty ellipses for a number of evenly spaced syn-
thetic image features resulting from a camera configuration similar to that used in
the experiments described in Section 4.

3 System Overview

This section provides an overview of the VT&R system as it pertains to the methods
of the previous section. In particular, we discuss the generic localization pipeline
used for both online mapping in the teach pass and local map construction in the
repeat pass. Figure 3 shows the stereo and monocular versions of the pipeline, which
differ mainly in the front-end image processing used to generate 3D keypoints.

3.1 Keypoint Generation

Raw images entering the pipeline first pass through a pre-processing step that uses a
calibrated camera model to make them appear as though they were produced by an
ideal pinhole camera. A GPU implementation of the SURF detector [2] then iden-
tifies keypoints in the de-warped and rectified images. The pipeline estimates the
3D coordinates of each keypoint in the camera frame using a matching procedure in
the stereo case or the technique of Section 2 in the monocular case. The subsequent
behavior of the pipeline differs slightly between the teach pass and the repeat pass.

Left Image
Image De-
Warp and 

Rectification

Keypoint 
Detection

Keypoint 
Tracking

Previous 
Frame

Current Local 
Map

Outlier 
Rejection

Nonlinear 
Numerical 
Solution

Pose 
Estimate

Stereo 
Matching

Right Image
Image De-
Warp and 

Rectification

Keypoint 
Detection

Monocular 
Image

Image De-
Warp and 

Rectification

Keypoint 
Detection

Depth 
Estimation

Fig. 3 The major processing blocks of the stereo and monocular localization pipelines. The
monocular pipeline shares most of the same processing blocks as its stereo counterpart, differ-
ing mainly in the front-end image processing used to generate 3D keypoints. The “Current Local
Map” block is only used for keypoint tracking during the repeat pass.
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3.2 Teach Pass

In the teach pass, the system constructs a pose graph whose vertices store lists of
3D keypoints with associated uncertainty and SURF descriptors, and whose edges
store lists of matched keypoints and 6DOF pose change estimates. The system first
tracks 3D keypoints in the current image against those in the most recent keyframe
to generate a list of keypoint matches. These matches form the input to a 3-point
RANSAC algorithm [7] that generates hypotheses for the 6DOF interframe pose
change and rejects outlying feature tracks. In the context of monocular VT&R, this
procedure typically rejects features far from the local ground surface (e.g., walls)
since their motion is not adequately captured by the uncertainty model described
in Section 2.2. The resulting pose change estimate serves as the initial guess in an
iterative Gauss-Newton that refines the estimate based on inlying tracks.

3.3 Repeat Pass

The repeat pass begins with a manual initialization at some vertex in the pose graph,
and the specification of a destination vertex. The system then reconstructs the vehi-
cle’s path from the appropriate chain of relative transformations.

At every timestep, the system identifies the nearest keyframe in the path and
performs a local bundle adjustment over a user-specified number of topologically
adjacent keyframes, generating a local metric map in the reference frame of the
nearest keyframe. The system then forms an augmented keyframe from the adjusted
map keypoints against which freshly detected features may be matched. As in the
teach pass, the system performs frame-to-frame VO to obtain an initial 6DOF pose
estimate at each time step, which it uses as an initial guess to localize against the
current local map and refine its pose estimate.

If the system fails to localize against the map, it may rely purely on VO until
either a successful localization occurs or the vehicle exceeds some preset distance
threshold since the last successful localization. In the latter case, the system will halt
the traverse and enter a search mode until it relocalizes or the operator intervenes.

4 Experiments

We conducted two sets of experiments at the University of Toronto Institute for
Aerospace Studies (UTIAS), the first outdoors on relatively flat terrain, and the sec-
ond on the highly non-planar terrain of the UTIAS MarsDome indoor rover testing
environment. We compare the performance of our monocular VT&R system to that
of the established stereo system [8] over 4.3 km of autonomous navigation. Table
1 reports path lengths, repeat speeds, start times, and autonomy rates for each ex-
periment. We repeated each route using the monocular pipeline first, and conducted
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each experiment between roughly 10:00 and 14:00 when the sun was highest in the
sky to minimize the effects of lighting changes and shadows.

4.1 Hardware

We used a four-wheeled skid-steered Clearpath Husky A200 rover equipped with a
PointGrey Bumblebee XB3 stereo camera, which outputs 512×384 pixel greyscale
images at 15 frames per second. The camera is mounted 1.0 m above the ground
and is angled downwards at 47◦ to the horizontal. These values were measured by
hand since our system functions well even without an especially accurate estimate
of Tc,v. Small errors in Tc,v are simply absorbed by the uncertainty in Tv,g.

Fig. 4 Clearpath Husky A200
rover equipped with Point-
Grey Bumblebee XB3 stereo
camera, DGPS receiver, Le-
ica Nova MS50 MultiStation
prism, 1 kW gas generator,
and Linux laptop running
ROS [19] .

During the teach pass, we recorded stereo images and used them to teach identi-
cal paths using both the monocular and stereo pipelines. For the monocular pipeline,
we used imagery from the left camera of the stereo pair only. The system detects 600
SURF keypoints in each incoming image and creates new keyframes every 25 cm

Table 1 Summary of experimental results

Local start time (UTC-4) Autonomy rate

Trial Route Path length Repeat speed Teach Mono Stereo Mono Stereo

1 Outdoor 1370 m 0.6 m/s 09:56:46 10:35:10 12:08:30 99.71%† 100.00%
2 Outdoor 1360 m 0.6 m/s 11:45:40 12:22:26 13:43:49 99.88% 100.00%
3 Outdoor 1361 m 0.6 m/s 13:26:41 14:00:12 15:20:12 99.74% 100.00%
4 Indoor 126 m 0.3 m/s 13:32:23 13:40:53 14:02:46 96.28% 100.00%
5 Indoor 140 m 0.3 m/s 12:18:57 12:32:20 12:59:11 91.60% 100.00%

Mono Stereo
Total distance driven 4298 m† 4357 m
Total distance autonomously traversed 99.41% 100.00%
† During the monocular repeat pass of Trial 1, a parked vehicle on the path forced manual

driving for 59 m before successful relocalization. We exclude this segment in our analysis
and report the monocular autonomy rate for Trial 1 based on a reduced path length of
1311 m.



Monocular Visual Teach and Repeat Aided by Local Ground Planarity 9

in translation or 2.5◦ in rotation. For the monocular pipeline, we assigned standard
deviations of 10 cm to the translational components of Tv,g and 10◦ to its rotational
components as these values generally worked well in practice.

4.2 Outdoor Experiments

To evaluate the performance of the monocular VT&R system over long distances,
we taught three 1.4 km paths through the parking lots and driveways of UTIAS.
While these paths consisted mostly of flat pavement, they included many non-planar
features such as speed bumps, side slopes, deep puddles, and rough shoulders, as
well as other terrain types including gravel, sand, and grass.

We equipped the rover with an Ashtech DG14 Differential GPS unit used in
tandem with a second stationary DG14 unit to obtain centimetre-accuracy RTK-
corrected GPS data during the outdoor experiments. We used these data purely for
ground-truthing purposes; they had no bearing on the behaviour of either pipeline.
Figure 5 shows GPS tracks of the teach and repeat passes of one outdoor route.

Figure 6 shows estimated and measured lateral path-tracking errors during the
monocular and stereo repeat passes. Both pipelines achieved centimetre-level ac-
curacy in their respective repeat passes and produced similar estimates of lateral
path-tracking error. In cases of map localization failure (i.e., when the system relied
on pure VO), the monocular pipeline’s estimated lateral path-tracking error diverged
from ground truth more quickly than that of the stereo pipeline since keypoint posi-

Fig. 5 Comparison of RTK-corrected GPS tracks of the teach pass, stereo repeat pass, and monoc-
ular repeat pass of a 1.4 km outdoor route (Trial 3 in Table 1). The zoomed-in section highlights
the centimetre-level accuracy of both pipelines. (Map data: Google, DigitalGlobe.)
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Fig. 6 Estimated and measured lateral path-tracking error during the monocular and stereo repeat
passes of the 1.4 km outdoor route shown in Figure 5 (Trial 3 in Table 1). GPS tracking shows that
both monocular and stereo VT&R achieve centimetre-level accuracy, although estimated lateral
path-tracking error tends to diverge from the true value in cases of localization failure.
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Fig. 7 Keypoint matches during the monocular and stereo repeat passes of the 1.4 km outdoor
route shown in Figure 5 (Trial 3 in Table 1), with localization failures highlighted. A localization
failure is defined as less than 10 feature matches. There were no VO failures during either repeat
pass. For clarity, we have applied a 20-point sliding-window mean filter to the raw data.

tion uncertainties are poorly constrained by only two measurements. Note, however,
that the vehicle remained within about 20 cm of the taught path at all times.

Figure 7 compares the number of successful feature matches for frame-to-frame
VO and map-based localization for both pipelines. Both pipelines track similar num-
bers of features from frame to frame, but the monocular pipeline generally tracks
twice as many map features as its stereo counterpart. This result is most likely due to
bad data association during local map construction in the monocular pipeline, which
stems from the comparatively large positional uncertainties of distant keypoints.

Bad data association is especially problematic in regions of highly self-similar
terrain (e.g., Figure 11(a)) since large positional uncertainties exacerbate ambigu-
ity in feature matches. With fewer correctly associated measurements, the bundle
adjustment procedure will not maximally constrain the positions of map keypoints,
which we would expect to increase the risk of localization failures. Indeed, Figure
7(b) shows that the monocular pipeline suffered more serious map localization fail-
ures than the stereo pipeline, although these forced manual intervention only once.
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4.3 Indoor Experiments

The second set of experiments took place in the more challenging terrain of the
UTIAS MarsDome. These routes included a number of highly non-planar features
such as hills, large bumps, valleys, and slopes of a similar scale to the vehicle.

Since the MarsDome is an enclosed facility, GPS tracking was not available, and
we instead made use of a Leica Nova MS50 MultiStation to track the position of
the rover with millimetre-level accuracy. Similarly to the outdoor experiments, we
used these data for ground-truthing purposes only. Figure 8 shows MultiStation data
of the teach and repeat passes of a 140 m route through the MarsDome, along with
images of some of the more challenging terrain features on the route.

Figure 9 shows estimated and measured lateral path-tracking errors for the
monocular and stereo repeat passes. As in the outdoor case, both pipelines achieved
centimetre-level accuracy, even in difficult terrain. Again, note that although the
monocular pipeline’s estimated lateral path-tracking error diverged significantly
from ground-truth during localization failures, the MultiStation tracks show that
the vehicle remained within a few centimetres of the path throughout the traverse.

Figure 10 shows VO and map feature matches for both repeat passes. The monoc-
ular pipeline suffered map localization failures more often than the stereo pipeline,
the worst failure occurring in the valley and hill regions (see Figure 8) where the
lighting was especially poor. This led to increased motion blur (see Figure 11(b))
and poor feature matching due to greater uncertainty in keypoint positions. Both
failures necessitated manual intervention over a few metres, however, the system
successfully relocalized once the lighting improved.

−10 0 10 20 30 40
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20
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40

[m]

[m
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Stereo Repeat Pass

Monocular Repeat Pass

Sideslope

Hill

Ramp

Large Bumps
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Fig. 8 Comparison of MultiStation tracks of the teach pass, stereo repeat pass, and monocular
repeat pass of a 140 m indoor route (Trial 5 in Table 1), with some interesting segments highlighted.
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(a) Monocular repeat pass
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Fig. 9 Estimated and measured lateral path-tracking error during the monocular and stereo repeat
passes of the 140 m indoor route shown in Figure 8 (Trial 5 in Table 1). MultiStation tracking
shows that both monocular and stereo VT&R achieve centimetre-level accuracy in highly non-
planar terrain, although estimated lateral path-tracking error tends to diverge from the true value in
cases of localization failure. Note the difference in scale between the two plots.
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Fig. 10 Keypoint matches during the monocular and stereo repeat passes of the 140 m indoor route
shown in Figure 8 (Trial 5 in Table 1), with localization failures highlighted. A localization failure
is defined as less than 10 feature matches. There were no VO failures during either repeat pass. For
clarity, we have applied a 5-point sliding-window mean filter to the raw data.

(a) Self-similar terrain (b) Motion blur

Fig. 11 The most common causes of localization failure were highly self-similar terrain and mo-
tion blur. Neither stereo nor monocular VT&R is immune to these conditions, but their effects were
exacerbated by high spatial uncertainty in the monocular case.
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5 Lessons Learned and Future Work

Experiments with our systems led to several useful lessons and possible extensions:

1. With sufficient spatial uncertainty, the flat-ground assumption seems to be usable
even in rough driving conditions, provided the scene is well-lit and reasonably
textured. Steep hills were problematic for monocular VT&R since the camera
would observe features mainly on the horizon or on walls during the ascent.

2. The performance our systems depends on a search (often manual) through a high-
dimensional space of tuning parameters, and it is difficult to be certain that an
optimal configuration has been found. Iterative learning algorithms such as [17]
may present a solution by learning optimal parameters from experience.

3. Data association quality is not a monotonic function of observation uncertainty.
Too little uncertainty and good feature matches get rejected; too much and all
matches are equally good (or bad). Both cases result in tracking failure. This
reinforces the need for an accurate model of a system’s noise properties.

4. Experimenting with camera orientation could improve the accuracy of monocular
VT&R, particularly on hills. For example, orienting the camera perpendicular to
the direction of travel has been shown to improve the accuracy of stereo visual
odometry [18].

5. By using stereo vision in the teach pass and monocular vision in the repeat pass,
we could forgo the flat-ground assumption for mapping, which should result in
fewer localization failures in the repeat pass.

6 Conclusions

This paper has described a Visual Teach and Repeat (VT&R) system capable of
autonomously repeating kilometre-scale routes in rough terrain using only monocu-
lar vision. By constraining features of interest to lie on a manifold of uncertain local
ground planes, we relax the requirement for true 3D sensing that had prevented the
deployment of Furgale and Barfoot’s VT&R system [8] on a wide range of vehi-
cles equipped with monocular cameras. Extensive field tests have demonstrated that
this system is capable of achieving centimetre-level accuracy on par with its stereo
counterpart, but that there is an associated trade-off in robustness. Nevertheless, we
believe that the benefit of deploying VT&R on existing vehicles without requiring
the installation of additional sensors far outweighs the associated reduction in ro-
bustness.
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