Skip to main content

Validation Study of a Wave Equation Model of Soft Tissue for a New Virtual Reality Laparoscopy Training System

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 574))

Abstract

Despite the benefits of laparoscopic procedures for the patients, this technique comes with a number of environmental limitations for the surgeon, which therefore require distinctive psychomotor skills. VR training systems aim to improve these skills. For effective transference of skills from these training systems, it is important to mimic the surgical environment; including the soft tissue models. This study introduces a novel two dimensional wave equation model to mimic the interactions between soft tissue and laparoscopic tools. This model accounts for mechanical and material properties of the soft tissue. This study also proposes a new face validation technique, for an objective analysis of the developed model as a viable soft tissue model. The statistical analyses and computational cost support the use of wave equation as a replacement for present models. In the future, this model will be applied to a novel VR surgical training system for an enhanced training experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basdogan, C., Ho, C.-H., Srinivasan, M.A.: Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans. Mechatron. 6(3), 269–285 (2001)

    Article  Google Scholar 

  2. Nguyen, N.T., Goldman, C., Rosenquist, C.J., Arango, A., Cole, C.J., Lee, S.J., Wolfe, B.M.: Laparoscopic versus open gastric bypass: a randomized study of outcomes, quality of life, and costs. Ann. Surg. 234(3), 279–291 (2001)

    Article  Google Scholar 

  3. Bashankaev, B., Baido, S., Wexner, S.D.: Review of available methods of simulation training to facilitate surgical education. Surg. Endosc. 25(1), 28–35 (2011). doi:10.1007/s00464-010-1123-x

    Article  Google Scholar 

  4. Roberts, K.E., Bell, R.L., Duffy, A.J.: Evolution of surgical skills training. World J. Gastroenterol.: WJG 12(20), 3219–3224 (2006)

    Google Scholar 

  5. Gallagher, A.G., McClure, N., McGuigan, J., Ritchie, K., Sheehy, N.P.: An ergonomic analysis of the fulcrum effect in the acquisition of endoscopic skills. Endoscopy 30(7), 617–620 (1998)

    Article  Google Scholar 

  6. See, W.A., Cooper, C.S., Fisher, R.J.: Predictors of laparoscopic complications after formal training in laparoscopic surgery. JAMA 270(2), 2689–2692 (1993)

    Article  Google Scholar 

  7. Wherry, D.C., Rob, C.G., Marohn, M.R., Rich, N.M.: An external audit of laparoscopic cholecystectomy performed in medical treatment facilities of the department of Defense. Ann. Surg. 220(5), 626–634 (1998)

    Article  Google Scholar 

  8. Munz, Y., Kumar, B.D., Moorthy, K., Bann, S., Darzi, A.: Laparoscopic virtual reality and box trainers: is one superior to the other? Surg. Endosc. 18(3), 485–494 (2004). doi:10.1007/s00464-003-9043-7

    Article  Google Scholar 

  9. Madan, A.K., Frantzides, C.T., Park, W.C., Tebbit, C.L., Kumari, N.V., O’Leary, P.J.: Predicting baseline laparoscopic surgery skills. Surg. Endosc. 19, 101–104 (2005)

    Article  Google Scholar 

  10. Kneebone, R.: Simulation in surgical training: educational issues and practical implications. Med. Educ. 37(3), 267–277 (2003)

    Article  Google Scholar 

  11. Rosen, K.: The History of Simulation. In: Levine, A., DeMaria, S., Schwartz, A., Sim, A. (eds.) The Comprehensive Textbook of Healthcare Simulation. LNCS, pp. 5–49. Springer, New York (2013)

    Chapter  Google Scholar 

  12. DiMaio, S.P., Salcudean, S.E.: Needle insertion modeling and simulation. IEEE Trans. Robot. Autom. 19(5), 864–875 (2003). doi:10.1109/TRA.2003.817044

  13. Auer, L.M., Radetzky, A., Wimmer, C., Kleinszig, G., Schroecker, F., Auer, D.P., Delingette, H., Davies, B., Pretschner, D.P.: Visualization for planning and simulation of minimally invasive neurosurgical procedures. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1199–1209. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Sutherland, L.M., Middleton, P.F., Anthony, A., Hamdorf, J., Cregan, P., Scott, D., Maddern, G.J.: Surgical simulation: a systematic review. Ann. Surg. 243(3), 291–300 (2006). doi:10.1097/01.sla.0000200839.93965.26

    Article  Google Scholar 

  15. Ali, M.R., Mowery, Y., Kaplan, B., DeMaria, E.J.: Training the novice in laparoscopy. More challenge is better. Surg. Endosc. 16(12), 1732–1736 (2002). doi:10.1007/s00464-002-8850-6

    Article  Google Scholar 

  16. Carter, F.J., Schijven, M.P., Aggarwal, R., Grantcharov, T., Francis, N.K., Hanna, G.B., Jakimowicz, J.J.: Work Group for, E., Implementation of, S., Skills Training, P.: Consensus guidelines for validation of virtual reality surgical simulators. Surg. Endosc. 19(12), 1523–1532 (2005). doi:10.1007/s00464-005-0384-2

    Article  Google Scholar 

  17. Seymour, N.E.: VR to OR: a review of the evidence that virtual reality simulation improves operating room performance. World J. Surg. 32, 7 (2008). doi:10.1007/s00268-007-9307-9

    Article  Google Scholar 

  18. Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput. Methods Programs Biomed. 105(1), 1–12 (2012). doi:10.1016/j.cmpb.2010.06.012

    Article  Google Scholar 

  19. Basdogan, C., De, S., Kim, J., Muniyandi, M., Kim, H., Srinivasan, M.A.: Haptics in minimally invasive surgical simulation and training. IEEE Comput. Graphics Appl. 24(2), 56–64 (2004)

    Article  Google Scholar 

  20. Brown, J., Sorkin, S., Latombe, J.C., Montgomery, K., Stephanides, M.: Algorithmic tools for real-time microsurgery simulation. Med. Image Anal. 6(3), 289–300 (2002)

    Article  Google Scholar 

  21. Itsarachaiyot, Y.: Haptic Interaction of Laparoscopic Surgery in Virtual Environment. Mahidol University (2012)

    Google Scholar 

  22. Itsarachaiyot, Y., Pochanakorn, R., Nillahoot, N., Suthakorn, J.: Force acquisition on surgical instruments for virtual reality surgical training system. In: 2011 International Conference on Computer Control and Automation (ICCCA 2011), pp. 173–176. IEEE, Jeju Island, South Korea, 1-3 May 2011

    Google Scholar 

  23. Kreyszig, E., Kreyszig, H., Norminton, E.J.: Partial differential equations (PDEs). In: Corliss, S. (ed.) Advanced Engineering Mathematics, pp. 540–585. John Wiley & Sons Inc., New York (2011)

    Google Scholar 

  24. Beards, C.: The vibration of continuous structures. In: Structural Vibration: Analysis and Damping. vol. 4, pp. 129–156. Butterworth-Heinemann, Burlington, MA, (1996)

    Google Scholar 

  25. Sánchez-Sesma, F.J., Palencia, V.J., Luzón, F.: Estimation of local site effects during earthquakes: an overview. ISET J. Earthq. Technol. 39(3), 167–193 (2002)

    Google Scholar 

  26. Silver, F.H., Freeman, J.W., DeVore, D.: Viscoelastic properties of human skin and processed dermis. Skin Res. Technol. Off. J. Int. Soc. Bioeng. Skin 7(1), 18–23 (2001)

    Article  Google Scholar 

  27. MacLaughlin, J., Holick, M.F.: Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Investig. 76(4), 1536–1538 (1985). doi:10.1172/JCI112134

    Article  Google Scholar 

  28. Hendriks, F.M.: Mechanical behaviour of human skin in vivo: a literature review. Koninklijke Philips Electronics N.V., Nat. Lab. Unclassified report, pp. 1–46 (2001)

    Google Scholar 

  29. Silver, F.H., Seehra, G.P., Freeman, J.W., DeVore, D.: Viscoelastic properties of young and old human dermis: a proposed molecular mechanism for elastic energy storage in collagen and elastin. J. Appl. Polym. Sci. 86(8), 1978–1985 (2002). doi:10.1002/app.11119

    Article  Google Scholar 

  30. McDougall, E.M.: Validation of surgical simulators. J. Endourol./Endourological Soc. 21(3), 244–247 (2007). doi:10.1089/end.2007.9985

    Article  Google Scholar 

  31. Kenney, P.A., Wszolek, M.F., Gould, J.J., Libertino, J.A., Moinzadeh, A.: Face, Content, and Construct Validity of dV-Trainer, a Novel Virtual Reality Simulator for Robotic Surgery. Urology 73(6), 1288–1292 (2009). doi:10.1016/j.urology.2008.12.044

    Article  Google Scholar 

  32. Gavazzi, A., Bahsoun, A.N., Van Haute, W., Ahmed, K., Elhage, O., Jaye, P., Khan, M.S., Dasgupta, P.: Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP Robot). Ann. R. Coll. Surg. Engl. 93(2), 152–156 (2011). doi:10.1308/003588411X12851639108358

    Article  Google Scholar 

  33. Gibney, M.A., Arce, C.H., Byron, K.J., Hirsch, L.J.: Skin and subcutaneous adipose layer thickness in adults with diabetes at sites used for insulin injections: implications for needle length recommendations. Curr. Med. Res. Opin. 26(6), 1519–1530 (2010). doi:10.1185/03007995.2010.481203

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Thailand National Research University Grant through Mahidol University for their financial support. Secondly, the authors would like to thank Prof. Chumpon Wilasrusmee, M.D., R.N., Ramathibodi Hospital, Mahidol University, for his invaluable input towards the development of a virtual reality surgical training system and insights into the needs of surgeons. Lastly, we would like to thank BART LAB’s Miss Nantida Nillahoot for her design of the telesurgical/training system in Fig. 9. The first author would also like to take this opportunity to thank Aditya Birla Group’s Pratibha Scholarship, and Biomedical Engineering Scholarship (BMES) from the Department of Biomedical Engineering, Mahidol University, for financial aid towards her graduate education. The first author would, finally, like to thank her colleagues at BART LAB for their continuous support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackrit Suthakorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Patel, S., Suthakorn, J. (2015). Validation Study of a Wave Equation Model of Soft Tissue for a New Virtual Reality Laparoscopy Training System. In: Fred, A., Gamboa, H., Elias, D. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2015. Communications in Computer and Information Science, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-27707-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27707-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27706-6

  • Online ISBN: 978-3-319-27707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics