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Abstract. We extend an existing two-phase static analysis for an adap-
tive programming language to also deal with dynamic resources. The
focus of our analysis is on predicting how these are used, in spite of the
di↵erent, ever changing operating environments to which applications
automatically adapt their behaviour. Our approach is based on a type
and e↵ect system at compile time, followed by a control flow analysis
carried on at loading time. Remarkably, the second analysis cannot be
anticipated, because information about availability, implementation and
other aspects of resources are unknown until the application is injected
in the current environment.

1 Introduction

Today’s software systems are expected to operate every time, everywhere within
a highly dynamic and open operational environment. Also software is eating the

world by pervading the objects of our everyday life, such as webTV, co↵eemak-
ers, wearable devices, cars, smartphones, ebook readers, and Smart Cities, on a
broader scale. The operational environment of software systems, often referred
to as the context, has indeed turned to be a virtual computing platform that
provides access to groups of heterogeneous smart resources. The main distin-
guishing characteristic of these resources is that in principle they are always
connected to the Internet, possibly linking to it through di↵erent access points,
so to coordinate and interact each other. For instance, your smart alarm clock
can activate your co↵eemaker to prepare you a cup of co↵ee. In general, the
Internet of Things scenario is the most significant example of this computing
framework. In this vision, the physical resources (e.g. the co↵eemaker) are di�-
cult to tell apart from the virtual ones (e.g. your wireless network), in that they
are potentially unlimited and “virtualised” in order to appear fully dedicated to
their users. In addition, they can choose on their own where, when and to whom

they are visible and in which portions of their context. A further important
feature is that smart resources can collect and exchange information of various
kind. According to their knowledge, smart resources can perform actions that
also modify the environment.

A key challenge is designing software systems that run without compromising
their intended behaviour or their non-functional requirements, e.g. quality of
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service, when injected in highly dynamic and open operational environments.
Programming these systems thus requires new programming language features
and e↵ective mechanisms to sense the modifications of the actual context and to
properly adapt to changes. We refer to [2] for a comprehensive discussion on the
software engineering challenges of the open world assumption and adaptation.

Several approaches have been considered for adapting applications according
to the resources currently available in their running context, and to the form
these resources assume. In this paper, we address this issue from a language-
based perspective, by relying on ML

CoDa

[8,9,5], a core ML with Context-
Oriented Programming features [13,17]. Its main novelty is to be a two-component
language: a declarative part for handling the context and a functional one for
computing. The context in ML

CoDa

is a knowledge base implemented in Datalog,
and queries to the context return information about resources, as well as handles
to access them.

The ML
CoDa

context has been designed to hide the complexity of the opera-
tional environment and to provide an abstraction from low level details such as
protocol handling, data marshalling, networking technologies, and so on. Con-
sequently, it masks the heterogeneity of the virtual computing infrastructure to
facilitate the design and the development of applications.

As usual, applications are assumed to know in advance the kind of smart
resources that are possibly hosted in the environment. However, the resources
that are actually present in the context and their form can only be discovered
when the application enters the context and is about to run. Technically, each
resource is supposed to come equipped with a resource manager and with a
public API. An application can manipulate a resource through a handle provided
by its manager, that also governs the life-cycle of the resource, its availability,
etc. The handle enables the application to operate over a resource through the
mechanisms declared by the API. Actually, this contains information about the
kind of the resource, such as the available operations, their signatures etc. In
particular, by querying the context, an ML

CoDa

application can operate on a
resource both explicitly by retrieving its handle, and implicitly by inspecting
its current status through system predicates. For example, a home automation
system controlling the house can query the alarm clock to retrieve the level of
battery. In the ML

CoDa

programming model, the running context consists of
two parts: the system and the application context. The first one is provided by
the ML

CoDa

virtual machine through its API, while the other one stores specific
knowledge of the application, filled in by the programmer. In the execution model
the actual state of a resource, as well as its usage constraints, is completely known
only at runtime. A relevant goal is therefore to ensure that an application that
enters into a context finds all the needed resources and uses them correctly. This
assurance can o↵er the basis for providing highly “reliable” service management
for virtual computing platforms such as the Internet of Things.

In this paper we suitably extend the two-step static analysis of [9] to take care
of resources. We call our proposal last mile analysis, right because full knowledge
on the context is only available at runtime.
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Technically, the ML
CoDa

compiler produces a triple (C, e, H) consisting of
the application context, the object code and an e↵ect over-approximating the
behaviour of the application. The third component H describes resource usage,
independently of the possible context running the application, so it contains
parameters to be instantiated when available. Using the above triple, the ML

CoDa

virtual machine performs a linking and a verification phase at loading time: the
last mile. During the linking phase, the initial context is constructed, by merging
the application and the system contexts. Then the verification phase checks
whether the application adapts to all evolutions of the initial context that may
occur at runtime (a functional property), and whether it respects the constraints
on the usage of the resources (a non-functional property). Only programs that
pass this verification phase will be run.

To e�ciently perform the last mile analysis, we build a graph G describing
the possible evolutions of the initial context. Technically, we compute G from
H, through a static analysis specified in terms of Flow Logic [16,14]. The evolu-
tion graph facilitates checking functional and non-functional properties, reducing
them to reachability. The non-functional properties are similar to those express-
ible in CTL* [1], in that they predicate over nodes, i.e. contexts, and paths of G.

This paper is organised as follows. The next section intuitively introduces
ML

CoDa

and our approach, with the help of some illustrative examples. The
syntax and the operational semantics of our extension of ML

CoDa

are formally
given in Section 3. The next two sections describe our two-phase static analysis:
Section 4 presents the type and e↵ect system, while Section 5 presents the loading
time analysis. Section 6, summarises our results and discusses some future work.

2 An Example

Consider a mobile application used for accessing to some databases of a company.
The vendors, among which Jane and Bob, can access the databases from both
inside and outside the o�ce. The access control policies are part of the context of
the application, so they are stored as Datalog facts and predicates. For example,
the following facts specify which databases Bob and Jane can access, whereas
the predicate allows an administrator to grant permissions:

has_auth(Bob,DB1).

has_auth(Jane,DB1).

has_auth(Jane,DB2).

has_auth(x,db)  delegate(z,x,db), is_admin(z)

The context typically includes other information ranging on a wide collection,
e.g. users, administrators, location of users and company o�ces, information
about the company ICT services, etc. Also, the context contains information
about the application state, e.g. the application is connected to the database
through the company intranet or through an external proxy.

The following ML
CoDa

code implements a simple application which accesses a
database and performs a query to retrieve data about customers. The execution
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depends on the location and on the capabilities of the user: when inside the
o�ce, the user can directly connect to and query the database. Otherwise, the
communication exploits a proxy which allows getting the database handle.

1 fun main () =

2 let records = (table){

3  office(),current_usr(name),has_auth(name,handle).

4 let c = open_db(handle) in
5 query(c, select

*

from table)

6  ¬office(),current_usr(name),has_auth(name,handle),
7 proxy(ip),crypto_key(k).

8 let chan = connect(ip) in
9 let c = get_db(chan) in

10 let data = crypto_query(c, k, select

*

from table) in
11 decrypt(k, data)

12 } in let result = #(records customers) in
13 display(result);

14 let balance_customer = choose_customer(result)

15 let socket = connect(server1) in
16 write(socket, balance_customer)

The core of the snippet above is the behavioural variation (lines 2 - 11) bound
to records that downloads the table of customers. The behavioural variation is
a construct similar to pattern matching where goals replace patterns and whose
execution triggers a dispatching mechanism. In our case, there are two alterna-
tives which depend on the location and on the capabilities of the current user.
Note that every resource available to the application is only accessible through a
handle provided by the context and only manipulated through system functions
provided by the API. As an example, when outside the o�ce the IP address of an
available proxy is retrieved by the predicate proxy that binds the handle to the
variable ip. Then the application calls the API function connect to establish a
communication through chan. By exploiting this channel the application gets a
handle to the database (the API function get_db at line 9) in order to obtain
the required data. Note that the third argument of the call to crypto_query

is a lambda expression (in a sugared syntax) that invokes another API function
select-from (as common, we assume that the cryptographic primitives are sup-
plied by the system). Other resources occur in the snippet above: the database
connection c at line 4, a cryptographic key k at line 7, the address and a con-
nection to the server1 at line 15. Other API functions are: open_db at line 4,
query at line 5, decrypt at line 11 and write at line 16. (Note that at line 14
we assume that the function choose_customer interactively asks the name of
the customer to the user.)

To dynamically update the context, we use the constructs tell and retract,
that add and remove Datalog facts, respectively. For example, the following code
transfers the right to access the database DB2 from Jane to Bob:

retract has_auth(Jane,DB2)

tell has_auth(Bob,DB2)
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An application fails to adapt to a context (functional failure), when the dis-
patching mechanism fails. Another kind of failure happens when an application
does not manipulate resources as expected (non-functional failure).

As an example of non-functional failure, assume that the company at a cer-
tain point decides to protect data about its customers. To do that, it constraints
a vendor’s application to open no further connections once connected to the
company proxy, when out of the o�ce — inside, a firewall is assumed to do
the job. The application above violates this constraint because it computes the
balance of a customer and sends it to server1.

Our two-phase static analysis prevents programs from experiencing either
kind of failures. It consists of a type and e↵ect system at compile time and of a
control flow analysis at loading time.

The compilation results in a triple (Cp, e,H) made of the application context,
the object code and an e↵ect. Types are (almost) standard, and H is an over-
approximation, called history expression, of the actual runtime behaviour of e.
The e↵ect abstractly represents the changes and the queries performed on the
context and the invocations to the API functions at runtime.

For example, the type of function main is unit ! unit, and the history
expression of the fragment between lines 6 and 11 is

H = ask G · connect(address)hHci · get db(channel)hHgi·
crypto query(database)hHqi · decrypt(key)hHki

where ask G represents (a call to the Datalog deduction machinery on) the goal
in lines 6 and 7, followed by four abstract calls, corresponding to the API in-
vocations in lines 8-11 (· stands for sequential composition). The abstract calls
have the form f(k)hHi, where k is the kind of the resource a↵ected by f and
the history expression H is its latent e↵ect as declared by the API. For ex-
ample, get db(channel)hHgi corresponds to the invocation at line 9, and indi-
cates that the resource is a channel, and that Hg is the latent e↵ect of the
system function get_db. Note that the function f changes the resource state
and the context, e.g. through a tell/retract. Consequently, the latent e↵ect
registers these modifications. Indeed, most likely Hg will contain an element
tell connected(Jane,DB2) to record in the context that the system function
connected the current user to the selected database, say Jane to DB2.

At loading time, the virtual machine of ML
CoDa

performs two steps: linking
and verification. The first step links the API to its actual implementation, and it
constructs the initial context C, by combining the one of the application Cp with
the system context that includes information on the actual state of the system,
e.g. available resources and their usage constraints. Of course, the context C is
checked for consistency. Then our last mile verification begins: it checks whether
no functional failure occurs, i.e. whether the application adapts to all evolutions
of C that may occur at runtime. And then it checks non-functional failures,
i.e. whether resources are used in accordance with the rules established by the
system that loads the program. Only those which pass the verification will be
run. To do that conveniently and e�ciently, we build a graph G describing the
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Ca >

C1 C2 C3 C4 C5 C6

connect

get db crypto query decrypt

connect

Fig. 1. Two evolution graphs showing a functional failure (top) and a non-functional
failure (bottom)

possible evolutions of the initial context C, through a control flow analysis of
the history expression H. The nodes of G over-approximate the context arising
at runtime and its edges are labelled by the action which carried out the context
change. A distinguished aspect of our analysis is that it depends on the initial
context C, right because our application may behave correctly in one context
and fail in another.

The example above is rather simple, but su�ces to show a functional and
a non-functional failure. For the first, consider Alan who runs the application
above. The graph shown in Fig. 1 (top) results from our analysis, where Ca is
the initial context. Since he is not authorised to access the company database,
the behavioural variation records fails (the predicate has_auth is false in Ca).
The failure is shown in the graph of Fig. 1 because the failure node (dotted and
in red in the pdf) > is reachable.

A non-functional failure occurs when Jane runs the application outside the
o�ce. The initial context now is di↵erent from Ca, and the graph in Fig. 1 (bot-
tom) displays how this context evolves when the API calls in the code are carried
out. Since Jane is outside, the second case of the behavioural variation records

is selected. The application violates the constraint informally introduced above
(once connected from outside, no other connections are allowed), because the
function connect attempts to establish a new connection to server1 at line 15
(represented by the dotted edge and the node, drawn in blue in the pdf).

3 ML

CoDa

with resources

We briefly define the syntax and the operational semantics of our extension of
ML

CoDa

to explicitly deal with resources; we mainly concentrate on its peculiar
constructs, as those inherited by Datalog and ML are standard.

Syntax ML
CoDa

consists of two sub-components: a Datalog with negation to
describe the context and a core ML extended with COP features.

The Datalog part is standard: a program is a set of facts and clauses. We
assume that each program is safe [7]; to deal with negation, we adopt Stratified
Datalog under the Closed World Assumption.
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The functional part inherits most of the ML constructs. Besides the usual
ones, our values include Datalog facts F , behavioural variations and resource
handles r. Also, we introduce the set x̃ 2 DynV ar of parameters, i.e. variables
assuming values depending on the properties of the running context, while x, y 2
V ar are standard identifiers, disjoint from parameters. Our COP constructs
include behavioural variations (x){V a}, each consisting of a variation V a, i.e. a
list G

1

.e
1

, . . . , Gn.en of expressions ei guarded by Datalog goals Gi (x possibly
free in ei). At runtime, the first goal Gi satisfied by the context determines the
expression ei to be selected (dispatching). The dlet construct implements the
context-dependent binding of a parameter x̃ to a variation V a. The tell/retract
constructs update the context by asserting/retracting facts. The append operator
e
1

[e
2

concatenates behavioural variations, so allowing for dynamic composition.
The application of a behavioural variation #(e

1

, e
2

) applies e
1

to its argument
e
2

. To do so, the dispatching mechanism is triggered to query the context and
to select from e

1

the expression to run, if any. We assume that the programmer
can invoke a set of functions provided by the API, by writing f(e

1

, . . . , en). The
syntax follows:

x̃ 2DynV ar (V ar \DynV ar = ;) C,Cp 2 Context r 2 Res f 2 API

V a ::=G.e | G.e, V a

v ::=c | �yx.e | (x){V a} | F | r
e ::=v | x | x̃ | e

1

e
2

| let x = e
1

in e
2

| if e
1

then e
2

else e
3

|
dlet x̃ = e

1

whenG in e
2

| tell(e
1

) | retract(e
1

) | e
1

[ e
2

| #(e
1

, e
2

) |
f(e

1

, . . . , en)

Semantics For the Datalog evaluation, we adopt the top-down standard seman-
tics for stratified programs [7]. Given a context C 2 Context and a goal G,
C ✏ Gwith ✓ means that the goal G, under the substitution ✓ replacing con-
stants for variables, is satisfied in the context C.

The small-step operational semantics of ML
CoDa

is defined for expressions
with no free variables, but possibly with free parameters, allowing for openness.
For that, we have an environment ⇢ : DynV ar ! V a, mapping parameters to
variations. A transition ⇢ ` C, e ! C 0, e0 says that in the environment ⇢, the
expression e is evaluated in the context C and reduces to e0 changing C to C 0.
We assume that the initial configuration is ⇢

0

` C, ep where ⇢
0

contains the
bindings for all system parameters, and C results from linking the system and
the application contexts.

Fig. 2 shows the inductive definitions of the reduction rules for the constructs
typical of ML

CoDa

; the other ones are standard, and such are the congruence rules
that reduce subexpressions, e.g. ⇢ ` C, tell(e) ! C 0, tell(e0) if ⇢ ` C, e ! C 0, e0.
See [11] for full definitions. Below, we briefly comment on the rules displayed.

The rule for tell(e)/retract(e) evaluates the expression e until it reduces to
a fact F , which is a value of ML

CoDa

. Then, the evaluation yields the unit value
() and a new context C 0, obtained from C by adding/removing F . The following
example shows the reduction of a tell construct, where we apply the function
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(Tell1)

⇢ ` C, e ! C
0
, e

0

⇢ ` C, tell(e) ! C
0
, tell(e

0
)

(Tell2)

⇢ ` C, tell(F ) ! C [ {F}, ()

(Retract1)

⇢ ` C, e ! C
0
, e

0

⇢ ` C, retract(e) ! C
0
, retract(e

0
)

(Retract2)

⇢ ` C, retract(F ) ! C\{F}, ()

(Dlet1)

⇢[G.e1, ⇢(x̃)/x̃] ` C, e2 ! C
0
, e

0
2

⇢ ` C, dlet x̃ = e1 whenG in e2 ! C
0
, dlet x̃ = e1 whenG in e

0
2

(Dlet2)

⇢ ` C, dlet x̃ = e1 whenG in v ! C, v

(Par)

⇢(x̃) = V a dsp(C, V a) = (e, {�!c /�!y })
⇢ ` C, x̃ ! C, e{�!c /�!y }

(Append1)

⇢ ` C, e1 ! C
0
, e

0
1

⇢ ` C, e1 [ e2 ! C
0
, e

0
1 [ e2

(Append2)

⇢ ` C, e2 ! C
0
, e

0
2

⇢ ` C, (x){V a1} [ e2 ! C
0
, (x){V a1} [ e

0
2

(Append3)

z fresh

⇢ ` C, (x){V a1} [ (y){V a2} ! C, (z){V a1{z/x}, V a2{z/y}}

(VaApp1)

⇢ ` C, e1 ! C
0
, e

0
1

⇢ ` C, #(e1, e2) ! C
0
,#( e

0
1, e2)

(VaApp2)

⇢ ` C, e2 ! C
0
, e

0
2

⇢ ` C, #((x){V a}, e2) ! C
0
,#((x){V a}, e02)

(VaApp3)

dsp(C, V a) = (e, {�!c /�!y })
⇢ ` C, #((x){V a}, v) ! C, e{v/x, �!c /�!y }

(Res1)

⇢ ` C, ei ! C
0
, e

0
i

⇢ ` C, f(v1, . . . , ei, . . . , en) ! C
0
, f(v1, . . . , e

0
i, . . . , en)

(Res2)

v = syscall(f, r, v2, . . . , vn)

⇢ ` C, f(r, v2, . . . , vn) ! C
0
, v

Fig. 2. The reduction rules for the constructs peculiar of ML
CoDa

foo = �x. if e
1

then F

2

else F

3

to unit, assuming that e
1

reduces to false without
changing the context:

⇢ `C, tell(foo ()) !⇤ C, tell(F
3

) ! C [ {F
3

}, ()

The rules (Dlet1) and (Dlet2) for the construct dlet, and the rule (Par) for
parameters implement our context-dependent binding. To simplify the technical
development we assume here that e

1

contains no parameters. The rule (Dlet1)

extends the environment ⇢ by appending G.e
1

in front of the existent binding
for x̃. Then, e

2

is evaluated under the updated environment. Notice that the dlet
does not evaluate e

1

but only records it in the environment. The rule (Dlet2)

is standard: the whole dlet yields the value which eventually e
2

reduces to.
The (Par) rule looks for the variation V a bound to x̃ in ⇢. Then the dis-

patching mechanism selects the expression to which x̃ reduces by the following
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partial function:

dsp(C, (G.e, V a)) =

(
(e, ✓) if C ✏ Gwith ✓

dsp(C, V a) otherwise

A variation is inspected from left to right to find the first goal G satisfied by
the context C (C |= G), under a substitution ✓. If this search succeeds, the
dispatching returns the corresponding expression e and ✓. Then x̃ reduces to
e ✓. Instead, if the dispatching fails because no goal holds, the computation gets
stuck since the program cannot adapt to the current context.

As an example of context-dependent binding consider the expression tell(x̃),
in an environment ⇢ that binds the parameter x̃ to e0 = G

1

.F
5

, G
2

. foo () (foo is
defined above) and in a context C that satisfies the goal G

2

but not G
1

:

⇢ ` C, tell(x̃) ! C, tell(foo ()) !⇤ C, tell(F
3

) ! C [ {F
3

}, ()

In the first step, we retrieve the binding for ~x (recall it is e0), where dsp(C, e0) =
dsp(C, G

1

.F
5

, G
2

. foo ()) = (foo (), ✓), for a suitable substitution ✓.

The rules for e
1

[ e
2

sequentially evaluate e
1

and e
2

until they reduce to be-
havioural variations. Then, they are concatenated (bound variables are renamed
to avoid name captures, see rule (Append3)). As an example of concatenation, let
T be the goal always true, and consider the function doo = �x.�y. x [ (w){T.y}.
It takes as arguments a behavioural variation x and a value y, and it extends
x by adding a default case which is always selected when no other case ap-
plies. In the following computation we apply doo to the behavioural variation
bv = (x){G

1

.c
1

, G
2

.x} and to c
2

(c
1

, c
2

constants):

⇢ ` C, doo p c
2

! C, (x){G
1

.c
1

, G
2

.x}[(w){T.c
2

} ! C, (z){G
1

.c
1

, G
2

.z, T.c
2

}

The behavioural variation application #(e
1

, e
2

) evaluates the subexpressions
until e

1

reduces to (x){V a} and e
2

to a value v. Then the rule (VaApp3) invokes
the dispatching mechanism to select the relevant expression e from which the
computation proceeds after v replaced x. Also in this case the computation gets
stuck if the dispatching mechanism fails. As an example, consider the above
behavioural variation bv and apply it to the constant c in a context C that
satisfies the goal G

2

but not G
1

. Since dsp(C, bv) = dsp(C, (x){G
1

.c
1

, G
2

.x}) =
(x, ✓) for some substitution ✓, we get

⇢ ` C, #((x){G
1

.c
1

, G
2

.x}, c) ! C, c

The rules for API invocation first evaluate the arguments, and then run the
code of f through the meta function syscall, possibly a↵ecting the context. For
simplicity, we assume that a single resource handle occurs in an API invocation,
as its first argument.
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C, ✏ ·H ! C, H C, µh.H ! C,H[µh.H/h]

C,H
1

! C0, H 0
1

C,H
1

+H
2

! C0, H 0
i

C,H
2

! C0, H 0
2

C,H
1

+H
2

! C0, H 0
2

C, H
1

! C0, H 0
1

C, H
1

·H
2

! C0, H 0
1

·H
2

C, tell F ! C [ {F}, ✏

C, retract F ! C\{F}, ✏
C,H ! C0, H 0

C, f(k)hHi ! C0, f(k)hH 0i C, f(k)h✏i ! C, ✏

C ✏ G

C, ask G.H ⌦�! C, H

C 2 G

C, ask G.H ⌦�! C, �

Fig. 3. Semantics of History Expressions

4 Types

4.1 History Expressions

History Expressions [3] are a basic process algebra used to soundly abstract the
set of execution histories that a program may generate. Here, history expres-
sions approximate the sequence of actions that a program may perform over the
context at runtime, i.e. asserting/retracting facts and asking if a goal holds, as
well as how behavioural variations will be “resolved”. In addition, we record a
call to an API function, together with its abstract behaviour, represented as a
history expression.

The syntax of history expressions is the following

H ::= ✏ | h | µh.H | H
1

+H
2

| H
1

·H
2

| tell F | retract F | f(k)hHi | �
� ::= ask G.H ⌦ � | fail

The empty history expression ✏ abstracts programs which do not interact with
the context; µh.H represents possibly recursive functions, where h is the re-
cursion variable; the non-deterministic sum H

1

+H
2

stands for the conditional
expression if -then-else; the concatenation H

1

· H
2

is for sequences of actions
that arise, e.g. while evaluating applications; the “atomic” history expressions
tell F and retract F are for the analogous expressions of ML

CoDa

; the history
expression for an API invocation is rendered by f(k)hHi, where f acts on a
resource of type k, and H is the history expression declared in the API; � is
an abstract variation, defined as a list of history expressions, each element Hi of
which is guarded by an ask Gi, so to mimic our dispatching mechanism. For an
example of abstract variation, see the history expression H in Section 2.

Given a context C, the behaviour of a closed history expression H (i.e. with
no free variables) is formalised by the transition system inductively defined in
Fig. 3. A transition C,H ! C 0, H 0 means that H reduces to H 0 in the context
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C and yields the context C 0. Most rules are similar to the ones in [3], and below
we briefly comment on them.

The recursion µh.H reduces to its body H substituting µh.H for the recur-
sion variable h. The sum H

1

+H
2

non-deterministically reduces to the history
expression obtained by reducing either H

1

or H
2

. The sequence H
1

·H
2

reduces
to H

2

, provided that H
1

step-wise becomes ✏. An action tell F reduces to ✏ and
yields a context C 0 where the fact F has just been added; similarly for retract F .
The rules for an API invocation evaluate the bodyH until termination. The rules
for � scan the abstract variation and look for the first goal G satisfied in the
current context; if this search succeeds, the overall history expression reduces to
the history expression H guarded by G; otherwise the search continues on the
rest of �. If no satisfiable goal exists, the stuck configuration C, fail is reached,
representing that the dispatching mechanism fails.

4.2 Types and e↵ects

We extend in Fig. 5 and Fig. 4 the logical presentation of a type and e↵ect
system for ML

CoDa

of [9] by introducing a family of types res(k) for every kind
k of resource. As done there, we assume a Datalog typing function � that given
a goal G returns a list of pairs (x, type-of-x), for all the variables x of G (� is
used e.g. in the rule Tvariation in Fig. 5).
The syntax of types is

⌧b ::=⌧c | res(k) ⌧c 2 {int, bool, unit, . . .} k 2 ResFamily

⌧ ::=⌧b | ⌧1
K|H���! ⌧

2

| ⌧
1

K|�
===) ⌧

2

| fact� � 2 }(Fact)

We have types for constants (int, bool, unit, . . . ), resource types, functional
types, behavioural variations types, and facts. Some types are annotated to sup-
port our static analysis. In the type fact� the set � soundly contains the facts
that an expression can be reduced to at runtime (see the rules of the semantics

(Tell2) and (Retract2)). In the type ⌧
1

K|H���! ⌧
2

associated with a function
f , the environment K is a precondition needed to apply f . The environment
K maps a parameter x̃ to a pair consisting of a type and an abstract variation
�, used to resolve the binding for x̃ at runtime, formally K ::= ; | K, (x̃, ⌧,�).
As an annotation, K stores the types and the abstract variations of parameters
occurring inside the body of f . The history expression H is the latent e↵ect of
f , i.e. the sequence of actions that may be performed over the context during

the function evaluation. Analogously, in the type ⌧
1

K|�
===) ⌧

2

associated with
the behavioural variation bv = (x){V a}, K is a precondition for applying bv
and � is an abstract variation representing the information that the dispatching
mechanism uses at runtime to apply bv.

We now introduce the orderings vH ,v�,vK on H, � and K, respectively
(often omitting the indexes when unambiguous). We define H

1

v H
2

i↵ 9H
3

such that H
2

= H
1

+ H
3

; �
1

v �
2

i↵ 9�
3

such that �
2

= �
1

⌦ �
3

, (note

11



(Stconst)

⌧b  ⌧b

(Sfact)

� ✓ �0

fact�  fact�0

(Sfun)

⌧ 0
1

 ⌧
1

K v K0

⌧
2

 ⌧ 0
2

H v H 0

⌧
1

K|H���! ⌧
2

 ⌧ 0
1

K0|H0
����! ⌧ 0

2

(Sva)

⌧ 0
1

 ⌧
1

K v K0

⌧
2

 ⌧ 0
2

� v �0

⌧
1

K|�
===) ⌧

2

 ⌧ 0
1

K0|�0
====) ⌧ 0

2

Fig. 4. The subtyping relation

that we assume fail ⌦� = �, so � has a single trailing term fail); K
1

v K
2

i↵
( (x̃, ⌧

1

, �
1

) 2 K
1

implies (x̃, ⌧
2

, �
2

) 2 K
2

^ ⌧
1

 ⌧
2

^ �
1

v �
2

).

Typing judgements � ; K ` e : ⌧ .H mean that in the standard type envi-
ronment � and in the parameter environment K, the expression e has type ⌧
and e↵ect H. Furthermore, we assume that the type of every API function f is

stored in the typing environment � , i.e. � (f) = res(k) ⇥ ⌧
2

⇥ · · · ⇥ ⌧n
✏;H��! ⌧b,

where, by abuse of notation, we use a tuple type for the domain of f (see the
rule (Tres) below).

We now briefly comment on the most interesting rules; more comments and
examples can be found in [9]. As expected the rules for subtyping and subef-
fecting (Fig. 4) say that the subtyping relation is reflexive (rule (Srefl)); that
a type fact� is a subtype of a type fact�0 whenever � ✓ �0 (rule (Sfact)); that
functional types are contra-variant in the types of arguments and covariant in
the type of the result and in the annotations (rule (Sfun)); analogously for the
types of behavioural variations (rule (Sva)).

The rule (Tsub) allows us to freely enlarge types and e↵ects by apply-
ing the subtyping and sube↵ecting rules. The rule (Tfact) says that a fact
F has type fact annotated with the singleton {F} and empty e↵ect. The rule
(Ttell)/(Tretract) asserts that the expression tell(e)/retract(e) has type unit,
provided that the type of e is fact�. The overall e↵ect is obtained by concate-
nating the e↵ect of e with the non-deterministic summation of tell F/retract F
where F is any of the facts in the type of e. Rule (Tpar) looks for the type
and the e↵ect of the parameter x̃ in the environment K. In the rule (Tvaria-

tion) we guess an environment K 0 and the type ⌧
1

for the bound variable x. We
determine the type for each subexpression ei under K 0 and the environment �
extended by the type of x and of the variables �!yi occurring in the goal Gi (recall
that the Datalog typing function � returns a list of pairs (z, type-of-z) for all
variable z of Gi). Note that all subexpressions ei have the same type ⌧

2

. We also
require that the abstract variation � results from concatenating ask Gi with
the e↵ect computed for ei. The type of the behavioural variation is annotated
by K 0 and �. The rule (Tvapp) type-checks behavioural variation applications
and reveals the role of preconditions. As expected, e

1

is a behavioural variation
with parameter of type ⌧

1

and e
2

has type ⌧
1

. We get a type if the environment

12



(Tsub)

� ; K ` e : ⌧
0
. H

0
⌧
0  ⌧ H

0 v H

� ; K ` e : ⌧ . H

(Tconst)

� ; K ` c : ⌧c . ✏

(Tfact)

� ; K ` F : fact{F} . ✏

(Tvar)

� (x) = ⌧

� ; K ` x : ⌧ . ✏

(Tif)

� ; K ` e1 : bool . H1 � ; K ` e2 : ⌧ . H2 � ; K ` e3 : ⌧ . H3

� ; K ` if e1 then e2 else e3 : ⌧ . H1 · (H2 + H3)

(Tlet)

� ; K ` e1 : ⌧1 . H1 � ; x : ⌧1, K ` e2 : ⌧2 . H2

� ; K ` let x = e1 in e2 : ⌧2 . H1 · H2

(Ttell)

� ; K ` e : fact� . H

� ; K ` tell(e) : unit . H ·

0

@
X

F2�

tell F

1

A

(Tretract)

� ; K ` e : fact� . H

� ; K ` retract(e) : unit . H ·

0

@
X

F2�

retract F

1

A

(Tabs)

�, x : ⌧1, f : ⌧1
K0|H����! ⌧2;K

0 ` e : ⌧2 . H

� ; K ` �fx.e : ⌧1
K0|H����! ⌧2 . ✏

(Tvariation)

8i 2 {1, . . . , n} �(Gi) =

�!yi :

�!⌧i
�, x : ⌧1,

�!yi :

�!⌧i ;K0 ` ei : ⌧2 . Hi � = askG1.H1 ⌦ · · · ⌦ askGn.Hn ⌦ fail

� ; K ` (x){G1.e1, . . . , Gn.en} : ⌧1
K0|�

====) ⌧2 . ✏

(Tappend)

� ; K ` e1 : ⌧1
K0|�1

=====) ⌧2 . H1 � ; K ` e2 : ⌧1
K0|�2

=====) ⌧2 . H2

� ; K ` e1 [ e2 : ⌧1
K0|�1⌦�2

=========) ⌧2 . H1 · H2

(Tvapp)

� ; K ` e1 : ⌧1
K0|�

====) ⌧2 . H1 � ; K ` e2 : ⌧1 . H2 K
0 v K

� ; K ` #(e1, e2) : ⌧2 . H1 · H2 · �

(Tapp)

� ; K ` e1 : ⌧1
K0|H3�����! ⌧2 . H1 � ; K ` e2 : ⌧1 . H2 K

0 v K

� ; K ` e1 e2 : ⌧2 . H1 · H2 · H3

(Tpar)

K(x̃) = (⌧, �)

� ; K ` x̃ : ⌧ . �

(Tdlet)

�,�!y :

�!̃
⌧ ; K ` e1 : ⌧1 . H1 � ; K, (x̃, ⌧1, �

0
) ` e2 : ⌧2 . H2

� ; K ` dlet x̃ = e1 whenG in e2 : ⌧2 . H2

where �(G) =

�!y :

�!̃
⌧

�0
=

⇢
(G.H1 ⌦ �) if K(x̃) = (⌧1, �)

(G.H1 ⌦ fail) if x̃ /2 K

(Tres)

� (f) : res(k) ⇥ ⌧2 ⇥ · · · ⇥ ⌧n
;;H���! ⌧b � ;K ` ei : ⌧i . Hi

f(e1, . . . , en) : ⌧b . H1 · . . . · Hn · f(k)hHi
where ⌧1 = res(k)

Fig. 5. Type and e↵ect system
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K 0, which acts as a precondition, is included in K according to v. The type of
the behavioural variation application is ⌧

2

, i.e. the type of the result of e
1

, and
the e↵ect is obtained by concatenating the ones of e

1

and e
2

with the history
expression �, occurring in the annotation of the type of e

1

. The rule (Tappend)

asserts that two expressions e
1

,e
2

with the same type ⌧ , except for the abstract
variations �

1

,�
2

in their annotations, and e↵ects H
1

and H
2

, are combined into
e
1

[ e
2

with type ⌧ , and concatenated annotations and e↵ects. More precisely,
the resulting annotation has the same precondition of e

1

and e
2

and abstract
variation �

1

⌦�
2

, and e↵ect H
1

·H
2

. The rule (Tdlet) requires that e
1

has type
⌧
1

in the environment � extended with the types for the variables �!y of the goal
G. Also, e

2

has to type-check in an environment K extended with information on
the parameter x̃. The type and the e↵ect for the overall dlet expression are those
of e

2

. Finally, the rule (Tres) retrieves the type of f from � and type-checks its
arguments. The resulting type is the retrieved one for f and the overall e↵ect is
the concatenation of the e↵ects of the arguments and f(k)hHi, where k denotes
the kind of the resource a↵ected and H is the latent e↵ect of f . For simplicity
we assume that f manipulates a single resource occurring in first position and
that f can always be applied so its type has no preconditions.

As an example, consider the behavioural variation bv
1

= (x){G
1

.f(e
1

), G
2

.e
2

}.
Let � 0 be the environment �, x : int, f : res(k

1

) ! ⌧ (goals have no variables)
and K 0 be the parameter environment. Then assume that under these envi-
ronments e

1

has type res(k
1

) and e↵ect Hr, and that the two cases of this be-
havioural variation have type ⌧ and e↵ects H

1

= f(k
1

)hHri and H
2

, respectively.

Hence, the type of bv
1

will be int
K0|�
===) ⌧ with� = ask G

1

.H
1

⌦ask G
2

.H
2

⌦fail ,
while the e↵ect will be empty.

Our type and e↵ect system is sound with respect to the operational seman-
tics of ML

CoDa

. To concisely state soundness, it is convenient to introduce the
following technical definition and to exploit the following results.

Definition 1 (Type of dynamic environment). Given the type and param-

eter environments � and K, we say that the dynamic environment ⇢ has type K
under � (in symbols � ` ⇢ : K) i↵ dom(⇢) ✓ dom(K) and 8x̃ 2 dom(⇢) such

that ⇢(x̃) = G
1

.e
1

, . . . , Gn.en and K(x̃) = (⌧, �), 8i 2 [1, n] the following hold:

(a) �(Gi) = �!yi : �!⌧i and (b) �,�!yi : �!⌧i ;K ` ei : ⌧ 0 . Hi and (c) ⌧ 0  ⌧ and

(d)
N

i2[1,n] Gi.Hi v �.

Theorem 1 (Preservation). Let es be a closed expression; and let ⇢ be a dy-

namic environment such that dom(⇢) includes the set of parameters of es and

such that � ` ⇢ : K. If � ; K ` es : ⌧ .Hs and ⇢ ` C, es ! C 0, e0s then

� ; K ` e0s : ⌧ .H 0
s and C,Hs !⇤ C 0, H for some H v H 0

s.

This theorem is quite standard: types are preserved under computations and
the e↵ect statically determined includes the one reached by the considered com-
putation. However, the Progress Theorem assumes that the e↵ect H does not
reach fail , i.e. that the dispatching mechanism succeeds at runtime. We take care
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of ensuring this property in Section 5 (below ⇢ ` C, e 9 means that there exist
no C 0 and e0 such that ⇢ ` C, e ! C 0, e0). The following corollary ensures that
the history expression obtained as an e↵ect of e over-approximates the actions
that may be performed over the context during the evaluation of e.

Theorem 2 (Progress). Let es be a closed expression s.t. � ;K ` es : ⌧ .Hs;

and let ⇢ be a dynamic environment s.t. dom(⇢) includes the set of parameters

of es, and � ` ⇢ : K. If ⇢ ` C, es 9 ^ C, Hs 9+ C 0, fail then es is a value.

Corollary 1 (Over-approximation). Let es be a closed expression. If � ;K `
es : ⌧ . Hs ^ ⇢ ` C, es !⇤ C 0, e0, for some ⇢ such that � ` ⇢ : K, then

� ;K ` e0 : ⌧ .H 0
s and there exists a sequence of transitions C, Hs !⇤ C 0, H 0

for some H 0 v H 0
s.

The following theorem ensures the correctness of our approach.

Theorem 3 (Correctness). Let es be a closed expression such that � ;K `
es : ⌧ .Hs; let ⇢ be a dynamic environment such that dom(⇢) includes the set

of parameters of es, and that � ` ⇢ : K; finally let C be a context such that

C,Hs 9+ C 0, fail . Then either the computation of es terminates yielding a value

(⇢ ` C, es !⇤ C 00, v) or it diverges, but it never gets stuck.

5 Loading Time Analysis

As anticipated in Section 1, the ML
CoDa

compiler produces a triple (Cp, ep, Hp)
made of the application context Cp, the object code ep, and an e↵ect Hp over-
approximating the behaviour of the application. Using it, the virtual machine
of ML

CoDa

performs a linking and a verification phase at loading time. Dur-
ing the linking phase, system variables are resolved and the initial context C
is constructed, combining Cp and the system context, provided that the result
is consistent. Still, the application is “open” with respect to its parameters.
This calls for the last mile verification phase: we check whether the application
adapts to all the evolutions of C that may occur at runtime, i.e., that all dis-
patching invocations will always succeed. And then we check that resources are
used in accordance with the rules established by the system loading the pro-
gram. Only programs which pass this verification phase will be run. To do that
conveniently and e�ciently, we build a graph G describing all the possible evo-
lutions of the initial context, exploiting the history expression Hp. Technically,
we compute G through a static analysis of history expressions with a notion
of validity; intuitively, a history expression is valid for an initial context if the
dispatching mechanism always succeeds. Our static analysis is specified in terms
of Flow Logic [16,14], a declarative approach borrowing from and integrating
many classical static techniques. Flow Logic has been applied to a wide vari-
ety of programming languages and calculi of computation including calculi with
functional, imperative, object-oriented, concurrent, distributed, and mobile fea-
tures, among many see [12,6,4,15,10].
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To support the formal development, we assume that history expressions are
mechanically labelled from a given set Lab = LabH

U
LabS , with typical element

l. The elements of LabH label the abstract counterparts of ML
CoDa

constructs,
while those of LabS occur in the declared latent e↵ects of the API functions
(sometimes, with l̂ as typical element). Formally:

H ::= � | ✏l | hl | (µh.H)l | tell F l | retract F l | f(k)lhHˆli |
(H

1

+H
2

)l | (H
1

·H
2

)l | �
� ::= (ask G.H ⌦ �)l | fail l

For technical reasons, we introduce a new empty history expression � which
is unlabelled. This is because our analysis is syntax-driven, and we need to dis-
tinguish when the empty history expression comes from the syntax (✏l) and
when it is instead obtained by reduction in the semantics (�). The semantics
of history expressions is accordingly modified, by always allowing the transition
C, ✏l ! C, �. Furthermore, w.l.o.g. we assume that all the bound variables oc-
curring in a history expression are distinct. To keep track of a bound variable hl

introduced in (µh.H l1
1

)l2 , we shall use a suitable function K.
The static approximation is represented by an estimate (⌃�,⌃•), given by

the pair of functions ⌃�,⌃• : Lab ! }(Context [ {>}), where > is the distin-
guished “failure” context representing a dispatching failure. For each label l,
the pre-set ⌃�(l) and the post-set ⌃•(l) over-approximate the set of contexts
possibly arising before and after the evaluation of H l, respectively.

We inductively specify our analysis in Fig. 6 by defining the validity relation

✏ ✓ AE ⇥H

where AE = (Lab ! }(Context [ {>}))2 is the domain of the results of the
analysis and H the set of history expressions. We write (⌃�,⌃•) ✏ H l, when the
pair (⌃�,⌃•) is an acceptable analysis estimate for the history expression H l.
The notion of acceptability will then be used in Definition 3 to check whether
H, hence the expression e it is an abstraction of, will never fail in a given initial
context C. Below, we briefly comment on the inference rules, where E = (⌃�,⌃•)
and immaterial labels are omitted.

The rule (Anil) says that every pair of functions is an acceptable estimate
for the semantic empty history expression �. The estimate E is acceptable for
the syntactic ✏l if the pre-set is included in the post-set (rule (Aeps)). By the
rule (Atell), E is acceptable if for all contexts C in the pre-set, the context
C [ {F} is in the post-set. The rule (Aretract) is similar. The rules (Aseq1)

and (Aseq2) handle the sequential composition of history expressions. The rule
(Aseq1) states that (⌃�,⌃•) is acceptable for H = (H l1

1

·H l2
2

)l if it is valid for
both H

1

and H
2

. Moreover, the pre-set of H
1

must include that of H and the
pre-set of H

2

includes the post-set of H
1

; finally, the post-set of H includes that
of H

2

. The rule (Aseq2) states that E is acceptable for H = (� ·H l2
1

)l if it is
acceptable for H

1

and the pre-set of H
1

includes that of H, while the post-set of
H includes that of H

1

. By the rule (Asum), E is acceptable for H = (H l1
1

+H l2
2

)l
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if it is valid for H
1

and H
2

; the pre-set of H is included in the pre-sets of H
1

and
H

2

; and the post-set of H includes both those of H
1

and H
2

. The rules (Aask1)

and (Aask2) handle the abstract dispatching mechanism. The first states that
the estimate E is acceptable for H = (askG.H l1

1

⌦�l2)l, provided that, for all C
in the pre-set of H, if the goal G succeeds in C then the pre-set of H

1

includes
that of H and the post-set of H includes that of H

1

. Otherwise, the pre-set of
�l2 must include the one of H and the post-set of �l2 is included in that of H.
The rule (Aask2) requires > to be in the post-set of fail. By the rule (Arec) E
is acceptable for H = (µh.H l1

1

)l if it is acceptable for H l1
1

and the pre-set of H
1

includes that of H and the post-set of H includes that of H
1

. The rule (Avar)

says that a pair (⌃�,⌃•) is an acceptable estimate for a variable hl if the pre-set
of the history expression introducing h, namely K(h), is included in that of hl,
and the post-set of hl includes that of K(h). Finally, the rule (Ares) handles

the abstraction f(k)lhHˆli of an API function. It requires that (⌃�,⌃•) is an

acceptable estimate for H
ˆl and that the pre-set of l̂ includes that of l, while the

inverse relation holds for the post-sets.

We are now ready to introduce when an estimate for a history expression is
valid for an initial context.

Definition 2 (Valid analysis estimate). Given H l
and an initial context

C, we say that a pair (⌃�,⌃•) is a valid analysis estimate for H and C i↵

C 2 ⌃�(lp) and (⌃�,⌃•) ✏ H l
.

The set of estimates can be partially ordered in the standard way, and shown
to form a Moore family. Therefore, there always exists a minimal valid analysis
estimate [16] (see [9] Th. 4). The correctness of our analysis follows from subject
reduction.

Theorem 4 (Subject Reduction). Let H l
be a closed history expression such

that (⌃�,⌃•) ✏ H l
. If for all C 2 ⌃�(l) such that C,H l ! C 0, H 0l0

then

(⌃�,⌃•) ✏ H 0l0
and ⌃�(l) ✓ ⌃�(l0) and ⌃•(l0) ✓ ⌃•(l).

Now we can define when a history expression Hp is viable for an initial
context C, i.e. when it passes the verification phase. In the following definition,
let lfail(H) be the set of labels of the fail sub-terms in H:

Definition 3 (Viability). Let Hp be a history expression and C be an initial

context. We say that Hp is viable for C if there exists the minimal valid analysis

estimate (⌃�,⌃•) such that 8l 2 dom(⌃•)\lfail(Hp), > /2 ⌃•(l).

As an example of viability checking, consider the context C = {F
2

, F
5

},
consisting of facts only, and the following history expression Ha:

Ha = ((tell F 1

1

· (retract F 2

2

· f(k
1

)3hretract F 4

5

i)5)6 +

g(k
2

)7h(ask F
5

.(tell F 8

8

· tell F 9

1

)10 ⌦ (ask F
3

.retract F 11

4

⌦ fail12)13)14i)15

For each label l occurring in Ha, Table 1 shows the corresponding values of ⌃1

�(l)
and ⌃1

•(l), respectively.
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(Anil)

(⌃�,⌃•) ✏�

(Aeps)

⌃�(l) ✓ ⌃•(l)

(⌃�,⌃•) ✏ ✏l

(Atell)

8C 2 ⌃�(l) C [ {F} 2 ⌃•(l)

(⌃�,⌃•) ✏ tell F l

(Aretract)

8C 2 ⌃�(l) C\{F} 2 ⌃•(l)

(⌃�,⌃•) ✏ retract F l

(Aseq1)

(⌃�,⌃•) ✏ Hl1
1

(⌃�,⌃•) ✏ Hl2
2

⌃�(l) ✓ ⌃•(l1) ⌃•(l1) ✓ ⌃�(l2) ⌃•(l2) ✓ ⌃•(l)

(⌃�,⌃•) ✏ (Hl1
1

·Hl2
2

)l

(Aseq2)

(⌃�,⌃•) ✏ Hl2
2

⌃�(l) ✓ ⌃•(l2) ⌃•(l2) ✓ ⌃•(l)

(⌃�,⌃•) ✏ (� ·Hl2
2

)l

(Asum)

(⌃�,⌃•) ✏ Hl1
1

⌃�(l) ✓ ⌃�(l1) ⌃•(l1) ✓ ⌃•(l)
(⌃�,⌃•) ✏ Hl2

2

⌃�(l) ✓ ⌃�(l2) ⌃•(l2) ✓ ⌃•(l)

(⌃�,⌃•) ✏ (Hl1
1

+Hl2
2

)l

(Aask1)

8C 2 ⌃�(l) (C ✏ G =) (⌃�,⌃•) ✏ Hl1 ⌃�(l) ✓ ⌃�(l1) ⌃•(l1) ✓ ⌃•(l))
(C 2 G =) (⌃�,⌃•) ✏ �l2 ⌃�(l) ✓ ⌃�(l2) ⌃•(l2) ✓ ⌃•(l))

(⌃�,⌃•) ✏ (askG.Hl1 ⌦�l2)l

(Aask2)

> 2 ⌃•(l)

(⌃�,⌃•) ✏ faill

(Arec)

(⌃�,⌃•) ✏ Hl1 ⌃�(l) ✓ ⌃�(l1) ⌃•(l1) ✓ ⌃•(l)

(⌃�,⌃•) ✏ (µh.Hl1)l

(Avar)

K(h) = (µh.Hl1)l
0

⌃�(l) ✓ ⌃�(l
0) ⌃•(l

0) ✓ ⌃•(l)

(⌃�,⌃•) ✏ hl

(Ares)

(⌃�,⌃•) ✏ H
ˆl ⌃�(l) ✓ ⌃�(l̂) ⌃•(l̂) ✓ ⌃•(l)

(⌃�,⌃•) ✏ f(k)lhHˆli

Fig. 6. Specification of the analysis for History Expressions
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Table 1. An estimate for the history expression Ha in the context C = {F
2

, F
5

}.

Now we exploit the result of the above analysis to build the evolution graph G,
that describes how the initial context C evolves at runtime. The virtual machine
can use G to predict how the application interacts with and a↵ects the context
and the resources.

In the following let Fact⇤ and Lab⇤ = Lab⇤H
U
Lab⇤S be the set of facts and

the set of labels occurring in Hp, the history expression under verification. Intu-
itively, G is a direct graph, the nodes of which are the set of contexts reachable
from an initial context C, while running Hp. There is a labelled arc between
two nodes C

1

and C
2

if C
2

is obtained from C
1

either through telling or re-
moving a fact F , or through telling a set of facts and removing another set,
when executing an API f . In the definition below the function µ : Lab⇤H ! H
recovers a construct in a given history expression H 2 H from its label. Also let
A = {tell F l, retract F l, f(k)lhHˆli | F 2 Fact⇤ ^ l, l̂ 2 Lab⇤}.

Definition 4 (Evolution Graph). Let Hp be a history expression, C be a

context, and (⌃�,⌃•) be a valid analysis estimate. The evolution graph of C is

G = (N,E,L), where

N =
S

l2Lab⇤H
(⌃�(l) [⌃•(l))

E = {(C
1

, C
2

) | 9l 2 Lab⇤H s.t. µ(l) 2 A ^ C
1

2 ⌃�(l) ^ (C
2

2 ⌃•(l) _ C
2

= >)}
L : E ! P(A) is such that µ(l) 2 L(t) i↵ t = (C

1

, C
2

) 2 E ^ C
1

2 ⌃�(l)

We can use the evolution graph G to verify that there are no functional or
non-functional failures. The first case verifies viability, and simply consists in
checking that the failure context > is not reachable from the initial one. The
non-functional properties, a sort of CTL* formulae [1], constrain the usage of
resources and predicate over nodes, i.e. contexts, and paths in the evolution
graph. We can naturally check this kind of properties by visiting the graph.
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{F2, F5}

{F1, F2, F5} {F1, F2, F5, F8}

{F1, F5}

{F1}

tell F1 g(k2)

retract F2

f(k1)

Fig. 7. The evolution graph for the context C = {F
2

, F
5

} and the history expression
Ha (only the nodes reachable from C are shown).

Fig. 7 depicts the evolution graph of the context C and the history expressions
Ha introduced above. It is immediate checking that the node > is not reachable,
thus showing in another way that Ha is viable for C. As an example of non-
functional property, assume that the system requires that the program is not
allowed to invoke the API function f on a resource of kind k

1

when the fact F
5

holds in the context. Verifying this property requires to visit the graph and to
check that there is no arc labelled f(k

1

) from every node in which F
5

is true.
We can easily detect that the node {F

1

, F
5

} double circled (blue in the pdf)
violates the requirement. One can also require a property on the context target
of an API function. For instance, if the constraint is “after f the fact F

2

must
hold” the target of f would be marked as a non-functional failure.

6 Conclusions

We considered the problem of managing resources in adaptive systems. In these
systems the context, i.e. the working environment, contains di↵erent kinds of
resources and makes them available to applications, typically through specific
handles. The actual capabilities of the available resources, their permitted usage
and their number depend on the hosting system and are only known at runtime.
To address these issues, we extended ML

CoDa

, a two-component language for
programming adaptive systems, with a notion of API providing programmers
with a set of functions that allow them to manipulate resources.

When entering in a context an application can fail for two reasons: either
because it is unable to adapt to the context or because it misuses a resource. To
prevent this kind of non-functional failures to occur, we extended the type and
e↵ect system and the control flow analysis of [9]. Since parts of the context are
unknown at compile time, the control flow analysis can only be carried out (on
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the e↵ect) at loading time after the linking step. Indeed, full information about
resources is only available when in the current context.

As future work we will study how to express the constraints over the usage
of resources, e.g. in the form of CTL* formulas. A natural candidate approach
for verifying that resources are correctly handled, would then be model-checking
the evolution graph built at loading time.
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