

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 29, 2024

Formal modelling and analysis of socio-technical systems

Probst, Christian W.; Kammüller, Florian; Hansen, Rene Rydhof

Published in:
Semantics, Logics, and Calculi

Link to article, DOI:
10.1007/978-3-319-27810-0_3

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Probst, C. W., Kammüller, F., & Hansen, R. R. (2016). Formal modelling and analysis of socio-technical
systems. In C. W. Probst, C. Hankin, & R. Rydhof Hansen (Eds.), Semantics, Logics, and Calculi: Essays
Dedicated to Hanne Riis Nielson and Flemming Nielson on the Occasion of Their 60th Birthdays (pp. 54-73).
Springer. https://doi.org/10.1007/978-3-319-27810-0_3

https://doi.org/10.1007/978-3-319-27810-0_3
https://orbit.dtu.dk/en/publications/ab39dfa8-03e3-4aca-b2ee-23741bece5b8
https://doi.org/10.1007/978-3-319-27810-0_3

Formal Modelling and Analysis
of Socio-technical Systems

Christian W. Probst1, Florian Kammüller2, and René Rydhof Hansen3

1 Technical University of Denmark
cwpr@dtu.dk

2 Middlesex University, UK
f.kammueller@mdx.ac.uk

3 Aalborg University, Denmark
rrh@cs.aau.dk

Abstract. Attacks on systems and organisations increasingly exploit
human actors, for example through social engineering. This non-technical
aspect of attacks complicates their formal treatment and automatic iden-
tification. Formalisation of human behaviour is difficult at best, and at-
tacks on socio-technical systems are still mostly identified through brain-
storming of experts. In this work we discuss several approaches to for-
malising socio-technical systems and their analysis. Starting from a flow
logic-based analysis of the insider threat, we discuss how to include the
socio aspects explicitly, and show a formalisation that proves properties
of this formalisation. On the formal side, our work closes the gap between
formal and informal approaches to socio-technical systems. On the infor-
mal side, we show how to steal a birthday cake from a bakery by social
engineering.

1 Introduction

Applying formal methods [1] to an informal world is difficult. It often requires
to loosen the precision of analysis results, or to overly restrict the aspects that
can be modelled. This dilemma causes many approaches that try to under-
stand events in the real world to abstract away its difficult parts. In this pa-
per we present an application of formal methods to organisations to analyse
socio-technical systems, and illustrate how aspects of the informal world can be
handled in formal analyses.

Socio-technical systems, as the name implies, are a mix of social and techni-
cal aspects. Organisations are a good example for socio-technical systems, since
they combine technical infrastructure and policies with human actors, who oper-
ate (in) this infrastructure and interact with it. An increasing number of attacks
against organisations exploit this mix and involve attack steps on the “socio”
part, for example, through social engineering. Security in socio-technical sys-
tems should therefor not only consider both individual parts, but also their
interactions. The recent attack on a German steel mill [2] was a combination
of both targeted phishing emails and social engineering attacks. The phishing

1

2 Probst, Hansen, Kammüller

helped the hackers extract information they used to gain access to the plant’s
office network and then its production systems. As a result, the technical in-
frastructure of the mill suffered severe damage. Traditional and well-established
risk assessment methods often identify potential threats against socio-technical
systems, but often abstract away the internal structure of an organisation and
ignore human factors.

Actually, only few, if any, approaches to systematic risk assessment take such
“human factor”-based attacks into consideration. Probably the strongest threat
against socio-technical systems is the insider threat [3, 4]. Insiders have access
to parts of the organisation’s infrastructure and assets, and they are trusted to
perform certain operations on these. Starting from a flow logic [5] based analysis
of the insider threat, we discuss how to include the socio aspects explicitly, and
show a formalisation that proves properties of this formalisation.

On the formal side, our work closes the gap between formal and informal
approaches to socio-technical systems. On the informal side, we show how to
steal a birthday cake from a bakery by social engineering.

Our work thereby closes the gap by developing models and analytic processes
that support assessing both the socio and the technical side of organisations as
socio-technical systems, thus combining human factors and physical infrastruc-
ture. Our approach simplifies the identification of possible attacks and provides
qualified assessment and ranking of attacks based on the expected impact.

The rest of this chapter is structured as follows. After introducing the bakery
example as our socio-technical system, Section 3 presents a formalisation of such
systems followed by a flow logic-based analysis in Section 4. A discussion of the
limitations of this formal approach when facing human actions leads to a more
general identification of possible attacks in Section 5, followed by an attempt to
formalise human behaviour in Section 6. After discussing related work Section 7,
we conclude the paper with an outlook on future developments.

2 The Drama of the Birthday Cake in Three Pictures

In this section, we provide a case study of a very recent insider attack where
a baker’s wife socially engineered her husband the baker with the malicious
intention to steal Hanne and Flemming’s birthday cake. What is worse, is that
she succeeded — due to the lack of formal analysis in this bakery. In the rest
of this paper we will illustrate the attack and then show different formalisations
to identify this attack. Figures 1, 2, and 3 illustrate the sequence of events that
lead to the devastating outcome. The part of the bakery that is not illustrated
is presented in the next section.

3 Modelling Socio-technical Systems

Our model represents the infrastructure of organisations, in this case the bakery,
as nodes in a directed graph [6], representing rooms, access control points, and
similar locations. Actors are represented by nodes and can possess assets, which

Formal Modelling and Analysis of Socio-technical Systems 3

Fig. 1. The baker bakes a cake for Hanne and Flemming’s birthday and protects it by
putting it in the cake locker — but his wife sees it all.

Fig. 2. The baker’s wife uses a social engineering attack on the baker to get his cre-
dentials: the key to the cake locker.

Fig. 3. Disaster: Hanne and Flemming’s birthday cake vanished from cake locker!

4 Probst, Hansen, Kammüller

model data and items that are relevant in the modelled scenario. Assets can be
annotated with a value and a metric, e.g., the likelihood of being lost. Nodes
representing assets can be attached to locations or actors; assets attached to ac-
tors move around with that actor. Actors perform actions on locations, including
physical locations or other actors. Thes actions are restricted by policies that
represent both access control and the behaviour as expected by an organisation
from its employees. Policies consist of required credentials and enabled actions,
representing what an actor needs to provide in order to enable the actions in a
policy, and what actions are enabled if an actor provides the required credentials,
respectively.

Our modelling approach is based on Klaim [7]. In contrast to Klaim, we
attach processes and actors to special nodes that move around with the process.
This makes the modelling of actors and items carried by actors more intuitive
and natural, but can easily be mapped back to original Klaim. The metrics
mentioned above can represent any quantitative knowledge about components,
for example, likelihood, time, price, impact, or probability distributions. The
latter could describe behaviour of actors or timing distributions.

3.1 Semantics of Socio-Technical Models

In the following we briefly summarise the formal semantics of our socio-technial
models. The calculus follows previous presentations closely and we will therefore
not go deep into details here, merely refer to [8]. As already mentioned, the
semantics is based on a variant of the Klaim calculus [7], called bacKlaim, which
in turn is based on acKlaim [6, 8]. The Klaim calculus uses the tuple space
paradigm, in which systems are composed of a set of distributed nodes that
communicate and interact by reading and writing tuples in shared tuples spaces.
The following presentation of bacKlaim is an adaptation and simplification of
the calculus presented in [8].

In keeping with tradition, the semantics of the bacKlaim calculus is split
into three layers: nets, processes, and actions. Nets define the overall, distributed
structure of the system by specifying where individual nodes and tuple spaces
are located. Processes and actions define the actual behaviour of the nodes. The
syntax of nets, processes, and actions is shown in Figure 4. In the bacKlaim
calculus there are two actions for reading a tuple in a remote tuple space: in
for destructive read and read for non-destructive read. Both these input actions
allow for template specifications of the tuple(s) to be read, facilitating a simple
form of pattern matching with variable binding. The syntax for templates is
shown in Figure 5 and the corresponding semantics is shown in Figure 7.

One of the key differences between classic Klaim and bacKlaim is the explicit
support for access control policies in the latter, through a reference monitor
embedded in the semantics. Before going further into the semantics of bacKlaim,
we first need to define these access control policies. In the bacKlaim calculus,
the kind of access that is relevant to control, is whether or not a process at a
given location is allowed to perform a specific action at a remote location. Thus

Formal Modelling and Analysis of Socio-technical Systems 5

` ::= l locality N ::= l ::δ P single node
| u locality variable | l ::δ 〈et〉 located tuple

| N1 ‖N2 net composition

P ::= nil null process a ::= out (t)@` output
| a.P action prefixing | in (T)@` input
| P1 |P2 parallel composition | read (T)@` read
| A process invocation | eval (P)@` migration

| move (`) move

Fig. 4. Syntax of nets, processes, and actions.

T ::= F | F, T templates
F ::= f | !x | !u template fields
t ::= f | f, t tuples
f ::= e | l | u tuple fields

et ::= ef | ef , et evaluated tuple
ef ::= V | l evaluated tuple field
e ::= V | x | . . . expressions

Fig. 5. Syntax for tuples and templates.

we can formalise access control policies as follows:

π ⊆ AccMode = {i, r,o, e,n,m}
δ ∈ Policy = (Loc ∪ {?})→ P (AccMode)

where the access modes correspond to the actions that can be taken in the
semantics: i for (destructively) reading a tuple, r for (non-destructively) reading
a tuple, o for outputting (writing) a tuple, e for remote evaluation of a process,
and n for the capability to create new locations. The special ‘?’ location is used
to denote default policies, i.e., access modes that are allowed from all locations
not specifically mentioned.

We can now continue with the semantics for bacKlaim, by defining the reduc-
tion relation for processes and actions, shown in Figure 6. In general, a process
is composed of sequences of actions, (sub-)processes that execute in parallel, or
a recursive invocation through a place-holder variable. The actions a process can
perform are: out, that writes a tuple to the specified tuple space; in, that reads
a tuple (at the specified tuple space) matching the template and then removes
the tuple in question; read that also reads a tuple (at the specified tuple space)
matching the given template but does not remove the tuple; eval that evaluates
the given process at the specified (remote) location. Finally, the move action
relocates the node representing the actor or process. However, we only wish to
allow certain moves between nodes, e.g., a node representing a (physical) actor
should only be able to move between nodes representing physical localities. We

6 Probst, Hansen, Kammüller

[[t]] = et (l, l′) ∈ I ∧ o ∈ δ(l′)
l ::δ out (t)@l′.P ‖ l′ ::δ

′
P ′ �−→I l ::δ P ‖ l′ ::δ

′
P ′ ‖ l′ ::δ

′
〈et〉

match([[T]], et) = σ (l, l′) ∈ I ∧ i ∈ δ(l′)
l ::δ in (T)@l′.P ‖ l′ ::δ

′
〈et〉 �−→I l ::δ Pσ ‖ l′ ::δ

′
nil

match([[T]], et) = σ (l, l′) ∈ I ∧ r ∈ δ(l′)
l ::δ read (T)@l′.P ‖ l′ ::δ

′
〈et〉 �−→I l ::δ Pσ ‖ l′ ::δ

′
〈et〉

(l, l′) ∈ I ∧ e ∈ δ(l′)
l ::δ eval (Q)@l′.P ‖ l′ ::δ

′
P ′ �−→I l ::δ P ‖ l′ ::δ

′
Q ‖ l′ ::δ

′
P ′

{(l, l′′), (l′′, l′)} ∈ I ∧m ∈ δ(l′)
l ::δ move (l′) .P ‖ l′ ::δ

′
P ′ �−→I′ l ::

δ P ‖ l′ ::δ
′
P ′

I ′ = I \ (l,_) ∪ {(l, l′)}

L ` N1 �−→I L′ ` N ′1
L ` N1 ‖N2 �−→I L′ ` N ′1 ‖N2

N ≡ N1 L ` N1 �−→I L′ ` N2 N2 ≡ N ′

L ` N �−→I L′ ` N ′

Fig. 6. Reduction semantics for bacKlaim.

match(V, V) = ε match(!x, V) = [V/x] match(l, l) = ε match(!u, l′) = [l′/u]

match(F, ef) = σ1 match(T, et) = σ2
match((F, T), (ef , et)) = σ1 ◦ σ2

Fig. 7. Semantics for template matching.

N1 ‖N2 ≡ N2 ‖N1 (N1 ‖N2) ‖N3 ≡ N1 ‖(N2 ‖N3)

l ::δ P ≡ l ::δ (P |nil) l ::δ A ≡ l ::δ P if A 4= P

l ::δ (P1 |P2) ≡ l ::δ P1 ‖ l ::δ P2

Fig. 8. Structural congruence on nets and processes.

Formal Modelling and Analysis of Socio-technical Systems 7

Locker

office
workstation WS pwd: eval

Wife

Baker

keypwd

recipe

flour sugar

key: in

Pbake := in(!recipe)@self.
out(cake)@bakery

marci-
pan

bakery

Fig. 9. Graphical representation of the crime scene, the bakery. The rectangles repre-
sent actors, locations, assets, and processes. The baker is (still) in possession of the key
and the password for the computer.

formalise this in the form of the so-called infrastructure of the underlying nets:

I ∈ Infrastructure = P (Locality × Locality)

Essentially, the infrastructure is a graph, relating the pairs of nodes between
which moves are allowed (still subject to access control rules).

In addition to the reduction relation, the semantics also incorporates a struc-
tural congruence, simplifying (re-)presentation of, computation with, and rea-
soning about processes and nets. The congruence is shown in Figure 8.

3.2 The Bakery Model

The bakery example introduced in Section 2 is based on the baker and his wife,
and of course the cake. The assets in this example are the key to the cake locker,
the cake itself, and, to add to the excitement, a computer with the recipe for the
cake. The recipe is input to a process on the computer that outputs a cake in the
bakery.4 We assume the baker to have an (internalised) policy that forbids the
cake to leave the bakery prematurely. Figure 9 shows the formalisation of the
bakery, consisting of the baker shop, the office, the cake locker, and the outside
world. The baker has the key and the Password to his computer. The policies
in the model require, e.g., the key to enter the cake locker and the password
to log into the computer. Actor nodes also represent processes running on the
corresponding locations. The process at the computer represents the “creation”
of a cake, that is output at the bakery.

4 To simplify treatment we assume the bakery to be high-tech. A different approach
would have been to model the baking process at the baker or the bakery, requiring
the recipe as input.

8 Probst, Hansen, Kammüller

(T̂ , σ̂, Î) |=N l ::
δ P iff (T̂ , σ̂, Î) |=blcP P

(T̂ , σ̂, Î) |=N l ::
δ 〈et〉 iff 〈et〉 ∈ T̂ (blc, δ)

(T̂ , σ̂, Î) |=N N1 ‖ N2 iff (T̂ , σ̂, Î) |=N N1 ∧ (T̂ , σ̂, Î) |=N N2

(T̂ , σ̂, Î) |=lP nil iff true

(T̂ , σ̂, Î) |=lP P1 | P2 iff (T̂ , σ̂, Î) |=lP P1 ∧ (T̂ , σ̂, Î) |=lP P2

(T̂ , σ̂, Î) |=lP A iff (T̂ , σ̂, Î) |=lP P if A 4= P

(T̂ , σ̂, Î) |=lP a.P iff (T̂ , σ̂, Î) |=lA a ∧ (T̂ , σ̂, Î) |=lP P

(T̂ , σ̂, Î) |=lA out (t)@`′ iff ∀l̂ ∈ σ̂(`′) : (o ∈ δ(l̂)⇒ σ̂[[t]] ⊆ T̂ (l̂))
(T̂ , σ̂, Î) |=lA in (T)@`′ iff ∀l̂ ∈ σ̂(`′) : (i ∈ δ(l̂)⇒ σ̂ |=1 T : T̂ (l̂) . Ŵ•)

(T̂ , σ̂, Î) |=lA read (T)@`′ iff ∀l̂ ∈ σ̂(`′) : (r ∈ δ(l̂)⇒ σ̂ |=1 T : T̂ (l̂) . Ŵ•)

(T̂ , σ̂, Î) |=lA eval (Q)@`′ iff ∀l̂ ∈ σ̂(`′) : (e ∈ δ(l̂)⇒ (T̂ , σ̂, Î) |=l̂P Q)

(T̂ , σ̂, Î) |=lA move (`′) iff ∀l̂ ∈ σ̂(l) : ∀l̂′ ∈ σ̂(`′) : (m ∈ δ(l̂′)⇒ (l̂, l̂′) ∈ Î)

Fig. 10. Flow Logic specification for control flow analysis of bacKlaim.

σ̂ |=i ε : V̂◦ . V̂• iff {êt ∈ V̂◦| |êt | = i} v V̂•
σ̂ |=i V, T : V̂◦ . Ŵ• iff σ̂ |=i+1 T : V̂• . Ŵ• ∧ {êt ∈ V̂◦|πi(êt) = V } v V̂•
σ̂ |=i l, T : V̂◦ . Ŵ• iff σ̂ |=i+1 T : V̂• . Ŵ• ∧ {êt ∈ V̂◦|πi(êt) = V } v V̂•
σ̂ |=i x, T : V̂◦ . Ŵ• iff σ̂ |=i+1 T : V̂• . Ŵ• ∧ {êt ∈ V̂◦|πi(êt) ∈ σ̂(x)} v V̂•
σ̂ |=i u, T : V̂◦ . Ŵ• iff σ̂ |=i+1 T : V̂• . Ŵ• ∧ {êt ∈ V̂◦|πi(êt) ∈ σ̂(u)} v V̂•
σ̂ |=i !x, T : V̂◦ . Ŵ• iff σ̂ |=i+1 T : V̂• . Ŵ• ∧ V̂◦ v V̂• ∧ πi(Ŵ•) v σ̂(x)
σ̂ |=i !u, T : V̂◦ . Ŵ• iff σ̂ |=i+1 T : V̂• . Ŵ• ∧ V̂◦ v V̂• ∧ πi(Ŵ•) v σ̂(u)

Fig. 11. Flow Logic specification for pattern match analysis [8].

4 Flow Logic-based Analysis of Processes

The first analysis for catching the thief is a flow logic analysis similar to [8]. This
analysis takes a sequence of actions and performs a static control flow analysis
to compute and assess its effect by a conservative approximation of the possi-
ble flow between actors, processes, and tuple spaces. Following the Flow Logic
framework [9], we specify a judgements for nets, processes, and actions that de-
termine whether or not an analysis estimate correctly describes all configurations
that are reachable from the initial state. The definitions are shown in Figure 10.

The tuple spaces and variable values are collected in T̂ and σ̂. For space
reasons we do not consider the newloc action that dynamically creates new
locations. Similar to [8] we could use canonical names. For the pattern matching
we reuse the Flow Logic specification, shown in Figure 11 from [8].

Formal Modelling and Analysis of Socio-technical Systems 9

Pbaker := move (office) .eval (Pbake)@WS .move (bakery) .in (cake)@bakery .
move (Locker) .out (cake)@Locker .move (bakery)

Pwife := move (bakery) .in (key)@baker .
move (Locker) .in (cake)@Locker .move (bakery)

Fig. 12. The two processes for the Flow Logic analysis. The baker bakes the cake and
brings it to the Locker, and his wife picks the key from him, goes also to the Locker,
and steals the cake.

Having specified the analysis it remains to be shown that the information
computed by the analysis is correct. In the Flow Logic framework this is usually
done by establishing a subject reduction property for the analysis:

Theorem 1 (Subject Reduction). If (T̂ , σ̂, Î) |=N N and L ` N �−→I L′ `
N ′ then (T̂ , σ̂, Î) |=N N

′.

Proof. (Sketch) By induction on the structure of L ` N �−→I L′ ` N ′ and
using auxiliary results for the other judgements.

4.1 Analysing the Bakery Example

Before we conclude this section, we quickly want to see whether the flow logic
analysis can help the baker in protecting the cake. We consider the two processes
shown in Figure 12; the first process represents the baker going to the office and
starts the “bake” process on the workstation. As a result, the cake appears in
the bakery, the baker goes there and picks up, goes to the Locker and puts it
down, and then returns to the bakery. The wife meets the baker somewhere, in
our case in the bakery, picks the key from his pocket, goes to the Locker, gets
the cake, and returns to the bakery.

The result of the flow logic analysis of the two processes shown in Figure 12
is that the cake will be at the baker, the bakery, and the Locker. However, it
will also be at the wife, which is what the baker wanted to prevent, knowing her
sweet tooth. This means that from the flow logic analysis, the baker can learn
that his wife has stolen the cake.

5 Attack Generation

Unfortunately, there is a problem with the processes described in the previous
section. Processes are a suitable abstraction for programs, but we are in general
not able to obtain processes describing human behaviour. If the baker knew,
which actions his wife had performed, he also would know that she stole cake—
without any analysis or tool support.

10 Probst, Hansen, Kammüller

If we cannot obtain processes to identify attacks, we need a different method
to do so. In this section we present a recent development to attack genera-
tion based on the negation of policies [10,11]. The policies we consider describe
global system states that should be fulfilled at all times; our approach identifies
sequences of actions that results in a policy violation.

In the bakery example, the baker could have the global policy that only the
birthday children or he should get the cake, or more concretely, that his wife
should not have the cake. Since she is determined to obtain the cake, she would
violate this global policy by obtaining it.

We choose attack trees as a succinct way of representing attacks. In attack
trees [12,13], the root represents a goal, and the children represent sub-attacks.
Sub-attacks can be alternatives for reaching the goal (disjunctive node) or they
must all be completed to reach the goal (conjunctive node). We assume an im-
plicit, left to right order for children of conjunctive nodes. For example, an
attacker first needs to move to a location before being able to perform an action.
Leaf nodes represent the basic actions in an attack. The operators ⊕∨ and ⊕∧
combine attack trees by adding a disjunctive or conjunctive root, respectively.

In the remainder of this section we present the rules for generating attack
trees from models. The rules take as arguments the infrastructure I and an actor
component A, which stores reached locations, obtained data, and acquired iden-
tities for the attacker. The rules either succeed and return an (possibly empty)
attack tree, or they block if no valid result can be computed. Our approach for
invalidating a policy consists of four basic steps:

Identify Attackers: Choose the policy to invalidate, and identify the possible
actors who could invalidate it.

Target Locations: Identify a set of locations where the prohibited actions can
be performed.

Goto Target Location: Generate attacks for reaching target locations. This
will identify and obtain required assets to perform any of these actions, and
obtain all assets required to reach the target location.

Move to Target Location and Perform Action: Finally, move to the loca-
tion identified in the second step and perform the action.

In the first step we identify possible attackers and locations where the action
violating the global policy can be applied (see Figure 13). These are the goals for

σ = unifyI(Actors, credentials)
attackers = getAttackerI(actor , σ) goals = applicableAtI(credentials, enabled, σ)

I, attackers, goals `goal trees T := ⊕∨trees
I,not(actor , credentials, enabled) `P T

Fig. 13. Attack generation starts from the global policy
not(actor , credentials, enabled). Attack trees are generated for all possible policy
violations. As every attack tree represents a violation of the policy, the resulting
attack trees are combined by an or node.

Formal Modelling and Analysis of Socio-technical Systems 11

I,A, goto(location) ∧ perform(action) `GP T
I,A, (location, action) `goal T

I,A, goto(l) `goto Tgoto ,A′ I,A′, perform(a) `perform Taction ,A′′

I,A, goto(l) ∧ perform(a) `GP Tgoto ⊕∧ Taction ,A′′

Fig. 14. For each identified goal (consisting of a location and an action) an attacker
moves to the location and performs the action. The rules result in an attack tree and
a new state of the attacker, which includes the obtained keys and reached locations.

paths = getAllPathsI(A, l) I,A, paths `path trees,A′

T := ⊕∨trees
I,A, goto(l) `goto T ,A′

missing = missingCredentialsI(A, path) I,A,missing `credential trees,A′

T := ⊕∧trees
I,A, path `path T ⊕∧ Npass path,A′

Fig. 15. Going to a location and performing an action results in two attack trees. The
function getAllPaths returns all paths from the current locations of the actor to the
goal location l, and the resulting attack trees are alternatives for reaching this location.

the attacker, and are the basis for generating attack trees (Figure 14). For each
goal we generate a tree for moving to the location and another one for performing
the action. While moving to the location new credentials may be required, which
recursively invoke the attack generation again. The resulting new knowledge is
added to the actor component A.

The rules in Figure 15 and Figure 16 generate attack trees for moving around,
performing actions, and obtaining credentials, resulting in attack trees for every
single action of the attacker. The function missingCredentials uses the unification
described above to match policies with the assets available in the model. The
attack generation then generates one attack for each of these assets and combines
the resulting trees with a disjunctive node.

Attack generation also considers triggering processes to obtain assets. We do
not present this interaction between actors and processes for space reasons, as
it follows the rules presented above.

5.1 Post-Processing Attack Trees

The generated attack trees only represent the factual attack steps for reaching
the final goal. The trees do not contain any annotation or metrics about the
likelihood of success of actions such as social engineering, or the potential im-
pact of actions. Also the likelihood of a given attacker to succeed or fail is not
considered.

12 Probst, Hansen, Kammüller

i 6∈ identities =⇒ T = Nobtain identity i

I, (identities, locations, assets), identity i `credential T , (identities ∪ {i}, locations, assets)

A = (identities, locations, assets) ∧ a 6∈ assets =⇒
goals = availableAtI(a) I,A, goals `goal trees,A′ T := ⊕∨trees

I,A, asset a `credential T ,A′

I,A, predicate p(arguments) `predicate trees,A′ T := ⊕∨trees
I,A, predicate p(arguments) `credential T ,A′

Fig. 16. Depending on the missing credential, different attacks are generated. If the
actor lacks an identity, an attack node representing an abstract social engineering
attack is generated, for example, social engineering or impersonating. If the missing
credential is an asset, the function availableAt returns a set of pairs of locations from
which this asset is available, and the according in actions. If the missing credential is
a predicate, a combination of credentials fulfilling the predicate must be obtained.

Computing qualitative and quantitative measures [14, 15] on attack trees
is orthogonal to our approach. beyond the scope of this work. The generated
attack trees also often contain duplicated sub-trees, due to similar scenarios
being encountered in several locations, for example, the social engineering of the
same actor, or the requirement for the same credentials. This is not an inherent
limitation, but may clutter attack trees. Similar to [16], a post-processing of
attack trees can simplify the result.

5.2 Attack Tree for the Bakery Example

Figure 17 shows part of the attack tree generated for the bakery example. The
first attack is the one described in the previous section and shown in Figure 12:
the wife steals the key from the baker and gets the cake from the Locker after it
has been baked. A variant of this attack is that she breaks the Locker door open.
In the second attack, she social engineers the baker to bake the cake, and then
picks up the cake in the bakery before the baker does so. In the third attack,
she gets the password to the work station from the baker, and then starts Pbake

herself. Finally, she can social engineer the baker to give her the cake, maybe
promising him to share it. All attacks, where assets are stolen also occur in a
variant where actors with access to the asset are social engineered to obtain the
asset and give it to the attacker.

6 Analysis of Socio-Technical Attacks in Isabelle

We now consider a third approach to modelling socio-technical systems using
the interactive theorem prover Isabelle. We first illustrate the attack and then
we discuss how the socio-technical model can be transfered to the modeling
and verification of insider threats using our Isabelle framework [17]. Finally, we
extend the Isabelle technique here further to Isabelle Attack Trees.

Formal Modelling and Analysis of Socio-technical Systems 13

get Cake

goto Locker, get Cake

make Baker bake Cake, goto Bakery, get Cake

get password, bake cake, get cake

make baker get cake, get cake from baker

goto Locker get Cake

get key, goto Locker

force Locker door open

get key MOVE Wife Locker

MOVE Wife Bakery get Key from Baker SOCENG Baker

IN Wife Key AT Baker OUT Key AT Wife

MOVE Wife Bakery FORCE MOVE Wife Locker

IN Wife Cake AT Locker

make Baker bake Cake MOVE Wife Bakery IN Wife Cake AT Bakery

SOCENG Wife Baker

MOVE Baker Office EVAL Baker Pbake AT WS

get pwd

bake cake

get cake

MOVE Wife Bakery get pwd from Baker

SOCENG Baker

OUT pwd AT Wife MOVE Wife Office EVAL Wife Pbake AT WS

MOVE Wife Bakery IN Wife Cake AT Bakery

make baker get cake get cake from baker

SOCENG Wife Baker

MOVE Baker Office

EVAL Baker Pbake AT WS

MOVE Baker Bakery

IN Baker Cake AT Bakery

IN Wife Cake AT Baker SOCENG Baker

OUT Cake AT Wife

Fig. 17. Attack tree generated for the bakery example. The double-lined borders indi-
cate disjunctive nodes.

6.1 Social Explanation for Insider Threats in Isabelle

In earlier work [17], we have used the process of sociological explanation based
on Max Weber’s Grundmodell and its logical interpretation to explain insider
threats by moving between societal level (macro) and individual actor level (mi-
cro). The interpretation into a logic of explanation is formalized in Isabelle’s
Higher Order Logic thereby providing a tool to prove global security properties
with machine assistance [17]. Isabelle/HOL is an interactive proof assistant based
on Higher Order Logic (HOL). It enables specification of so-called object-logics
for an application. Object-logics comprise new types, constants and definitions
and reside in theory files, e.g., the file Insider.thy contains the object-logic we
define for social explanation of insider threats below. We construct our theory
as a conservative extension of HOL guaranteeing consistency. I.e., we do not
introduce new axioms that could lead to inconsistencies.

We first provide here only the elements of this Insider theory necessary as
a basis for attack trees and for modeling the bakery application. For a more
complete view, please refer to [17] and the related online Isabelle resources [18].

In the Isabelle/HOL theory for Insiders, we express policies over actions get,
move, eval, and put.

datatype action = get | move | eval | put

We abstract here from concrete data – actions have no parameters. Policies de-
scribe prerequisites for actions to be granted to actors given by pairs of predicates
(conditions) and sets of (enabled) actions.

14 Probst, Hansen, Kammüller

type_synonym policy = ((actor ⇒ bool) × action set)

We integrate policies with a graph into the infrastructure providing an organ-
isational model where policies reside at locations and actors are adorned with
additional predicates to specify their ‘credentials’.

datatype infrastructure = Infrastructure
"node graph" "location ⇒ policy set" "actor ⇒ bool"

These local policies serve to provide a specification of the ‘normal’ behaviour of
actors but are also the starting point for possible attacks on the organisation’s
assets. The enables predicate specifies that an actor a can perform an action
a’∈ e at location l in the infrastructure I if a’s credentials (stored in the tuple
space tspace I a) imply the location policy’s (stored in delta I l) condition
p for a.

enables I l a a’ ≡
∃ (p,e) ∈ delta I l. a’ ∈ e ∧ (tspace I a −→ p(a))

For the application to the bakery senario, we only model two identities, Baker
and Wife representing the baker and his wife. We define the set of bakery actors
as a local definition in the locale scenarioBakerNN. We show here in a first
instance the full Isabelle/HOL syntax but in all subsequent definitions we omit
the fixes and defines keywords and also drop the types for clarity of the
exposition. The double quotes ”s” create a string in Isabelle/HOL.

fixes bakery_actors :: identity set
defines bakery_actors_def: bakery_actors ≡ {’’Baker’’}

The graph representing the infrastructure of the bakery case study contains only
the minimal structure: (1) Kitchen, (2) Cake locker, (3) Home.

bakery_locations ≡ {Location 1, Location 2, Location 3}

The global policy is ‘no one except bakery employees can get anything from the
cake locker’.

global_policy I a ≡ a /∈ bakery_actors −→
¬(enables I (Location 2) (Actor a) get)

Next, we have to provide the definition of the infrastructure. We first define the
graph representing the organisation’s locations and the positions of its actors.
Locations are wrapped up with the datatype constructor NL and actors using
the corresponding constructor NA to enable joining them in the datatype node
and thus creating the following node graph as a set of pairs between locations
or actors.

ex_graph ≡ Graph {(NA (’’Baker’’), NL (Location 3)),
(NL (Location 3), NL(Location 1)),
(NL (Location 2), NL(Location 1)),
(NA (’’Wife’’), NL (Location 1))}

Formal Modelling and Analysis of Socio-technical Systems 15

Policies are attached to locations in the organisation’s graph using a function
that maps each location to the set of the policies valid in this location. The
policies are again pairs. The first element of these pairs are credentials which
are defined as predicates over actors, i.e., boolean valued functions describing,
for example, whether an actor inhabits a role, or, whether an actor possesses
something, like an identity or a key. The second elements are sets of actions that
are authorised in this location for actors authenticated by the credentials.

local_policies ≡
(λ x. if x = Location 1 then

{(λ x. (ID x ’’Baker’’)∨(ID x ’’Wife’’), {get,put}), (λ x. True, {move})}
else (if x = Location 2 then

{((λ x. has (x, ’’key’’)), {get,put,move})}
else (if x = Location 3 then

{((λ x. True, {get,put,move}))}
else {})))

The final component of any infrastructure is the credentials contained in a
tspace. We define the assignment of the credentials to the actors similarly as a
predicate over actors that is true for actors that have the credentials.

ex_creds ≡ (λ if x = Actor ’’Baker’’ then has (x,’’key’’) else False)

Finally, we can put the graph, the local policies, and the credential assignment
into an infrastructure.

Bakery_scenario ≡ Infrastructure ex_graph local_policies ex_creds

Note, that all the above definitions have been implemented as local definitions
using the locale keywords fixes and defines. Thus they are accessible whenever
the locales scenarioBakerNN is invoked but are not axioms that could endanger
consistency. We now also make use of the possibility of locales to define local
assumptions. This is very suitable in this context since we want to emphasize
that the following formulas are not general facts or axiomatic rules but are
assumptions we make in order to explore the validity of the infrastructure’s
global policy. The first assumption provides that the precipitating event has
occurred which leads to the second assumption that provides that Charly can
act as an insider.

assumes Bakers_Wife_precipitating_event: tipping_point (astate ’’Wife’’)
assumes Insider_Wife : Insider ’’Charly_comp’’ {’’Charly_priv’’}

So far, we have specified the model. Based on these definitions and assumptions
we can now state theorems about the security of the model and interactively
prove them in our Isabelle/HOL framework. We can now first prove a sanity
check on the model by validating the infrastructure for the “normal” case. For
the baker as a bakery actor, everything is fine: the global policy does hold. The
following is an Isabelle/HOL theorem ex_inv that can be proved automatically
followed by the proof script of its interactive proof. The proof is achieved by
locally unfolding the definitions of the scenario, e.g., Bakery_scenario_def and
applying the simplifier.

16 Probst, Hansen, Kammüller

lemma ex_inv:
global_policy Bakery_scenario (’’Baker’’)

by (simp add: Bakery_scenario_def global_policy_def bakery_actors_def)

However, since the baker’s Wife is at tipping point, she will ignore the global
policy. This insider threat can now be formalised as an invalidation of the global
company policy for ”Wife” in the following “attack” theorem named ex_inv1.

theorem ex_inv1:
¬ global_policy Bakery_scenario ’’Wife’’

The proof of this theorem consists of a few simple steps largely supported by
automated tactics. Thus Wife can get access to the cake leading to devastating
outcomes (see Figure 3). The attack is proved above as an Isabelle/HOL theo-
rem. Applying logical analysis, we thus exhibit that under the given assumptions
the organisation’s model is vulnerable to an insider. This overall procedure cor-
responds to the approach of invalidation of a global policy based on local policies
for a given application scenario [10].

However, to systematically derive the actual attack vector the present paper
provides a more constructive approach. We will next see how we can extend the
Isabelle Insider framework to this.

6.2 Attack Trees in Isabelle

We now extend the theory Insider by Attack trees. The base attacks figure in
an attack sequence (see Section 5). We represent them in Isabelle/HOL as a
datatype and a list over this datatype.

datatype baseattack = None | Goto "location"
| Perform "action" | Credential "location"

type_synonym attackseq = "baseattack list"

The following defintion of attack tree, really defines the nodes of an attack tree.
The simplest case is when a node in an attack tree is a base attack. Attacks
can also be combined as the “and” of other attacks as defined in Section 5.
This prescribes that the third element of type attree is a baseattack (usually
a Perform action) that represents this attack, while the first element is an
attack sequence and the second element is a label describing the attack (here a
string).

datatype attree = BaseAttack "baseattack" ("N (_)") |
AndAttack "attackseq" "string" "baseattack" ("_ ⊕(_)

∧ _")

As the corresponding projection functions for attree we define get_attseq
and get_attack returning the entire attack sequence or the final base attack,
respectively.

The following inductive predicate get_then_move shows how we represent
the static analysis rules for the derivation of attack sequences. It translates the
two rules of Figure 15 and formalizes how the impossible base attack Goto l’

Formal Modelling and Analysis of Socio-technical Systems 17

can be achieved by first going to location l and getting the credential from there.
Logically, this is justified if an actor a can get to location l’ in the extended
infrastructure add_credential I a s where he possesses the credential s – as
is expressed by the third enables proviso.

J enables I l a move; enables I l a get;
enables (add_credential I a s) l’ a get K

=⇒ get_then_move I s
(get_attackseq ([Goto l, Credential l, Goto l’] ⊕get−move

∧ Perform get))
(Goto l’)

An attack tree is constituted from the above defined nodes of type attree but
children nodes must be refinement of their parents. Refinement means that some
portion of the attack sequence has been extended according to rules like the
above get_then_move. We formalize this constructor relation of the attack trees
by the following refinement. The rules trans and refl make the refinement a
preorder; the rule get_moveI shows how the get_then_move rule is integrated:
If we replace the attack a by the get_then_move sequence l we get refine the
attack sequence A into A’ (the auxiliary function sublist_rep replaces a symbol
in list by a list).

inductive
refines_to :: "[attree, infrastructure, attree] ⇒ bool" ("_ v(_) _")
where
get_moveI: J get_then_move I s l a;

sublist_rep l a (get_attseq A) = (get_attseq A’);
get_attack A = get_attack A’ K =⇒ A vI A’ |

trans: J A vI A’; A’ vI A’’ K =⇒ A vI A’’ |
refl : A vI A

The refinement of attack sequence allows the expansion of top level abstract
attacks into longer sequences. Ultimately, we need to have a notion of when
a sufficiently refined sequence of attacks is valid. This notion is provided by
the final inductive predicate is_and_attack_tree. It integrates the base cases
where base attacks can be directly logically derived from corresponding enables
properties; it states that an attack sequence is valid if all its constituent attacks
are so and it allows to transfer validity to shorter attacks if a refinement exists.

inductive
is_and_attack_tree :: [infrastructure, actor, attree] ⇒ bool ("_, _ ` _")
where
att_act: enables I l a a’ =⇒ I , a ` N(Perform(a’)) |
att_goto: enables I l a (move) =⇒ I, a ` N(Goto l) |
att_cred: enables I l a (get) =⇒ I, a ` N(Credential l) |
att_list: J ∀ a ∈ (set(as)). I, a’ ` N(a) K =⇒ I, a’ ` as ⊕s

∧ a’’ |
att_ref: J A vI A’; I, a ` A’ K =⇒ I, a ` A

The Isabelle/HOL theory library provides a lot of list functions. We can thus
simply define the “or” of attack trees by folding the above validity over a list of
attacks.

18 Probst, Hansen, Kammüller

I, a `G⊕∨ al ≡ fold (λ x y. (I, a ` x) ∨ y) al False

To validate this formalisation of the attack trees, we now show how the bakery
scenario attack can be derived.

First, we prove the following get_then_move property.

lemma get_move_lem: get_then_move Bakery_scenario ’’key’’
(get_attseq ([Goto (Location 1), Credential (Location 1), Goto (Location 2)]
⊕get−move
∧ Perform get))

(Goto (Location 2))

After reducing with the defining rule of get_then_move above, proof requires
resolving three “enables” subgoals; the final one uses the add_credential for
Wife. This lemma rather immediately implies the following refines property.

([Goto (Location 2)] ⊕get−cake
∧ Perform get)

vBakery−scenario

([Goto (Location 1), Credential (Location 1), Goto (Location 2)]
⊕get−move
∧ Perform get)

We can show this refined attack as valid mainly showing that each step in it is
valid.

lemma final_attack: Bakery_scenario, Actor ’’Wife’’ `
([Goto (Location 1), Credential (Location 1), Goto (Location 2)]
⊕get−move
∧ Perform get)

The last lemma together with the refinement gives us finally that the top level
abstract attack is a valid attack.

theorem bakery_attack:
Bakery_scenario, Actor ’’Wife’’ ` ([Goto (Location 2)] ⊕get−cake

∧ Perform get)

7 Related Work

System models such as ExASyM [6, 8] and Portunes [19] also model infrastruc-
ture and data, and analyse the modelled organisation for possible threats. How-
ever, Portunes supports mobility of nodes, instead of processes, and represents
the social domain by low-level policies that describe the trust relation between
people to model social engineering. Pieters et al. consider policy alignment to ad-
dress different levels of abstraction of socio-technical systems [20], where policies
are interpreted as first-order logical theories containing all sequences of actions
and expressing the policy as a “distinguished” prefix-closed predicate in these
theories. In contrast to their use of refinement for policies we use the security
refinement paradox, i.e., security is not generally preserved by refinement.

Attack trees [21] specify an attacker’s main goal as the root of a tree; this goal
is then disjunctively or conjunctively refined into sub-goals until the reached sub-
goals represent basic actions that correspond to atomic components. Disjunctive
refinements represent alternative ways of achieving a goal, whereas conjunctive

Formal Modelling and Analysis of Socio-technical Systems 19

refinements depict different steps an attacker needs to take in order to achieve a
goal. Techniques for the automated generation of attack graphs mostly consider
computer networks only [22,23]. While these techniques usually require the spec-
ification of atomic attacks, in our approach the attack consists in invalidating a
policy, and the model just provides the infrastructure and methods for doing so.

8 Conclusion

Modelling socio-technical systems with formal methods is a difficult undertaking.
Due to the unpredictability of human behaviour, formal methods are often too
restrictive to capture essential aspects. This results in the human factor often
being ignored in these formalisations, since it cannot be represented in the model
used.

In this work we have presented different techniques for modelling and analysing
systems including human factors using recent advances in system models. Our
approach supports all kinds of human factors that can be instantiated once an
attack has been identified. The presented techniques address different aspects
of analysing socio-technical systems. The flow-logic based approach (Section 4)
supports analysis of observed actions; this can be compared to an a posteriori
analysis to identify what has happened, or in combination with logged informa-
tion, what might have happened. The attack generation (Section 5) identifies
all possible attacks with respect to the model; this constitutes an a priori anal-
ysis of the modelled system. Finally, the formalisation with Isabelle (Section 6)
provides a different view on system models and attacks, and a proof that the
contributes the soundness of attack generation.

The attacks generated by the last two techniques include all relevant steps
from detecting the required assets, obtaining them as well as any credentials
needed to do so, and finally performing actions that are prohibited in the system.
The generated attacks are precise enough to illustrate the threat, and they are
general enough to hide the details of individual steps. The generated attacks are
also complete with respect to the model; whenever an attack is possible in the
model, it will be found.

Acknowledgment. Part of the research leading to these results has received
funding from the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 318003 (TRESPASS). This publication reflects
only the authors’ views and the Union is not liable for any use that may be made
of the information contained herein.

References

1. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer
(2004)

2. BBC News: Hack attack causes ’massive damage’ at steel works. Available
from http://www.bbc.com/news/technology-30575104. (2014) Last visited Oc-
tober 15, 2015.

http://www.bbc.com/news/technology-30575104

20 Probst, Hansen, Kammüller

3. Cappelli, D.M., Moore, A.P., Trzeciak, R.F.: The CERT Guide to Insider Threats:
How to Prevent, Detect, and Respond to Information Technology Crimes (Theft,
Sabotage, Fraud). Addison-Wesley Professional (2012)

4. Hunker, J., Probst, C.W.: Insiders and insider threats—an overview of defini-
tions and mitigation techniques. Journal ofWireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications 2(1) (2011) 3–25

5. Nielson, H.R., Nielson, F., Pilegaard, H.: Flow logic for process calculi. ACM
Computing Surveys 44(1) (2012) 3

6. Probst, C.W., Hansen, R.R.: An extensible analysable system model. Information
Security Technical Report 13(4) (2008) 235–246

7. de Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering 24(5) (May
1998) 315–330

8. Probst, C., Hansen, R., Nielson, F.: Where can an insider attack? In Dimitrakos, T.,
Martinelli, F., Ryan, P., Schneider, S., eds.: Formal Aspects in Security and Trust.
Volume 4691 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2007) 127–142

9. Nielson, H., Nielson, F.: Flow logic: A multi-paradigmatic approach to static anal-
ysis. In Mogensen, T.A., Schmidt, D.A., Sudborough, I.H., eds.: The Essence of
Computation. Volume 2566 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2002) 223–244

10. Kammüller, F., Probst, C.W.: Invalidating policies using structural information.
In: Proceedings of the 2nd International IEEE Workshop on Research on Insider
Threats (WRIT’13). (May 2013) 76–81

11. Kammüller, F., Probst, C.W.: Combining generated data models with formal
invalidation for insider threat analysis. In: Proceedings of the 3rd International
IEEE Workshop on Research on Insider Threats (WRIT’14). (May 2014) 229–235

12. Schneier, B.: Secrets and Lies: Digital Security in a Networked World. John Wiley
& Sons (2004)

13. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees. Computer Science Review
13-14 (2014) 1–38

14. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Proceedings of the 4th International Conference on Principles of Security and Trust
(POST 2015). (2015) 95–114

15. Buldas, A., Lenin, A.: New efficient utility upper bounds for the fully adaptive
model of attack trees. In Das, S.K., Nita-Rotaru, C., Kantarcioglu, M., eds.: Pro-
ceedings of the 4th International Conference on Decision and Game Theory for
Security (GameSec 2013). Volume 8252 of Lecture Notes in Computer Science.,
Springer (2013) 192–205

16. Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In:
Proceedings of the 27th Computer Security Foundations Symposium (CSF), IEEE
(2014) 337–350

17. Kammüller, F., Probst, C.W.: Modeling and verification of insider threats using
logical analysis. IEEE Systems Journal, Special issue on Insider Threats to Infor-
mation Security, Digital Espionage, and Counter Intelligence. (2016) Accepted for
publication.

18. Kammüller, F.: Isabelle formalisation of an insider threat framework with examples
entitled independent and ambitious leader (2015) Available from https://www.
dropbox.com/sh/rx8d09pf31cv8bd/AAALKtaP8HMX642fi04Og4NLa?dl=0.

https://www.dropbox.com/sh/rx8d09pf31cv8bd/AAALKtaP8HMX642fi04Og4NLa?dl=0
https://www.dropbox.com/sh/rx8d09pf31cv8bd/AAALKtaP8HMX642fi04Og4NLa?dl=0

Formal Modelling and Analysis of Socio-technical Systems 21

19. Dimkov, T.: Alignment of Organizational Security Policies – Theory and Practice.
University of Twente (2012)

20. Pieters, W., Dimkov, T., Pavlovic, D.: Security policy alignment: A formal ap-
proach. IEEE Systems Journal 7(2) (2013) 275–287

21. Salter, C., Saydjari, O.S., Schneier, B., Wallner, J.: Toward a secure system en-
gineering methodology. In: Proceedings of the 1998 Workshop on New Security
Paradigms (NSPW). (September 1998) 2–10

22. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analy-
sis. In: Proceedings of the 1998 workshop on New security paradigms NSPW 98.
Volume pages. (1998) 71–79

23. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Proceedings of the 2002 IEEE Symposium on
Security and Privacy (S&P’02). Volume 129. (2002) 273–284

	Formal Modelling and Analysisof Socio-technical Systems

