Skip to main content

Reconstruction of Face Texture Based on the Fusion of Texture Patches

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

  • 2787 Accesses

Abstract

3D face clones can be used as pretreatments in many applications, such as emotion analysis. However, such clones should model facial shape accurately, while keeping the attributes of individuals; and they should be semantic. A clone is semantics when we know the position of the different parts of the face (eyes, nose...). The main problem of texture reconstruction methods is the seam appearance on fusion texture data. In our technique, we use a low cost RGB-D sensor to get an accurate and detailed facial unfolded texture. We use shape and texture patches to preserve the person’s characteristics. They are detected using an error distance and the direction of the normal vectors computed from the depth frames. The tests we perform show the robustness and the accuracy of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Funes Mora, K.A., Odobez, J.M.: Gaze estimation from multimodal kinect data. In: IEEE Conference in Computer Vision and Pattern Recognition, Workshop on Gesture Recognition (2012)

    Google Scholar 

  2. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3d face model for pose and illumination invariant face recognition. In: Tubaro, S., Dugelay, J.L. (eds.) AVSS, pp. 296–301. IEEE Computer Society (2009)

    Google Scholar 

  3. Zollhofer, M., Thies, J., Colaianni, M., Stamminger, M., Greiner, G.: Interactive model-based reconstruction of the human head using an RGB-D sensor. Comput. Animat. Virtual Worlds 25, 213–222 (2014)

    Article  Google Scholar 

  4. Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1063–1074 (2003)

    Article  Google Scholar 

  5. He, X., Yuk, S., Chow, K., Wong, K., Chung, R.: Super-resolution of faces using texture mapping on a generic 3d model. In: Fifth International Conference on Image and Graphics, ICIG 2009, pp. 361–365 (2009)

    Google Scholar 

  6. Zhang, J., Luo, S.: Image-based texture mapping method in 3d face modeling. In: IEEE/ICME International Conference on Complex Medical Engineering, CME 2007, pp. 147–150 (2007)

    Google Scholar 

  7. Hwang, J., Yu, S., Kim, J., Lee, S.: 3D face modeling using the multi-deformable method. Sens. 12, 12870–12889 (2012)

    Article  Google Scholar 

  8. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)

    Google Scholar 

  9. Hernandez, M., Choi, J., Medioni, G.: Laser scan quality 3-d face modeling using a low-cost depth camera. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO 2012), pp. 1995–1999 (2012)

    Google Scholar 

  10. Sun, Q., Tang, Y., Hu, P., Peng, J.: Kinect-based automatic 3d high-resolution face modeling. In: The 4th International Conference on Image Analysis and Signal Processing (IASP) (2012)

    Google Scholar 

  11. Lee, W.S., Magnenat-Thalmann, N.: Fast head modeling for animation. Image Vis. Comput. 18, 355–364 (2000)

    Article  Google Scholar 

  12. Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Trans. Graph. 2, 217–236 (1983)

    Article  Google Scholar 

  13. Beier, T., Neely, S.: Feature-based image metamorphosis. SIGGRAPH Comput. Graph. 26, 35–42 (1992)

    Article  Google Scholar 

  14. Xu, L., Li, E., Li, J., Chen, Y., Zhang, Y.: A general texture mapping framework for image-based 3d modeling. In: 17th IEEE International Conference on Image Processing (ICIP 2010), pp. 2713–2716 (2010)

    Google Scholar 

  15. Lempitsky, V., Ivanov, D.: Seamless mosaicing of image-based texture maps. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–6 (2007)

    Google Scholar 

  16. Ge, Y., Yin, B., Sun, Y., Tang, H.: 3d face texture stitching based on Poisson equation. In: IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2010), vol. 2, pp. 809–813 (2010)

    Google Scholar 

  17. Desssein, A., Smith, W.A.P., Wilson, R.C., Hancock, E.R.: Seamless texture stitching on a 3D mesh by Poisson blending in patches. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2031–2035, 27–30 October 2014

    Google Scholar 

  18. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)

    Google Scholar 

  19. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  20. Douadi, L., Aldon, M., Crosnier, A.: Pair-wise registration of 3d/color data sets with ICP. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006, 9–15 October 2006, Beijing, China, pp. 663–668 (2006)

    Google Scholar 

  21. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10, 145–155 (1992)

    Article  Google Scholar 

  22. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: real-time dense surface mapping and tracking. In: Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011, pp. 127–136. IEEE Computer Society, Washington, D.C. (2011)

    Google Scholar 

Download references

Acknowledgment

This research has been conducted with the support of Miles (FUI project) and Brittany Region (ARED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Manceau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Manceau, J., Séguier, R., Soladié, C. (2015). Reconstruction of Face Texture Based on the Fusion of Texture Patches. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics