Skip to main content

Guided High-Quality Rendering

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9475))

Abstract

We present a system which allows for guiding the image quality in global illumination (GI) methods by user-specified regions of interest (ROIs). This is done with either a tracked interaction device or a mouse-based method, making it possible to create a visualization with varying convergence rates throughout one image towards a GI solution. To achieve this, we introduce a scheduling approach based on Sparse Matrix Compression (SMC) for efficient generation and distribution of rendering tasks on the GPU that allows for altering the sampling density over the image plane. Moreover, we present a prototypical approach for filtering the newly, possibly sparse samples to a final image. Finally, we show how large-scale display systems can benefit from rendering with ROIs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kajiya, J.T.: The rendering equation. ACM SIGGRAPH Comput. Graph. 20, 143–150 (1986)

    Article  Google Scholar 

  2. Robertson, G.G., Mackinlay, J.D.: The document lens. In: Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, UIST 1993. ACM, New York, NY, USA, pp. 101–108 (1993)

    Google Scholar 

  3. Lamping, J., Rao, R.: Laying out and visualizing large trees using a hyperbolic space. In: Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, UIST 1994. ACM, New York, NY, USA, pp. 13–14 (1994)

    Google Scholar 

  4. Papadopoulos, C., Kaufman, A.E.: Acuity-driven gigapixel visualization. IEEE Trans. Vis. Comput. Graph. 19, 2886–2895 (2013)

    Article  Google Scholar 

  5. LaMar, E., Hamann, B., Joy, K.I.: A magnification lens for interactive volume visualization. In: Proceedings of the Ninth Pacific Conference on Computer Graphics and Applications, pp. 223–232 (2001)

    Google Scholar 

  6. Krüger, J., Schneider, J., Westermann, R.: Clearview: an interactive context preserving hotspot visualization technique. IEEE Trans. Vis. Comput. Graph. 12, 941–948 (2006)

    Article  Google Scholar 

  7. Levoy, M., Whitaker, R.: Gaze-directed volume rendering. In: Proceedings of the 1990 Symposium on Interactive 3D Graphics, I3D 1990. ACM, New York, NY, USA, pp. 217–223 (1990)

    Google Scholar 

  8. Funkhouser, T.A., Squin, C.H.: Adaptive display algorithm for interactive frame rates during visualization of complex virtual environments. In: Proceedings of the 20th Annual conference on Computer Graphics and Interactive Techniques, pp. 247–254, ACM (1993)

    Google Scholar 

  9. Yee, H., Pattanaik, S., Greenberg, D.P.: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. Graph. 20, 39–65 (2001)

    Article  Google Scholar 

  10. Guenter, B., Finch, M., Drucker, S., Tan, D., Snyder, J.: Foveated 3d graphics. ACM Trans. Graph. (TOG) 31, 164 (2012)

    Article  Google Scholar 

  11. Murphy, H., Duchowski, A.T.: Gaze-contingent level of detail rendering. EuroGraphics 2001 (2001)

    Google Scholar 

  12. Weaver, K.A.: Design and evaluation of a perceptually adaptive rendering system for immersive virtual reality environments. Master’s thesis, Iowa State University (2007)

    Google Scholar 

  13. Weier, M., Maiero, J., Roth, T., Hinkenjann, A., Slusallek, P.: Enhancing rendering performance with view-direction-based rendering techniques for large, high resolution multi-display systems. In: 11. Workshop Virtuelle Realität und Augmented Reality der GI-Fachgruppe VR/AR (2014)

    Google Scholar 

  14. Fujita, M., Harada, T.: Foveated real-time ray tracing for virtual reality headset (2014)

    Google Scholar 

  15. Delbracio, M., Mus, P., Buades, A., Chauvier, J., Phelps, N., Morel, J.M.: Boosting Monte Carlo rendering by ray histogram fusion. ACM Trans. Graph. 33, 8:1–8:15 (2014)

    Article  Google Scholar 

  16. Szeracki, S., Roth, T., Hinkenjann, A., Li, Y.: Boosting histogram-based denoising methods with gpu optimizations. In: Workshop Virtuelle Realität und Augmented Reality der GI-Fachgruppe VR/AR (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Roth, T., Weier, M., Maiero, J., Hinkenjann, A., Li, Y. (2015). Guided High-Quality Rendering. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9475. Springer, Cham. https://doi.org/10.1007/978-3-319-27863-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27863-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27862-9

  • Online ISBN: 978-3-319-27863-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics