Skip to main content

Automatic Crater Detection Using Convex Grouping and Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9475))

Abstract

Craters are some the most important landmarks on the surface of many planets which can be used for autonomous safe landing and spacecraft and rover navigation. Manual detection of craters is laborious and impractical, and many approaches have been proposed in the field to automate this task. However, none of these methods have yet become a standard tool for crater detection due to the challenging nature of this problem. In this paper, we propose a new crater detection algorithm (CDA) which employs a multi-scale candidate region detection step based on convexity cues and candidate region verification based on machine learning. Using an extensive dataset, our method has achieved a 92 % detection rate with an 85 % precision rate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bandeiraa, L., Ding, W., Tomasz, F.: Detection of sub-kilometer craters in high resolution planetary images using shape and texture features. Adv. Space Res. 49(1), 64–74 (2012)

    Article  Google Scholar 

  2. Yu, Z., Zhu, S., Cui, P.: Sequence detection of planetary surface craters from DEM data. In: World Congress on Intelligent Control and Automation (2012)

    Google Scholar 

  3. Maoyin, A., Pan, W.: Crater Detection algorithm with part PHOG features for safe landing. In: International Conference on Systems and Informatics, pp. 103–106 (2012)

    Google Scholar 

  4. Salamunićcara, G., Lončarićb, S., Mazarico, E.: LU60645GT and MA132843GT catalogues of lunar and martian impact craters developed using a crater shape-based interpolation crater detection algorithm for topography data. Planet. Space Sci. 60(1), 236–247 (2012)

    Article  Google Scholar 

  5. Kamarudin, N., Ghani, N., Mustapha, M., Ismail, A., Daud, N.: An overview of crater analyses, tests and various methods of crater detection algorithm. Front. Environ. Eng. 1(1), 1–7 (2012)

    Google Scholar 

  6. Salamunićcara, G., Lončarić, S.: Open framework for objective evaluation of crater detection algorithms with first test-field subsystem based on MOLA data. Adv. Space Res. 42(1), 6–19 (2008)

    Article  Google Scholar 

  7. Smirnov, A.: Exploratory Study of Automated Crater Detection (2012)

    Google Scholar 

  8. Troglio, G., Le Moigne, J., Benediktsson, A., Moser, G., Serpico, S.: Automatic extraction of ellipsoidal features for planetary image registration. Geosci. Remote Sens. Lett. 9(1), 95–99 (2012)

    Article  Google Scholar 

  9. Kim, J., Muller, J.: Impact Crater Detection on Optical Images and DEMS, International Society for Photogrammetry and Remote Sensing, Working Group IV/9: Extraterrestrial Mapping Workshop, Advances in Planetary Mapping (2003)

    Google Scholar 

  10. Ding, M., Caob, Y., Wub, Q.: Novel approach of crater detection by crater candidate region selection and matrix-pattern-oriented least squares support vector machine. Chin. J. Aeronaut. 26(2), 385–389 (2013)

    Article  Google Scholar 

  11. Martins, R., Pina, P., Marques, J., Silveira, M., Silveira, M.: Crater detection by a boosting approach. Geosci. Remote Sens. Lett. 6(1), 127–131 (2009)

    Article  Google Scholar 

  12. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  13. Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue Crack Growth. ACM, vol. 1, pp. 178–184. Springer, Heidelberg (2015)

    Google Scholar 

  14. Palafox, L., Alvarez, A., Hamilton, C.: Automated Detection of impact craters and volcanic rootless cones in mars satellite imagery using convolutional neural networks and support vector machines. In: 46th Lunar and Planetary Science Conference (2015)

    Google Scholar 

  15. Salamuniccar, G., Loncaric, S.: Method for crater detection from martian digital topography data using gradient value/orientation, morphometry, vote analysis, slip tuning, and calibration. IEEE Trans. Geosci. Remote Sens. 48(5), 2317–2329 (2010)

    Article  Google Scholar 

  16. Xie, Y., Tang, G., Yan, S., Hui, L.: Crater detection using the morphological characteristics of Chang’E-1 digital elevation models. Geosci. Remote Sens. Lett. IEEE 10(4), 885–889 (2013)

    Article  Google Scholar 

  17. Jacobs, D.: Robust and efficient detection of convex groups. IEEE Trans. Patern Anal. Mach. Intell. 18(1), 23–37 (1996)

    Article  Google Scholar 

  18. Pavlidis, T., Horowitz, S.: Segmentation of plane curves. IEEE Trans. Comput. C-23(8), 860–870 (1974)

    Article  MathSciNet  Google Scholar 

  19. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  20. Sung, K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 39–51 (1998)

    Article  Google Scholar 

  21. http://www.nasa.gov/mission_pages/LRO/main/index.html

Download references

Acknowledgements

This material is based upon work supported by NASA EPSCoR under cooperative agreement No. NNX11AM09A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Bebis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Emami, E., Bebis, G., Nefian, A., Fong, T. (2015). Automatic Crater Detection Using Convex Grouping and Convolutional Neural Networks. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9475. Springer, Cham. https://doi.org/10.1007/978-3-319-27863-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27863-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27862-9

  • Online ISBN: 978-3-319-27863-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics