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Abstract. Data-driven understanding of cybersecurity posture is an important
problem that has not been adequately explored. In this paper, we analyze some
real data collected by CAIDA’s network telescope during the month of March
2013. We propose to formalize the concept of cybersecurity posture from the
perspectives of three kinds of time series: the number of victims (i.e., telescope
IP addresses that are attacked), the number of attackers that are observed by the
telescope, and the number of attacks that are observed by the telescope. Char-
acterizing cybersecurity posture therefore becomes investigating the phenomena
and statistical properties exhibited by these time series, and explaining their cy-
bersecurity meanings. For example, we propose the concept of sweep-time, and
show that sweep-time should be modeled by stochastic process, rather than ran-
dom variable. We report that the number of attackers (and attacks) from a certain
country dominates the total number of attackers (and attacks) that are observed by
the telescope. We also show that substantially smaller network telescopes might
not be as useful as a large telescope.
keywords: Cybersecurity data analytics, cybersecurity posture, network telescope,
network blackhole, darknet, cyber attack sweep-time, time series data

1 Introduction

Network telescope [26] (aka blackhole [10,5], darknet [3], or network sink [38], pos-
sibly with some variations) is a useful instrument for monitoring unused, routeable IP
address space. Since there are no legitimate services associated to these unused IP ad-
dresses, traffic targeting them is often caused by attacks. This allows researchers to use
telescope-collected data (together with other kinds of data) to study, for example, worm
propagation [25,23,30,4], denial-of-service (DOS) attacks [24,17], and stealth botnet
scan [12]. Despite that telescope data can contain unsolicited — but not necessarily
malicious — traffic that can be caused by misconfigurations or by Internet background
radiation [28,15,36], analyzing telescope data can lead to better understanding of cy-
bersecurity posture, an important problem that has yet to be investigated.
Our Contributions. In this paper, we empirically characterize cybersecurity posture
based on a dataset collected by CAIDA’s /8 network telescope (i.e., 224 IP addresses)
during the month of March 2013. We make the following contributions. First, we pro-
pose to characterize cybersecurity posture by considering three time series: the number
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of victims, the number of attackers, and the number of attacks. To the best of our knowl-
edge, this is the first formal definition of cybersecurity posture. Second, we define the
notion of sweep-time, namely the time it takes for most telescope IP addresses to be
attacked at least once. We find that sweep-time cannot be described by a probabilistic
distribution, despite that a proper subset of the large sweep-times follows the power-
law distribution. We show that an appropriate stochastic process can instead describe
the sweep-time. This means that when incorporating sweep-time in theoretical cyber-
security models, it cannot always be treated as a random variable and may need to be
treated as a stochastic process. Third, we find that the total number of attackers that are
observed by the network telescope is dominated by the number of attackers from a cer-
tain country X .3 Moreover, we observe that both the number of attackers from country
X and the total number of attackers exhibit a strong periodicity. Although we cannot
precisely pin down the root cause of this dominance and periodicity phenomenon, it
does suggest that thoroughly examining the traffic between country X and the rest of
the Internet may significantly improve cybersecurity. Fourth, we investigate whether
or not substantially smaller network telescopes would give approximately the same
statistics that would be offered by a single, large network telescope. This question is
interesting on its own and, if answered affirmatively, could lead to more cost-effective
operation of network telescopes. Unfortunately, our analysis shows that substantially
smaller telescopes might not be as useful a single, large telescope (of 224 IP addresses).

Related Work. One approach to understanding cybersecurity posture is to analyze net-
work telescope data. Studies based on telescope data can be classified into two cat-
egories. The first category analyzes telescope data alone, and the present study falls
into this category. These studies include the characterization of Internet background
radiation [28,36], the characterization of scan activities [1], and the characterization
of backscatter for estimating global DOS activities [24,17]. However, we analyze cy-
bersecurity posture, especially with regard to attacks that are likely caused by mali-
cious worm, virus and bot activities. This explains why we exclude the backscatter data
(which is filtered as noise in the present paper). The second category of studies analyzes
telescope data together with other kinds of relevant data. These studies include the use
of telescope data and network-based intrusion detection and firewall logs to analyze In-
ternet intrusion activities [39], the use of out-of-band information to help analyze worm
propagation [25,23,4], and the use of active interactions with remote IP addresses to
filter misconfiguration-caused traffic [28]. There are also studies that are somewhat re-
lated to ours, including the identification of one-way traffic from data where two-way
traffic is well understood [20,1,7,33,15].

The other approach to understanding cybersecurity posture is to analyze data col-
lected by honeynet-like systems (e.g., [29,5,21,6,40]). Unlike network telescopes, these
systems can interact with remote computers and therefore allow for richer analysis,
including the automated generation of attack signatures [18,37].

To the best of our knowledge, we are the first to formally define cybersecurity pos-
ture via three time series: the number of victims, the number of attackers, and the num-
ber of attacks.

3 We were fortunate to see the real, rather than anonymized, attacker IP addresses, which allowed
us to aggregate the attackers based on their country code. Our study was approved by IRB.
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The rest of the paper is organized as follows. Section 2 describes the data and defines
cybersecurity posture. Section 3 briefly reviews some statistical preliminaries. Section 4
defines and analyzes the sweep-time. Section 5 investigates the dominance and period-
icity phenomenon exhibited by the number of attackers. Section 6 investigates whether
substantially smaller network telescopes would be sufficient or not. Section 7 discusses
the limitations of the present study. Section 8 concludes the paper.

2 Representation of Data and Definition of Cybersecurity Posture

Data Description. The data we analyze was collected between 3/1/2013 and 3/31/2013
by CAIDA’s network telescope, which is a passive monitoring system based on a glob-
ally routeable but unused /8 network (i.e., 1/256 of the entire Internet IP v4 address
space) [31]. Since a network telescope passively collects unsolicited traffic, the col-
lected traffic would contain malicious traffic that reaches the telescope (e.g., automated
malware spreading), but may also contain non-malicious traffic — such as Internet
background radiation (e.g., backscatter caused by the use of spoofed source IP addresses
that happen to belong to the telescope) and misconfiguration-caused traffic (e.g. mistyp-
ing an IP address by a remote computer). This means that pre-processing the raw data
is necessary. At a high level, we will analyze data D1 and D2, which are sets of flows
[8] and are obtained by applying the pre-processing procedures described below.

Data D1. Based on CAIDA’s standard pre-processing [32], the collected IP packets
are organized based on eight fields: source IP address, destination IP address, source
port number, destination port number, protocol, TTL (time-to-live), TCP flags, and IP
length. The flows are reassembled from the IP packets and then classified into three
classes: backscatter, ICMP request and other. At a high level, backscatter traffic is
identified via TCP SYN+ACK, TCP RST, while ICMP request is identified via ICMP
type 0/3/4/5/11/12/14/16/18. (A similar classification method is used in [36].) Since (i)
backscatter-based analysis of DOS attacks has been conducted elsewhere (e.g., [24,17]),
and (ii) ICMP has been mainly used to launch DOS attacks (e.g., ping flooding and
smurf or fraggle attacks [24,35,19]), we disregard the traffic corresponding to backscat-
ter and ICMP request. Since we are more interested in analyzing cybersecurity posture
corresponding to attacks that are launched through the TCP/UDP protocols, we focus
on the TCP/UDP traffic in the other category mentioned above. We call the resulting
data D1, in which each TCP/UDP flow is treated as a distinct attack.

Data D2. Although (i) D1 already excludes the traffic corresponding to backscat-
ter and ICMP request, and (ii) D1 only consists of TCP/UDP flows in the other cate-
gory mentioned above,D1 may still contain flows that are caused by misconfigurations.
Eliminating misconfiguration-caused flows in network telescope data is a hard problem
because network telescope is passive (i.e., not interacting with remote computers [16]).
Indeed, existing studies on recognizing misconfiguration-caused traffic had to use pay-
load information (e.g., [22]), which is however beyond the reach of network telescope
data. Note that recognizing misconfiguration-caused traffic is even harder than recog-
nizing one-way traffic already (because misconfiguration can cause both one-way and
two-way traffic), and that solving the latter problem already requires using extra infor-
mation (such as two-way traffic [20,1,7,33,15]). These observations suggest that we use
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some heuristics to filter probable misconfiguration-caused flows from D1. Our exami-
nation shows that, for example, 50% (81%) attackers launched 1 attack (≤ 9 attacks,
correspondingly) against the telescope during the month. We propose to extract D2 by
filtering from D1 the flows that correspond to remote IP addresses that initiate fewer
than 10 flows/attacks during the month. This heuristic method filters possibly many,
if not most, misconfiguration-caused flows in D1. Even though the ground truth (i.e.,
which TCP/UDP flows correspond to malicious attacks) is not known, D2 might be
closer to the ground truth than D1.
Data Representation. In order to analyze the TCP/UDP flow data D1 and D2, we
represent the flows through time series at some time resolution r. We consider two time
resolutions (because a higher resolution leads to more accurate statistics): hour, denoted
by “H ,” and minute, denoted by “m.” For a given time resolution of interest, the total
time interval [0, T ] is divided into short periods [i, i + 1) according to time resolution
r ∈ {H,m}, where i = 0, 1, . . . , T − 1, and T = 744 hours (or T = 4, 464 minutes)
in this case. We organize the flows into time series from three perspectives:

– the number of victims (i.e., network telescope IP addresses that are “hit” by remote
attacking IP addresses contained in D1 or D2) per time unit at time resolution r,

– the number of attackers (i.e., the remote attacking IP addresses contained in D1 or
D2) per time unit at time resolution r, and

– the number of attacks per time unit at time resolution r (i.e., TCP/UDP flows initi-
ated from remote attacking IP addresses in D1 or D2 are treated as attacks).

Fig. 1. Illustration of the attacker-victim relation during time interval [i, i+ 1) at time resolution
r ∈ {H, r} in D1: each dot represents an IP address, a red-colored dot represents an attacking
IP address (i.e., attacker), a pink-colored dot represents a victim, each arrow represents an attack
(i.e., TCP/UDP flow), the number of attackers is |A(r; i, i + 1)| = 5, the number of victims is
|V (r; i, i+1)| = 7, and the number of attacks is y(r; i, i+1) = 9. The same holds for data D2.

As illustrated in Figure 1, let V be CAIDA’s fixed set of telescope IP addresses, and
A be the rest of IP addresses in cyberspace, where |A| = 232−|V |. The major notations
are (highlighted and) defined as follows:

– V,A: the set of CAIDA’s network telescope IP addresses and the set of the rest IP
v4 addresses, respectively.
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– r ∈ {H,m}: time resolution (H: per hour; m: per minute).
– V (r; i, i+1) ⊆ V and V ′(r; i, i+1) ⊆ V : the sets of victims attacked at least once

during time interval [i, i+ 1) at time resolution r in D1 and D2, respectively.
– V (r; i, j) =

⋃j−1
`=i V (r; `, ` + 1) and V ′(r; i, j) =

⋃j−1
`=i V

′(r; `, ` + 1): the cu-
mulative set of victims that are attacked at some point during time interval [i, j) at
time resolution r in data D1 and D2, respectively.

– V (r; 0, T ) and V ′(r; 0, T ): the sets of victims that are attacked at least once during
time interval [0, T ) in D1 and D2, respectively. Note that these sets are actually
independent of time resolution r, but we keep r for notational consistence.

– A(r; i, i + 1) ⊆ A and A′(r; i, i + 1) ⊆ A: the sets of attackers that launched
attacks against some v ∈ V during time interval [i, i+1) at time resolution r in D1

and D2, respectively.
– y(r; i, i + 1) and y′(r; i, i + 1): the numbers of attacks that are launched against

victims belonging to V (r; i, i+1) and V (r; i, i+1) during time interval [i, i+1),
respectively.

Cybersecurity Posture. We define cybersecurity posture as:

Definition 1. (cybersecurity posture) For a given time resolution r and network tele-
scope of IP address space V , the cybersecurity posture as reflected by telescope data
D1 is described by the phenomena and (statistical) properties exhibited by the following
three time series:

– the number of victims |V (r; i, i+ 1)|,
– the number of attackers |A(r; i, i+ 1)|, and
– the number of attacks y(r; i, i+ 1),

where i = 0, 1, . . .. Similarly, we can define cybersecurity posture corresponding toD2.

Based on the above definition of cybersecurity posture, the main research task is to
characterize the phenomena and statistical properties of the three time series (e.g., how
can we predict them?) and the similarity between them. As a first step, we characterize,
by using dataD1 as an example, the number of victims |V (r; i, i+1)| rather than the set
of victims V (r; i, i+1), and the number of attackers |A(r; i, i+1)| rather than the set of
attackersA(r; i, i+1). We leave the characterization of the sets of victims and attackers
to future study. Moreover, we characterize the number of attacks y(r; i, i + 1) rather
than the specific classes of attacks, because telescope data does not provide rich enough
information to recognize specific attacks. In Section 7, we will discuss limitations of the
present study, including the ones that are imposed by the heuristic data pre-processing
method for obtaining D1 and D2.

3 Statistical Preliminaries

We briefly review some statistical concepts and models dealing with time series data,
while referring their formal descriptions and technical details to [11,13,34,27].
Brief review of some statistical concepts. Time series can be described by statistical
models, such as the AutoRegressive Integrated Moving Average (ARIMA) model and
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the Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model that
will be used in the paper. The ARIMA model is perhaps the most popular class of time
series models in the literature. It includes many specific models, such as random walk,
seasonal trends, stationary, and non-stationary models [11]. ARIMA models cannot
accommodate high volatilities of time series data, which however can be accommodated
by GARCH models [13]. GARCH models also can capture many phenomena, such as
dynamic dependence in variance, skewness, and heavy-tails [34].

In order to find accurate models for describing time series data, we need to do
model selection. There are many model selection criteria, among which the Akaike’s
Information Criterion (AIC) is widely used. This criterion is based on appropriately
balancing between goodness of fit and model complexity. It is defined in such a way
that the smaller the AIC value, the better the model [27].

Measuring the difference (or distance) between two time series. We need to measure
the difference (or distance) between two time series: Z1, Z2, . . . and Z ′1, Z

′
2, . . ., where

Zi ≥ 0 and Z ′i ≥ 0 for i = 1, 2, . . .. This difference measure characterizes:

1. the fitting error, where the Zi time series may represent the observed values and the
Z ′i time series may represent the fitted values;

2. the prediction error, where theZi time series may correspond to the observed values
and the Z ′i time series may correspond to the predicted values;

3. the approximation error, where the Zi time series may describe the observed values
and the Z ′i time series may describe the values that may be inferred (i.e., estimated
or approximated) from other data sources (e.g., we may want to know whether or
not the statistics derived from the data collected by a large network telescope can
be inferred from the data collected by a much smaller network telescope).

For conciseness, we use the standard and popular measure known as Percent Mean
Absolute Deviation (PMAD) [2]. Specifically, suppose Zt, Zt+1, . . . , Zt+` are given
data, and Z ′t, Z

′
t+1, . . . , Z

′
t+` are the fitted (or predicted, or approximated) data. The

overall fitting (or prediction, or approximation) error (or the PMAD value) is defined as∑t+`
j=t |Zj−Z

′
j |∑t+`

j=t Zj
. The closer to 0 the PMAD value, the better the fitting (or prediction, or

approximation). We note that our analysis is not bound to the PMAD measure, and it is
straightforward to adapt our analysis to incorporate other measures of interest.

Measuring the shape similarity between two time series. Two time series may be
very different from a measure such as the PMAD mentioned above, but may be similar
to each other in their shape (perhaps after some appropriate re-alignments). Therefore,
we may need to measure such shape similarity between two time series. Dynamic Time
Warping (DTW) is a method for this purpose. Intuitively, DTW aims to align two time
series that may have the same shape and, as a result, the similarity between two time
series can be captured by the notion of warping path (aka warping function). The closer
the warping path to the diagonal, the more similar the two time series. We use the DTW
algorithm in theR software package, which implements the algorithm described in [14].
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4 Characteristics of Sweep-Time

The Notion of Sweep-Time. Figure 2 describes the times series of |V (H; i, i+1)| inD1

and |V ′(H; i, i+1)| in D2. Using D1 as example, we make the following observations
(similar observations can be made for D2). First, there is a significant volatility at the
632nd hour, during which the number of victims is as low as 4, 377, 079 ≈ 222. Careful
examination shows that the total number of attackers during the 632nd hour is very
small, which would be the cause. Second, most telescope IP addresses are attacked
within a single hour. For example, 15,998,907, or 96% of |V (H; 1, 733)|, telescope IP
addresses are attacked at least once during the first hour. Third, no victims other than
V (H; 0, 703) are attacked during the time interval [704, 744).

(a) |V (H; i, i+ 1)| in D1 (b) |V ′
1 (H; i, i+ 1)| in D2

Fig. 2. Time series of number of victims: |V (H; i, i+ 1)| in D1 and |V ′
1 (H; i, i+ 1)| in D2.

Since Figure 2 shows that there are a large number of victims per hour, we ask
the following question: How long does it take for most telescope IP addresses to be
attacked at least once? That is: How long does it take for τ × |V (H; 0, T )| victims to
be attacked at least once, where 0 < τ < 1? This suggests us to define the following
notion of sweep-time, which is relative to the observation start time.

Definition 2. (sweep-time) With respect to D1, the sweep-time starting at the ith time
unit of time resolution r, denoted by Ii, is defined as:∣∣∣∣∣

Ii−1⋃
`=i

V (r; `, `+ 1)

∣∣∣∣∣ < τ × |V (H; 0, T )| ≤

∣∣∣∣∣
Ii⋃
`=i

V (r; `, `+ 1)

∣∣∣∣∣ .
Corresponding to data D2, we can define sweep-time I ′i as:∣∣∣∣∣∣

I′
i−1⋃
`=i

V ′(r; `, `+ 1)

∣∣∣∣∣∣ < τ × |V ′(H; 0, T )| ≤

∣∣∣∣∣∣
I′
i⋃

`=i

V ′(r; `, `+ 1)

∣∣∣∣∣∣ .
By taking into consideration the observation starting time i, we naturally obtain two
time series of sweep-time: I0, I1, . . . for D1 and I ′0, I

′
1, . . . for D2. We want to charac-

terize these two time series of sweep-time.
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Characterizing Sweep-Time. Since per-hour time resolution gives a coarse estimation
of sweep-time, we use per-minute time resolution for better estimation of it. Figure 3
plots the time series of sweep-time I0, I10, I20, . . ., namely a sample of I0, I1, . . . , I10, . . . , I20, . . .
because it is too time-consuming to consider the latter entirely (time resolution: minute).

(a) Sweep-time in D1 (b) Sweep-time in D2

Fig. 3. Time series plots of sweep-time (y-axis) with respect to τ ∈
{80%, 85%, 90%, 95%, 99%}, where the x-axis represents the observation starting time
that is sampled at every 10 minutes. In other words, the plotted points are the sample
(0, I0), (10, I10), (20, I20), . . . rather than (0, I0), (1, I1), . . ..

Figure 3 suggests that the sweep-time time series exhibit similar shape. Accord-
ingly, we use the DTW method to characterize their similarity. Recall that DTW aims
to align two time series via the notion of warping path, such that the closer the warping
path to the diagonal, the more similar the two time series.

Figure 4 confirms the above observation, by presenting some examples of the warp-
ing paths (the others are omitted due to space limitation). Specifically, Figures 4(a) and
4(b) show that the sweep-times with respect to τ = .80 and τ = .99 are almost the
same in D1 and D2, respectively. Figures 4(c) and 4(d) show that for two thresholds,
say τ1 and τ2, the smaller the |τ1 − τ2|, the more similar the two respective time series
of sweep-time in D1. Figures 4(e) and 4(f) demonstrate the same phenomenon for D2.

The above discussion suggests that the notion of sweep-time is not sensitive to spa-
tial threshold τ . This leads us to ask: What is the distribution of sweep-time? How-
ever, this question makes sense only when the time series is stationary. By using an aug-
mented Dickey-Fuller test [34], we conclude that the sample of the sweep-time time se-
ries, namely I0, I10, I20, . . ., is not stationary, which means that time series I0, I1, I2 . . .
is not stationary (otherwise, the sample should be stationary). Therefore, we cannot use
a single distribution to characterize the sweep-time; Instead, we have to characterize the
sweep-time as a stochastic process. In order to identify good time series models that can
fit the sweep-time, we need to identify some statistical properties that are exhibited by
sweep-time. In particular, we need to know if the sweep-time is heavy-tailed, meaning
that the sweep-times greater or equal to xmin exhibit the power-law distribution, where
xmin is called cut-off parameter.

Table 1 summarizes the power-law test statistics of the sweep-time with cut-off
parameter xmin. We observe that for both D1 and D2, all the α values (i.e., the fitted
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(a) D1 vs.D2 : τ = .80 (b) D1 vs.D2 : τ = .99 (c) τ = .99 vs. τ = .80:D1

(d) τ = .99 vs. τ = .95:D1 (e) τ = .99 vs. τ = .80:D2 (f) τ = .99 vs. τ = .95:D2

Fig. 4. DTW-based similarities of sweep-time time series with different threshold τ .

τ α xmin KS p-value # ≥ xmin τ α xmin KS p-value # ≥ xmin

Dataset D1 with time resolution 1-minute Dataset D2 with time-resolution 1-minute
80% 7.89 78 .05 .14 475 80% 8.46 82 .05 .19 391
85% 8.46 94 .04 .52 385 85% 8.37 95 .04 .36 379
90% 8.89 118 .06 .42 244 90% 9.24 120 .05 .39 237
95% 9.52 148 .05 .68 193 95% 12.82 170 .04 .99 72
99% 13.67 215 .04 .98 131 99% 15.23 224 .04 .99 94

Table 1. Power-law test statistics of the sweep-time with respect to spatial threshold τ ∈
{80%, 85%, 90%, 95%, 99%}, where α is the fitted power-law exponent, xmin is the cut-off
parameter, KS ∈ [0.04, 0.06] is the Kolmogorov-Smirnov statistic [9] for comparing the fitted
power-law distribution and the data (meaning that the fitting is good) as indicated by that the
p-values are >> 0.05, and “# ≥ xmin” represents the number of sweep-times that are greater
than or equal to xmin (i.e., the number of sweep-times that are used for fitting).
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power-law exponents) are very large. For spatial threshold τ = 80% in D1, we have
xmin = 78 minutes, meaning that the number of sweep-times that are greater than or
equal to xmin is 475 (or 10.6% out of 4,462). As spatial threshold τ increases, xmin

increases and the number of sweep-times greater than or equal to xmin decreases. We
also observe that for the same τ , D1 and D2 have similar xmin values, which means
that the filtered attack traffic in D1 does not affect the power-law property of the data.

The above analysis suggests that in order to fit the sweep-time, we should use a
model that can accommodate the power-law property. Therefore, we use the ARMA+GARCH
model, where ARMA accommodates the stable sweep-times smaller than xmin, and
GARCH, with skewed student t-distribution, accommodates the power-law distributed
sweep-times (which are greater than or equal to xmin). Consider spatial threshold τ =
.99 as an example. Figures 5(a) and 5(b) plot the observed data and the fitting model
for sweep-time It (observation starting time t):

It − µt = φ1(It−1 − µt−1) + φ2(It−2 − µt−2) + εt,

where µt = µ+ ξσt is the dynamic mean composed of a constant term µ and standard
deviation σt of the error term, σ2

t = ω + α1εt−1 + β1σ
2
t−1, µt = E[It], εt is the

error term at time t, and σ2
t = E(yt − µt)

2 is the variance modeled via the standard
GARCH(1,1) process. The fitting errors (PMAD values) are .121 and .119 for D1 and
D2, respectively.

(a) Fitting sweep-time in D1. (b) Fitting sweep-time in D2.

Fig. 5. Fitting sweep-time with spatial threshold τ = .99 (time resolution: minute), where black-
colored dots are observed sweep-time values, red-colored dots are fitted values.

It was known that malware can infect almost all susceptible computers within a
very short period of time (e.g., the Slammer worm [23]), meaning that the sweep-time
with respect to a specific observation starting time is very small. This is, in a sense,
re-affirmed by our study. However, for continuous attacks that are based on a bag of
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attacking tools, sweep-time should be better modeled with respect to any (rather than a
specific) observation starting time. We are the first to show that the sweep-time cannot
be modeled by a random variable (which would make the model in question easier to
analyze though). This leads to the following insight, which could guide future develop-
ment of advanced cybersecurity models.

Insight 1 When one needs to model the sweep-time (i.e., the time it takes for each IP
address of a τ -portion of a large network space to be attacked at least once), it should
be modeled by a stochastic process rather than a random variable.

5 A Phenomenon Exhibited by Attacking IP Addresses

(a) Origins of attackers in D1 (b) Origins or attackers in D2

Fig. 6. During the month, three countries, which are anonymized as X , Y and Z, contribute to
most of the attackers in D1; whereas countries X , Y and Z′ (Z′ 6= Z) contribute to most of the
attackers in D2.

For each attacker IP address, we can use the WHOIS service to retrieve its country
code. Figures 6 plots the origins of attackers that contribute to most of the attackers
(per country code). Note that the category “others” in D1 include 6,894,900 attacker
IP addresses (or 1.7% of the total number of attackers) whose country codes cannot be
retrieved from the WHOIS service. The category “others” inD2 include 10,740 attacker
IP addresses (or 0.01% of the total number of attackers) whose country codes cannot be
retrieved from the WHOIS service. This means that many attacker IP addresses whose
country codes cannot be retrieved from the WHOIS service are filtered. Moreover, the
attacker IP addresses with no country code do not have a significant impact on the
result. We observe that country X contributes 30% of the attackers in D1 and 76% of
the attackers in D2. Country Y contributes 28% of the attackers in D1 and 3% of the
attackers in D2. This is caused by the fact that 50% attackers from country X and 98%
attackers from country Y launch fewer than 10 attacks during the month, and therefore
do not appear in D2. This prompts us to study the relationship between two time series:
the total number of attackers and the number of attackers from country X .
The Dominance and Periodicity Phenomenon. Figure 7 compares the times series
of the total number of attackers observed by the telescope and the time series of the
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(a) Total # of attackers vs. # of attackers from X: D1 (b) Total # of attackers vs. # of attackers from X: D2

Fig. 7. The dominance and periodicity phenomenon exhibited by two time series: the total number
of attackers versus the number of attackers from country X (time resolution: hour).

number of attackers from country X in D1 and D2, respectively. For D1, Figure 7(a)
shows that the total number of attackers during time interval [455, 630], namely the 176
hours between the 455th hour (on March 19, 2013) and the 630th hour (on March 27,
2013), is substantially greater than its counterpart during the other hours. This is caused
by the substantial increase in the number of attackers from country Y , despite that we
do not know the root cause behind the substantial increase of attackers in country Y .
For D2, Figure 7(b) does not exhibit the same kind of substantial increase during the
interval [455, 630], meaning that many of the “emerging” attackers from country Y are
filtered (because they launched fewer than 10 attacks during the month).

Figure 7 further suggests a surprising consistency between the two time series.
Specifically, when the number of attackers from country X is large (small), the total
number of attackers is large (small). For D1, this is confirmed by Figures 8(a) and 8(b),
which clearly show that the same periodicity is exhibited by the total number of at-
tackers and by the number of attackers from country X . For D2, this is confirmed by
Figures 8(c) and 8(d), which clearly show that the same periodicity is exhibited by the
total number of attackers and by the number of attackers from country X . We observe
that the wave bases are periodic with a period of 24 hours. After looking into the time
zone of country X , we find that the wave bases (i.e., that least number of attackers) cor-
respond to the hour between 12:00 noon and 1 pm local time. One may speculate that
this is caused by computers possibly being put into the hibernate mode (during lunch
time). This may not be true because during the night hours, more computers would be
put into the hibernate mode (or even powered off) and therefore even fewer attackers
would be observed. However, this is not shown by the data. One perhaps more plausi-
ble explanation is that the attacking computers may be coordinated or controlled (for
example) by botnets.

While we defer the detailed characterization of the phenomenon to Appendix A, we
summarize the phenomenon as:

Phenomenon 1 (The dominance and periodicity phenomenon exhibited by the number
of attackers) The time series of the total number of attackers and the time series of the
number of attackers from a particular countryX exhibit the same periodicity. Moreover,
the total number of attackers is dominated by the number of attackers from country X .
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(a) Total number of attackers in D1 (b) Number of attackers from country X in D1

(c) Total number of attackers in D2 (d) Number of attackers from country X in D2

Fig. 8. Elaboration of the dominance and periodicity phenomenon (time resolution: hour).

6 Inferring Global Cyber Security Posture from Smaller Monitors

In this section, we explore whether it is possible to use small network telescopes to ap-
proximate bigger telescopes, from the perspectives of estimating/inferring the number
of victims, attackers and attacks. Answering this question is interesting on its own, and
could lead to more cost-effective operations of network telescopes.

Methodology. We divide the /8 network telescope into B equal-size blocks of IP ad-
dresses, where each block is called a small telescope. We want to know whether we
can infer the number of victims (or attackers, or attacks) that are observed by the
/8 telescope during time interval [t, t + 1) at time resolution H (i.e., per hour), de-
noted by Y (H; t, t + 1), from the number of victims (or attackers, or attacks) ob-
served by b small telescopes, where b << B, during the same time interval, denoted
by Y1(H; t, t + 1), . . . , Yb(H; t, t + 1). In other words, we want to know whether the
following equation would hold:

Y (H; t, t+ 1) = c+

b∑
i=1

φiYi(H; t, t+ 1),

where c is some constant and φi’s are coefficients. Naturally, we can use the same
PMAD measure to evaluate the estimation/inference error.

Whenever feasible, we want to consider all possible combinations of b small tele-
scopes. For B = 16, there are

(
16
b

)
combinations; for B = 256, there are

(
256
b

)
com-

binations. For B = 256 and b ≥ 4, the number of combinations becomes prohibitive.
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This suggests that we first cluster the B = 256 blocks into b groups based on the DTW
measure, and then sample one block from each of the b groups. In a sense, this corre-
sponds to the best-case scenario sampling because we need the prior information about
the groups or clusters. If the sample statistics cannot approximate the statistics derived
from the data collected by the /8 telescope, we can conclude that small telescopes are
not as useful as the large telescope.

Min Mean Median Max SD Min Mean Median Max SD
D1 with B = 16: PMAD values D1 with B = 256: PMAD values

b = 1 .0372 .0472 .0464 .0682 .0083 b = 1 .0563 .0689 .0678 .1131 .0074
b = 2 .0230 .0322 .0302 .0586 .0067 b = 2 .0414 .0535 .0521 .1129 .0057
b = 3 .0167 .0232 .0239 .0301 .0033 b = 3 .0330 .0447 .0436 .0982 .0049

D2 with B = 16: PMAD values D2 with B = 256: PMAD values
b = 1 .0384 .0484 .0478 .0702 .0085 b = 1 .0799 .1136 .1155 .1155 .0071
b = 2 .0235 .0340 .0311 .0702 .0079 b = 2 .0731 .1119 .1155 .1155 .0096
b = 3 .0167 .0267 .0251 .0702 .0066 b = 3 .0755 .0787 .0787 .0839 .0021

Table 2. PMAD-based measurement of the inference error when using b (out of the B) small
telescopes to approximate the number of victims that are observed by the larger /8 telescope,
where “SD” stands for standard deviation.

Characterizing Inference Errors of Small Telescopes. From the perspective of infer-
ring the number of victims from small telescopes, Table 2 summarizes the inference
errors, in terms of the min, mean, median and max PMAD values of all the considered
combinations of sample blocks, as well as the standard deviation of the PMAD values.
For D1 and B = 16, we observe that a single small telescope (out of the 16 telescopes
of size 220 IP addresses) would give good approximation of the number of victims that
would be obtained based on the larger /8 network telescope. This is because the maxi-
mum PMAD errors is .0682, namely 6.82% approximation error. For D1 and B = 256,
the mean approximation error is 6.89% for b = 1 (i.e., using one small telescope), and
5.35% for b = 2 (i.e., using two small telescopes) and 4.47% for b = 3 (using three
small telescopes). For D2 and B = 16, we observe a similar phenomenon as in the case
of D1 and B = 16. However, for D2 and B = 256, the mean approximation errors is
significantly larger than in the case of D1 and B = 256, namely 11.36%, 11.19% and
7.87% for b = 1, 2, 3, respectively. Therefore, we can conclude that from the perspec-
tive of the number of victims, a single telescope of size 220 IP addresses would give
approximately the same result as the telescope of size 224, and 3 randomly selected
small telescope of size 216 would give approximately the same result as the telescope
of size 224. That is, the small telescope could be used instead.

Due to space limitation, we defer to Appendix B the characterizations on inferring
the number of attackers from small telescopes and on inferring the number of attacks
from small telescopes. Based on these characterizations, we draw the following insight:
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Insight 2 For estimating the number of victims, substantially small telescopes could
be used instead. However, for estimating the number of attackers and the number of
attacks, substantially small telescopes might not be sufficient.

The above discrepancy between the number of victims and the numbers of attack-
ers/attacks is possibly caused by the following: The victims are somewhat “uniformly”
attacked, but the attackers and attacks are far from “uniformly” distributed. Moreover,
a single attacker that scans the large telescope’s IP address space will make it easy to
estimate the number of victims from small telescopes.

7 Limitations of the Study

The present study has several limitations, which are inherent to the data but not to
the methodology we use. First, our analysis treats each remote IP address as a unique
attacker. This is not accurate when the remote networks using Network Address Trans-
lation (NAT), because remote attackers from the same network can be “aggregated”
into a single attacker. If many networks in country X indeed use NAT, then the actual
number of attackers from country X is indeed larger, although the number of attacks
from country X is not affected by NAT.

Second, the characteristics presented in the paper inherently depend on the nature of
network telescope. For example, D1 and D2 still may contain some misconfiguration-
caused, non-malicious traffic. Due to the lack of interactions between network telescope
and remote computers (an inherent limitation of network telescopes), it is hard to know
the ground truth [16]. Therefore, better filtering methods are needed so as to make the
data approximate the ground truth as closely as possible.

Third, it is possible that some attackers are aware of the network telescope and
therefore can instruct their attacks to bypass it. As a consequence, the data may not
faithfully reflect the cybersecurity posture.

Fourth, the data collected by the network telescope does not contain rich enough
information that would allow us to conduct deeper analysis, such as analyzing the
global characteristics of specific attacks. Moreover, the data is a “coarse” sample of
the ground-truth cybersecurity posture because the first flow from a remote attacker
may be a scan/probe activity, or a first attack attempt against a specific port.

8 Conclusion

We have studied the cybersecurity posture based on the data collected by CAIDA’s
network telescope. We have found that the sweep-time should be characterized as a
stochastic process rather than a random variable. We also have found that the total
number of attackers (and attacks) that are observed by the network telescope is largely
determined by the number of attackers from a single country. There are many interesting
problems for future research, such as: How can we (more) accurately predict the time
series? To what extent they are predictable?
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A Characterization of the Dominance and Periodicity
Phenomenon Exhibited by Attackers

Now we quantify the similarity between the two time series via Dynamic Time Warping
(DTW), fitted model, and prediction accuracy.
Similarity based on DTW. Figure 9(a) plots the warping path between the total number
attackers in D1 and the total number of attackers in D2. The two time series are very
similar to each other, except for the time interval [452, 668] as suggested by Figures
8(a) and 8(c). Figure 9(b) plots the warping path between the two time series plotted in

http://www.caida.org/
http://www.caida.org/tools/measurement/corsaro/docs/plugins.html
http://www.caida.org/tools/measurement/corsaro/docs/plugins.html
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Figure 7(a), namely the total number of attackers inD1 and the total number of attackers
from country X in D1. It shows that the two time series are very similar to each other
except during the time interval [455, 630], as suggested by Figures 8(a) and 8(b). Figure
9(c) plots the warping path between the two time series plotted in Figures 8(b) and 8(d).
It shows that the two time series are almost identical to each other, and that the filtering
of rarely seen attackers/attacks does not manipulate the periodic structure of the time
series of the number of attackers from country X . Figure 9(d) plots the warping path
between the two time series plotted in Figures 8(c) and 8(d), which indeed are almost
identical to each other.

(a) Total in D1 vs. to-
tal in D2

(b) Total in D1 vs.
country X in D1

(c) Country X in D1

vs. country X in D2

(d) Total in D2 vs.
country X in D2

Fig. 9. DTW statistics between the times series of the total number of attackers and the time series
of the number of attackers for country X .

Similarity based on fitted models. Since both the time series exhibit periodicity, we
use the multiplicative seasonal ARIMA model to fit the two time series in D1 and
D2, respectively. The model parameters are: nonseasonal orders (p, d, q), and seasonal
orders (P,D,Q), and seasonal period s = 24 based on the above discussion of period-
icity. For model selection, the parameter sets are:

– (p, d, q) ∈ [0, 5]× {0, 1} × [0, 5];
– (P,D,Q) ∈ [0, 5]× {0, 1} × [0, 5].

According to the AIC criterion (briefly reviewed in Section 3), the two time series in
both D1 and D2 prefer to the following model:

Wt = φ1Wt−1 + et + θ1et−1 + Φ1Wt−24 + Φ2Wt−48 +

Θ1et−24 +Θ2et−48 +Θ3et−96,

where Wt = |A(r; t, t + 1)| − |A(r; t − 24, t − 23)|. Table 3 summarizes the fitting
results. We observe that the two fitted models in D1 are similar to each other in terms
of coefficients, and that the two fitted models in D2 are almost identical to each other.
Similarity based on prediction accuracy. Table 4 summarizes the PMAD values for
1, 4, 7 and 10 hours ahead-of-time prediction of the number of attackers during the last
96 hours in both D1 and D2. For D1, we observe that 1-hour ahead-of-time predic-
tions for the number of attackers from country X and the total number of attackers are
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φ1 θ1 Φ1 Φ2 Θ1 Θ2 Θ3

Fitted model of total number of attackers in D1: PMAD=.08
Coefficients .91 .38 1.22 -.98 -2.15 2.11 -.86
Fitted model of number of attackers from country X in D1: PMAD=.06
Coefficients 0.82 .39 1.22 -.99 -2.19 2.16 -.91

Fitted model of total number of attackers in D2: PMAD=.08
Coefficients .79 .4 1.21 -.99 -2.18 2.16 -.9
Fitted model of number of attackers from country X in D2: PMAD=.07
Coefficients .79 .4 1.21 -.99 -2.19 2.16 -.9

Table 3. Coefficients in the fitted models of the total number of attackers and the number of
attackers from country X .

reasonably accurate (with PMAD value .093 and .092, or 9.3% and 9.2% prediction
error, respectively); whereas the predictions for 4, 7 and 10 hours ahead-of-time are not
useful. ForD2, we observe similar prediction results, namely that 1-hour ahead-of-time
predictions lead to 7.5% prediction error for the total number of attackers and 9.5%
prediction error for the number of attackers from country X .

h = 1 h = 4 h = 7 h = 10 h = 1 h = 4 h = 7 h = 10

D1: PMAD values D2: PMAD values
Total .092 .244 .333 .404 Total .075 .156 .180 .177

Country X .093 .208 .240 .245 Country X .095 .203 .230 .224
Table 4. PMAD values for h = 1, 4, 7, 10 hours ahead-of-time predictions on the total number
of attackers and on the number of attackers from country X , as observed by the telescope.

B Further Characterizations on the Inference Errors of Small
Telescopes

Inferring the number of attackers from small telescopes. Similarly, we would like
to infer the number of attackers based on small telescopes. Table 5 summarizes the
inference errors in terms of the min, mean, median and max PMAD values of all the
considered combinations of sample blocks, as well as the standard deviation of the
PMAD values. For D1 and B = 16, we observe that 3 small telescopes (out of the 16
telescopes of size 220 IP addresses) would give good approximation of the number of
attackers that would be obtained based on the network telescope of size 224. This is
because the maximum PMAD value is 7.34%. For D2 and B = 16, we observe that
using 4 small telescopes of size 220 does not lead to good approximation. ForB = 256,
neitherD1 norD2 leads to obtain good enough approximation. These suggest that using
significantly small telescopes may not lead to robust results.
Inferring the number of attacks from small telescopes. From the perspective of in-
ferring the number of attacks, Table 6 summarizes the inference errors as in the above.
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Min Mean Median Max SD Min Mean Median Max SD
D1 with B = 16: PMAD values D2 with B = 16: PMAD values

b = 1 .0663 .0921 .0916 .1329 .0205 b = 1 .1689 .1863 .1857 .2221 .0119
b = 2 .0626 .0797 .0752 .1194 .0138 b = 2 .1476 .1784 .1798 .2221 .0089
b = 3 .0624 .0700 .0713 .0734 .0033 b = 3 .1395 .1730 .1755 .2221 .0098
b = 4 .0593 .0685 .0693 .0734 .0036 b = 4 .1355 .1664 .1676 .1874 .0103
D1 with B = 256: PMAD values D2 with B = 256: PMAD values

b = 1 .1273 .2499 .3037 .4303 .0983 b = 1 .2967 .4346 .4387 .4396 .0172
b = 2 .1121 .1929 .1467 .4303 .0846 b = 2 .1712 .4307 .4387 .4396 .0240
b = 3 .1251 .1510 .1447 .3287 .0232 b = 3 .1713 .2369 .2352 .3730 .0422
b = 4 .1250 .1491 .1445 .2935 .0188 b = 4 .1664 .2261 .2329 .2542 .0231
b = 5 .1236 .1474 .1435 .2762 .0168 b = 5 .1618 .1658 .1664 .1674 .0015

Table 5. PMAD-based measurement of the inference error when using b (our of the B) small
telescopes to approximate the number of attackers that are observed by the larger /8 telescope,
where “SD” stands for standard deviation.

For D1 and B = 16, we observe that 3 small telescopes (out of the 16 telescopes of
size 220 IP addresses) would give good approximation of the number of attacks that
would be obtained based on the larger network telescope of size 224. This is because
the maximum PMAD errors is .0761, namely 7.61% approximation error. For D1 and
B = 256, the mean approximation error is 9.58% for b = 5 (i.e., using 5 small tele-
scopes instead), which is marginally acceptable. For D2 and B = 16, we observe that
using 4 small telescopes of size 220 can lead to worst-case approximation error 8.27%.
For D2 and B = 256, we observe that using 5 small telescopes of size 216 does not
lead to good approximation. That is, substantially small telescope may not be as useful
as the large telescope.

Min Mean Median Max SD Min Mean Median Max SD
D1 with B = 16: PMAD values D2 with B = 16: PMAD values

b = 1 .0755 .0890 .0883 .1106 .0095 b = 1 .0765 .0901 .0895 .1130 .0096
b = 2 .0436 .0629 .0589 .0953 .0138 b = 2 .0444 .0655 .0659 .1130 .0150
b = 3 .0363 .0488 .0435 .0761 .0125 b = 3 .0343 .0518 .0461 .1130 .0138
b = 4 .0272 .0392 .0369 .0739 .0100 b = 4 .0267 .0395 .0372 .0827 .0094
D1 with B = 256: PMAD values D2 with B = 256: PMAD values

b = 1 .1166 .1322 .1311 .1917 .0098 b = 1 .1344 .1909 .1938 .1938 .0117
b = 2 .0853 .1069 .1056 .1917 .0092 b = 2 .1197 .1881 .1938 .1938 .0160
b = 3 .0699 .0916 .0897 .1917 .0086 b = 3 .1323 .1409 .1387 .1602 .0079
b = 4 .0835 .0984 .0970 .1700 .0069 b = 4 .1310 .1383 .1366 .1520 .0069
b = 5 .0818 .0958 .0945 .1582 .0064 b = 5 .1256 .1312 .1310 .1419 .0048

Table 6. PMAD-based measurement of the inference error when using b (our of the B) small
telescopes to approximate the number of attacks observed by the /8 telescope, where “SD” stands
for standard deviation.
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