Skip to main content

Foundations of Logic Programming in Hybridised Logics

  • Conference paper
  • First Online:
Book cover Recent Trends in Algebraic Development Techniques (WADT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9463))

Included in the following conference series:

Abstract

The present paper sets the foundation of logic programming in hybridised logics. The basic logic programming semantic concepts such as query and solutions, and the fundamental results such as the existence of initial models and Herbrand’s theorem, are developed over a very general hybrid logical system. We employ the hybridisation process proposed by Diaconescu over an arbitrary logical system captured as an institution to define the logic programming framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    A category \(\mathcal{C}\) is a broad subcategory of \(\mathcal{C}'\) if \(\mathcal{C}\) is a subcategory of \(\mathcal{C}'\) and \(\mathcal{C}\) contains all objects of \(\mathcal{C}'\), i.e. \(|\mathcal{C}|=|\mathcal{C}'|\).

  2. 2.

    For all \(M'\in |{\mathbb Mod}(\varSigma ')|\) and \(M_1\in |Mod(\varSigma _1)|\) such that \(M'\!\upharpoonright \!_\chi =M_1\!\upharpoonright \!_\varphi \) there exists \(M_1'\in |{\mathbb Mod}(\varSigma _1')|\) such that \(M_1'\!\upharpoonright \!_{\varphi [\chi ]}=M'\) and \(M'_1\!\upharpoonright \!_{\chi (\varphi )}=M_1\).

  3. 3.

    \(h^{mod}\) is a |R|-indexed family of \(\varSigma \)-homomorphisms \(h^{mod}=\{h^{mod}_s:\mathcal{M}_s\rightarrow \mathcal{M}'_{h^{st}(s)}\}_{s\in |R|}\).

  4. 4.

    A category \(\mathcal{C}\) is a full subcategory of \(\mathcal{C}'\) if \(\mathcal{C}\) is a subcategory of \(\mathcal{C}'\) and for all objects \(A,B\in |C|\) we have \(\mathcal{C}(A,B)=\mathcal{C}'(A,B)\).

  5. 5.

    We denote by \(\rho [j\leftarrow k]\) the sentence \(\varphi (\rho )\), where the signature morphism \(\varphi :(\varSigma ,Nom\cup \{j\},\varLambda )\rightarrow (\varSigma ,Nom,\varLambda )\) is the canonical extension of the function \(\varphi _{\mathbb Nom}:\{j\}\rightarrow Nom\) defined by \(\varphi _{\mathbb Nom}(j)=k\).

  6. 6.

    This condition implies that there exists a basic model \((\mathcal{M}^B,R^B)\in |{\mathbb Mod}^{\mathtt {HI}}(\varDelta )|\), but it is also possible that \((\mathcal{M}^B,R^B)\not \in |{\mathbb Mod}^{\mathtt {CHI}}(\varDelta )|\).

  7. 7.

    The institution \({\mathbf {HFOL}}_2\) contains also sentences that are free of @. It follows that \({\mathbb Sen}^{\mathbf {HFOL}}_1(\varDelta )\subsetneq {\mathbb Sen}^{\mathbf {HFOL}}_2(\varDelta )\) for all \(\varDelta \in |{\mathbb Sig}^{\mathbf {HFOL}}|\).

  8. 8.

    Note that \((\forall X)\rho \) is an abbreviation for \((\forall \chi )\rho \), where \(\chi :(\varSigma ,Nom,\varLambda )\hookrightarrow (\varSigma [X],Nom,\varLambda )\in \mathcal{Q}^{\mathbf {HFOL}}\) is a signature extension with the finite set of first-order variables X and \(\rho \in {\mathbb Sen}^{\mathbf {IHFOL}}_2(\varSigma [X],Nom,\varLambda )\).

References

  1. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Log. J. IGPL 8(3), 339–365 (2000)

    Article  MathSciNet  Google Scholar 

  2. Braüner, T.: Hybrid Logic and its Proof-Theory. Applied Logic Series, vol. 37. Springer, Berlin (2011)

    Book  Google Scholar 

  3. Diaconescu, R.: Institution-independent Ultraproducts. Fundamenta Informaticæ 55(3–4), 321–348 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Diaconescu, R.: Herbrand theorems in arbitrary institutions. Inf. Process. Lett. 90, 29–37 (2004)

    Article  MathSciNet  Google Scholar 

  5. Diaconescu, R.: Institution-independent Model Theory. Studies in Universal Logic. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  6. Diaconescu, R.: Quasi-varieties and initial semantics in hybridized institutions. J. Logic Comput. (2014). doi:10.1093/logcom/ext016

    Article  MathSciNet  Google Scholar 

  7. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and programming. J. Assoc. Comput. Mach. 39(1), 95–146 (1992)

    Article  MathSciNet  Google Scholar 

  8. Goguen, J.A., Thatcher, J.W.: Initial algebra semantics. In: SWAT (FOCS), pp. 63–77. IEEE Computer Society (1974)

    Google Scholar 

  9. Găină, D., Futatsugi, K.: Initial semantics in logics with constructors. J. Log. Comput. 25(1), 95–116 (2015). http://dx.doi.org/10.1093/logcom/exs044

    Article  MathSciNet  Google Scholar 

  10. Găină, D., Futatsugi, K., Ogata, K.: Constructor-based Logics. J. Univ. Comput. Sci. 18(16), 2204–2233 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Găină, D., Petria, M.: Completeness by Forcing. J. Log. Comput. 20(6), 1165–1186 (2010)

    Article  MathSciNet  Google Scholar 

  12. Lloyd, J.: Foundation of Logic Programming. Springer, Berlin (1987)

    Book  Google Scholar 

  13. Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of institutions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 283–297. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Schurz, G.: Combinations and completeness transfer for quantified modal logics. Log. J. IGPL 19(4), 598–616 (2011). http://dx.doi.org/10.1093/jigpal/jzp085

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Găină .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Găină, D. (2015). Foundations of Logic Programming in Hybridised Logics. In: Codescu, M., Diaconescu, R., Țuțu, I. (eds) Recent Trends in Algebraic Development Techniques. WADT 2015. Lecture Notes in Computer Science(), vol 9463. Springer, Cham. https://doi.org/10.1007/978-3-319-28114-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28114-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28113-1

  • Online ISBN: 978-3-319-28114-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics