Differential Power Analysis of a McEliece Cryptosystem

Cong Chen', Thomas Eisenbarth!, Ingo von Maurich?, and Rainer Steinwandt3

! Worcester Polytechnic Institute, Worcester, MA, USA
{cchen3,teisenbarth}@wpi.edu
2 Ruhr-Universitit Bochum, Germany
Ingo.vonMaurich@rub.de
3 Florida Atlantic University, USA
rsteinwa@fau.edu

Abstract. This work presents the first differential power analysis of an implementation of the McEliece
cryptosystem. Target of this side-channel attack is a state-of-the-art FPGA implementation of the ef-
ficient QC-MDPC McEliece decryption operation as presented at DATE 2014. The presented crypt-
analysis succeeds to recover the complete secret key after a few observed decryptions. It consists of a
combination of a differential leakage analysis during the syndrome computation followed by an algebraic
step that exploits the relation between the public and private key.

Keywords: Differential Power Analysis, McEliece Cryptosystem, QC-MDPC Codes, Hardware Implemen-
tation

1 Introduction and Motivation

The basic idea of the McEliece public-key encryption scheme can be traced back more than 35 years [McEliece,
1978]. Having passed the test of time, today it is considered one of the most promising alternatives to
public-key encryption schemes whose underling hardness assumptions are invalidated by known quantum
algorithms [Shor| (1997]. A critical point of McEliece-based constructions is the large key size, and to tackle
this problem it is tempting to impose additional structure on the code involved. For some proposals in
this line of work, including constructions building on Goppa codes, cryptanalytic strategies to exploit the
additional structure have been put forward [Faugere et al., [2010, [2014alb].

Lacking obvious algebraic code structure that can be exploited by an adversary, quasi-cyclic moderate-
density parity-check (QC-MDPC) codes currently receive considerable attention as an implementation choice,
and in this paper we take a closer look at a state-of-the-art implementation of such a scheme, presented in
[von Maurich and Giineysul 2014].

Our contribution In this paper we are not concerned with the security of the specific parameters in [von
Maurich and Guneysu, 2014| against the underlying theoretical problem, and instead focus on side-channel
attacks. Even in a post-quantum world, i. e., when scalable quantum computers are available, implementation-
specific information leakage will remain a serious issue, but so far no differential power analysis (DPA) has
been documented on implementations of McEliece. In fact, [Heyse et al. 2010] concluded that a classical
DPA attack is not possible for their target implementations. In this paper we demonstrate that DPA can be
a realistic threat for a state-of-the-art FPGA implementation of McEliece. Besides showing that significant
parts of the private key can be recovered by DPA, we show that knowledge of the public key can be utilized
to recover missing key information or to correct remaining errors in hypothesized key bits.

On the conceptual side it deserves to be noted that our cryptanalysis targets the decoding algorithm,
and thus is not restricted to a basic McEliece as presented in [von Maurich and Guneysu, 2014]. If the
basic scheme is augmented with a padding to establish stronger provable guarantees, then this does not
prevent our side-channel attack as long as the decryption algorithm is applied to the ciphertext directly,
possibly followed by some plausibility checks. This type of padding is common in combination with McEliece
public-key encryption |[Kobara and Imai, 2001, Nojima et al.l |2008].

Related work Using QC-MDPC codes in the McEliece cryptosystem was first proposed by [Misoczki et al.)
2012] and later published with small changes in the parameter set in [Misoczki et all [2013|. These codes
have no obvious algebraic code structure and still allow small key sizes, which gained high interest in the
research community.

First implementations of this scheme for AVR microcontrollers and Xilinx FPGAs were proposed by |[Heyse
et al., [2013]. Their FPGA implementation aimed for a high throughput at the cost of a high resource con-
sumption while their microcontroller implementation for the first time showed that it is possible to implement
McEliece without external memory to store the keys. A lightweight FPGA implementation by [von Mau-
rich and Giineysul, 2014] showed the full potential of this promising scheme. Occupying less than 230 slices
and 4 block RAMs on Xilinx’s smallest Spartan-6 FPGA (XC6SLX4) for a combined encryption/decryption
unit, their implementation still provides a reasonable performance of 3.4ms and 23 ms for en-/decryption,
respectively.

Side-channel leakages of McEliece have first been studied in [Strenzke et al., |2008]. This work, as well
as two follow-up studies have focused on analyzing timing behavior of different parts of contemporary PC
implementations of McEliece [Strenzke, [2010, [Shoufan et al., [2010]. Subsequently, |[Avanzi et al. |2011] im-
proved over prior results, presented countermeasures and pointed out leakages in the preprocessing steps of
MecEliece encryption.

[Heyse et al.l 2010] performed power analysis on software implementations of classic McEliece implemen-
tations. Their work relies on simple power analysis (SPA)-based approaches, which usually do not translate
well to hardware implementations, due to the increased parallel processing of data and the much smaller
side-channel leakage. They also show that side-channel analysis is impeded by the large key sizes of McEliece.

2 Background

McEliece based on (QC-)MDPC codes is fully described in [Misoczki et al., 2013]. To provide the necessary
context for our attack, the remainder of this section gives a brief summary of (QC-)MDPC codes and their
proposed use to instantiate the McEliece cryptosystem.

2.1 Quasi-cyclic Moderate-Density Parity-Check Codes

A binary linear [n, k] error-correcting code C of length n is a k-dimensional vector subspace of F§. We write
r = n— k for the co-dimension of C. The code C' can be specified by providing a generator matriz G € IF’;X",
i.e., a matrix whose rows form a basis of C. Alternatively, one can provide a parity-check matrizc H € Fy*"
which characterizes the linear code as C' = {c € F%¥|cH? = 0"}. Given a parity-check matrix and a vector
x € F%, we refer to s = Ha™ € F}, as syndrome of z. In particular, a vector from F} is contained in C' if and
only if its syndrome is 0".

If a code C'is closed under cyclic shifts of its codewords by ng positions for some integer ng > 1, we refer
to C as quasi-cyclic (QC). If n = ng - p for some integer p, both generator and parity-check matrix can be
chosen to be composed of p X p circulant blocks. This has the advantage, that only one row (usually the first)
of each circulant block needs to be stored to completely describe the matrices. For a moderate-density parity-
check (MDPC) code, we choose the weight of each row to have the same density w = O(y/nlog(n)). For
short, we refer to a binary linear [n, k] error-correcting code defined by a parity-check matrix with constant
row weight w and co-dimension r as an (n,r,w)-MDPC code. If such a code is in addition quasi-cyclic with
n = nor, we speak of an (n,r, w)-QC-MDPC code.

2.2 The QC-MDPC McEliece Public-Key Encryption Scheme

For implementing the McEliece encryption scheme, t-error correcting (n,r, w)-QC-MDPC codes are used,
i.e., up to t “flipped bits” in any codeword ¢ € C' can be corrected. Specifically, using such a code, key
generation, encryption, and decryption operations can be described as follows.

Key-Generation The secret key is comprised of the first rows hg,...,hn,—1 € F5 of the ng parity-check
matrix blocks Hy, ..., H,,—1. These rows are chosen at random and it must be ensured that their weights—
the number of non-zero entries—sum up to w:

Iterated cyclic rotation of the h; yields the parity-check matrix blocks Hy, ..., H,,—1 € F5*" and thereby the
secret, parity-check matrix H = (Hy| ... |Hp,—1) of an (n,r,w)-QC-MDPC code with n = ngr. Assuming the
last block H,,,_1 to be non-singular, the public key is obtained as generator matrix G = [I}|Q)] in standard
form, simply concatenating the identity matrix I}, € IF}2C *k with

(H,oy - Ho)”

no—1

Q= (Hrjol—l 'Hl)T

(H;01—1 . Hno*Q)T

Similarly as for the secret key, the public matrix G is fully determined through its first row. For a textbook
version of McEliece the systematic form of G is problematic, but in combination with a conversion to protect
against chosen-ciphertext attacks (cf. [Kobara and Imai, [2001 Nojima et al., 2008]) having the generator
matrix G in systematic form is accepted practice.

Encryption To encrypt a message m € F5, an error vector e € F} of weight wt(e) < ¢ is chosen at random.
With this, the ciphertext evaluates to x = (m -G @ e) € F5.

Decryption To decrypt a ciphertext z € F3, a t-error correcting (QC-)MDPC decoder ¥y is applied to x,
recovering mG Wy (x). Since G is in systematic form, the message m can simply be read off from the first
k positions of mG.

Parameters For the implementation investigated in this paper, we used parameters, which in [Misoczki et al.)
2013] have been considered for an 80-bit security level:

no = 2,n = 9602, 7 = 4801, w = 90, ¢ = 84.

With these parameters a 4801-bit plaintext block results in a 9602-bit codeword to which ¢t = 84 errors
are added. The parity-check matrix H has constant row weight w = 90 and is obtained as juxtaposition of
ng = 2 circulant blocks. The @-part of the public generator matrix G consists of a single circulant block.

2.3 Decoding (QC-)MDPC Codes

Several decoders have been proposed to actually decode (QC-)MDPC codes |[Berlekamp et al.| [1978]|Gallager]
1962, Heyse et al., 2013 [Huffman and Pless, [2010, Misoczki et al., 2013]. The implementation investigated
in this paper employs the decoder from [Heyse et al., 2013], an optimized version of the bit-flipping decoder
by [Gallager] |1962]. To decode a received ciphertext x € Fy, four main steps are involved:

1. Compute the syndrome s = Ha™T.

2. Count the number of unsatisfied parity checks for every ciphertext bit.

3. If the number of unsatisfied parity checks for a ciphertext bit exceeds a precomputed threshold, flip the
ciphertext bit and update the syndrome.

4. If s = 0", the codeword was decoded successfully. If s # 0", go to Step (2) or abort after a defined
maximum of iterations with a decoding error.

The precomputed thresholds are derived from the code parameters as proposed by |Gallager) [1962].

2.4 Target Implementation

The target under investigation is a lightweight implementation of QC-MDPC McEliece for reconfigurable de-
vices by [von Maurich and Giineysul |2014]. The resource requirements are 64 slices and 1 block RAM (BRAM)
to implement encryption and 159 slices and 3 BRAMs to implement decryption on a Xilinx XC6SLX4 which is
the smallest device available in Xilinx’s Spartan-6 family. Encrypting a plaintext takes 3.4 ms and decrypting
a ciphertext takes 23 ms.

This lightweight implementation is possible mainly for two reasons. First, QC-MDPC codes allow smaller
keys compared to (optimized) Goppa codes. Second, the implementation stores inputs, outputs and most
intermediate values during encryption and decryption in block memories. Since our attack focuses on secret
key recovery, we limit the description of the details of the implementation to the decryption, especially to
the part in which the syndrome is computed.

Decryption uses three BRAMSs, one BRAM stores the 2-4801-bit secret key, one BRAM stores the 2-4801-
bit ciphertext, and one BRAM stores the 4801-bit syndrome. Each BRAM is dual-ported, offers 18/36 kBit,
and allows to read/write two 32-bit values at different addresses in one clock cycle.

To compute the syndrome, set bits in the ciphertext select rows of the parity-check matrix that are
accumulated. Since only one row of the parity-check matrix is stored in the BRAM, it needs to be rotated
by one bit to generate the next row. To generate all rows of H this rotation is repeated 4801 times.

Rotating the two parts of the secret key is implemented in parallel, which means that the 4801-bit rows
of the first and the second part of the parity-check matrix are rotated at the same time. Efficient rotation
is realized using the READ_FIRST mode of Xilinx’s BRAMs which allows to read the content of a 32-bit
memory cell and then to overwrite it with a new value, all within one clock cycle.

Rotation is implemented as follows: in the first clock cycle, the least significant bit is loaded from the
last memory cell. The first 32-bit of the row to be rotated are loaded next. In all following clock cycles,
the succeeding 32-bit blocks of the row are read and overwritten by the rotated preceding 32-bit block. The
least significant bit of each 32-bit block is delayed by a flip-flop and becomes the most significant bit of the
following block. An abstraction of this implementation is depicted in Figure [I] In addition to a rotation of
the row, this introduces a rotation of the memory cells, so after one 4801-bit rotation, the most significant
32 bits of the parity-check matrix row do not reside in memory cell 0 but in memory cell 1.

The syndrome computation is done in parallel to the key rotation. Ciphertext = is split into two parts
that are processed bit-by-bit in parallel. If a bit in one or both parts is set, then the current row(s) ho/h; of
the secret key are added to the syndrome, as shown in Figure

3 Attack Description

Usually DPA attacks exploit an intermediate state y = f(x, k) that is a function of both a known data item
z and a subkey k. The subkey space K should be small enough so that a hypothesis y can be checked for
all candidates k € K. Some works that elaborate on this model are [Mangard et all [2007, [Kocher et al.,
2011, [Whitnall et al., 2014]. McEliece does not offer itself for this approach, as also noted in [Heyse et al.,
2010]. One would expect the syndrome s to serve as a potential predictable intermediate state y. However,
the bits in the ciphertext = only determine which rows of the parity check matrix H are added to s, where
H is the secret key to be recovered. Predicting (parts of) the syndrome s requires an additional key bit
hypothesis for each variation of each bit of s, i.e., each bit of s depends on [key bits after [variations,
supporting the infeasibility claim of [Heyse et al.;|2010|. One of the strengths of QC-MDPC, its small private
key size, comes from the fact that secret information is highly redundant: each row of H contains the same
information—namely (hy << i||h; <& i)—only rotated by one bit per row. This redundancy allows for an
efficient recovery of key information. More importantly, it enables a differential analysis approach which
greatly enhances the visibility of even faint leakages.

We exploit two different types of leakage, both occurring during syndrome computation. The first analysis
recovers key leakage from the syndrome computation itself, as suggested above. The second analysis recovers
a static key leakage that is completely independent of the known or chosen ciphertext input x. In spite of

[31:1]

.

[0] 4

31:01 & 4 [31:0]
byl [31:0]
+
din dout I] din

hy h, syn
SecKey BRAM r Syndrome BRAM

din dout ® L dout
h R syn
ho ° 1o 1%

Carry hy

D |

A
LN

[31:0] 4 Y [31:0]

o4

2
L4

[31:1]

Fig. 1. Abstract block diagram of the syndrome computation circuit including key rotation.

the independence of x we claim both analysis methods to be differential leakage analyses, since in both cases
differential leakage traces can be computed—similar to the approach originally proposed by [Kocher et al.l
1999].

3.1 Leakage Behavior of the Target Implementation

The described attacks recover the key during the syndrome computation step of the decryption algorithm.
The key for QC-MDPC consists of a single line of the parity check matrix H, namely ho||h;. As described
in Section only this line of H, or one of its rotated versions (ho << i||h1 <<), is stored in BRAM. The
key has some noteworthy features that influence the derived DPA attacks. First, the private key is of low
weight: both parts of the secret key hg and h; are of low Hamming weight such that, wt(hg||h1) = w. For the
target implementation, w = 90 and wt(h;) = 45, i.e. both hg and h; have exactly 45 bits set. This means,
each key bit h; ; € {0,1} is set with probability

w 45

This implies low-weight leakages: Syndrome and key parts h; are stored in BRAMs and processed as 151
32-bit words. The chance of a 32-bit key word to be all-zero is still 74%, about 22% contain a single one
bit, leaving the chance of having more than one bit set in a word below 5%. The critical parts of the target
implementation that feature exploitable key leakage are depicted in Figure

Independent of the ciphertext input x, the stored key row (hg << i||h; <& i) is constantly rotated during
the syndrome generation. In fact, it is rotated by a single bit 4801 times, where each rotation takes 151 clock
cycles (plus two additional clock cycles for preprocessing and a data read-write delay, resulting in the 153
clock cycles mentioned in [von Maurich and Giineysu, 2014]). The implementation features a single carry bit,
stored in a separate register. In each of these clock cycles, one bit h; ; is written to a carry register, causing

leakage Ajcarry. In the following clock cycle, that bit is overwritten with h; ji32. Assuming a Hamming
distance leakage function, this register leaks first

Ajcarry = W1 - Wt(h; j—32 D hij), (1)

then, in the subsequent clock cycle, leaks \j 132 carry = w1 -Wt(h; ; S h; j+32), where wy € R is an appropriate
weight. Assuming that h; ; = 1 and further h; j430 = 0, Aj carry gives a clearly distinguishable leakage from
the case where h; ; = 0.

Besides the key rotation, the computation of the syndrome s contributes significantly to the leakage. The
target implementation processes the ciphertext x in a bitwise fashion. If the i-th bit is set, i.e., x; = 1, then
the i-th row of H is added to the syndrome s. The implementation adds two 32-bit words in parallel: one
word of the rotated hg and one word of h; are processed each clock cycle. This means that the addition of
one row of H takes 151 clock cycles (plus two additional clock cycles for preprocessing and data read-write
delay, resulting again in 153 clock cycles). The syndrome s is only updated if at least one of the currently
processed ciphertext bits x; is set.

Note that we know for each key bit h; ; at which clock cycle it is processed (if not, several hypotheses
can be checked in parallel by analyzing neighboring clock cycles). In fact, knowing the implementation and
x, it is predictable which 32-bit word of h; is added to the syndrome at which point in time. Similarly, it is
predictable which key bit h; enters the carry register in which clock cycle for the key rotation. We use this
information to build the differential power analysis attacks.

As in the classical DPA by Kocher et al., we can now hypothesize each key bit h, ; separately to be one,
knowing that this hypothesis will be wrong 99% of the time. We further know at which clock cycle the leakage
of the carry register (for the key rotation) or the currently written syndrome word (for the computation of
the syndrome) depends on h; ;. Based on this knowledge, one can build two different attacks:

3.2 DPA of Syndrome Computation

The first analysis targets the leakage of the syndrome during its computation. This analysis assumes the
adversary to send chosen ciphertexts of weight one, i.e., all possible x such that wt(z) = 1. Ciphertexts of
weight 1 ensure that a rotated version of either hg or of h; is written into a zeroed syndrome s. To recover
hg, we chose only the first 4801 bits of x to be one, yielding a total of 4801 different ciphertexts for the
analysisﬁ

For each x we know when a line of the key is added to the syndrome. We also know at which clock cycle
during that addition the word containing h; ; is added. Our algorithm recovers the clock cycle where the h; ;
is added to s for each x and the corresponding leakage in the leakage trace L. Next, we simply sum all the
leakage instances of the target h; ; for the different z; into a bin, as typically done by DPA. Unlike DPA,
we have only one bin per key bit. However, assuming that each bit leaks similarly, we have 4756 bins that
correspond to a h; ; = 0, and only 45 bins corresponding to a bit h; ; = 1.

The leakage model for the registers containing the syndrome is described next. Since the ciphertexts are
of weight one, the syndrome is initially zero, and then overwritten with (a shifted version of) hg or hy. The
key bit h; ; is processed as part of one 32-bit word (h; j_;...h; ;... R j—i+31), where I € {0,...,31} depends
on j and the position of the set bit in x. As mentioned before, this leakage occurs during a specific cycle
that we can reconstruct. Assuming a Hamming distance leakage, the Hamming weight of the word will leak,
since it overwrites a zeroed register, i. e., the leakage of the corresponding syndrome word can be modeled as

)\j,syn = Wo - wt ((hi,jfl e hz‘,j . hi,jfl+31>)

with an appropriate weight wy € R.

This approach has two disadvantages, one being the inaccuracy of the model; the other disadvantage
is that bits of h; located close to each other have highly correlated leakage functions. In fact, since 32-bit
registers are leaking, all bits in the same register will enter the leakage function in the same way. However,

4 As detailed in Section |5 once ho is known the remaining part of the secret key can be derived easily.

whether a given neighboring bit is in the same register depends on the row index that is currently processed,
since the key bits are rotated by one bit for each row. This means that the neighboring bits will leak in
a different clock cycle eventually, as the position of the set bit in x changes for different ciphertexts. The
closer the bit is to the correct bit, the higher their correlation is (since they are more likely to be in the same
register). We will later show that, while key bits equal to 1 can be detected, their exact position is harder
to detect, since neighboring bits “look like” ones as well.

The other problem are correlated leakages from the key rotation. Both hy and hy are rotated during the
above computation, with the same key words being processed in the studied clock cycle. We detail on this
leakage in Section [3.3] Since those leakages are dependent on the predicted bit, they are not independent
noise that decreases by averaging, as usually happening in DPA. However, they occur independently of
whether the syndrome is updated or not. It is possible to remove these leakages, which we refer to as Aj const
by subtracting the average leakage during the corresponding clock cycles, i.e., the leakage of the same clock
cycles when the key word is not added to the syndrome word (and the set bit in x is zero), given as

ACj,syn =)\j,syn +)\j,const + N7

where A is the noise, which is assumed to be Gaussian and can be minimized by increasing the number of
observations used for computing £; syn. We can approximate \j const by simply averaging over all observed
traces and compute it as £, const = avg(L,). This average is then subtracted from the leakage trace for £; gy,

which is computed as
4800

Aspu() = D (Ljsyn(l) = Lconst (1)) - (2)

=0

12 ‘

I I
Real Differential trace
— Simulated Differential trace

i |

0 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

key bit ho,j

Differential TraceAs n

Fig. 2. Differential leakage for syndrome computation with key part ho only. The plot shows the normalized leakage
(vertical axis) for each key bit of ho (horizontal axis) for simulated leakage according to Ajsyn (blue/black line) and
real measurement, i.e., empirical Agyn(j) (red/gray line).

The resulting differential trace Agy,(j) is depicted in Figure |2} where the red (gray) line depicts the
observed leakage while the blue (black) line depicts the leakage derived from the model as described above.
The plot of the differential trace shows the highest consumption for the correct key bits. The consumption
decreases linearly as the distance to the bit increases, at least for key bits with a higher index. Bits at least
32 positions away from a set key bit show the lowest consumption, since they never share a leakage with
a set bit. However, there is still a correlated leakage occurring that is not caught by our model. In fact,

bits up to 64 bits lower than the predicted one still exhibit a correlation. We assume this to be due to the
READFIRST mode of the BRAM. In fact, when a specific syndrome word is written to BRAM, the next
one is simultaneously read, as is the corresponding part of the key. Hence, the next clock cycle’s word could
already be computed. While we expect this leakage to be constant, i.e., to occur independently of whether
the syndrome will be updated or not, the observed leakage suggests otherwise.

As a summary, the described method lets us detect leakages of hy and hy separately. It allows us to reliably
distinguish set bits from zero bits. We get a single leakage observation per trace L for chosen ciphertexts of
weight 1. However, closely co-located bits are highly correlated, making the exact position of a bit difficult
to detect.

3.3 DPA of Key Rotation

The next analysis targets the key rotation itself. Our algorithm identifies all clock cycles where h; ; is
written to or overwritten in the carry register in each trace L. Per processed ciphertext bit, only 150 words
are rotated. The additional bit is stored in the carry register. Hence all rotations together result in a total of
4801 - 150 carry register overwrites for each h;. Since there are 4801 bits in h;, each bit is written to the carry
register 150 times. By identifying the corresponding clock cycles and adding them together, one can generate
a differential power trace Acary, as typically done by DPA. As for the DPA of the syndrome computation,
we have only one bin per key bit. Since the key is sparse, we have only very few bins that correspond to a
h;; = 1, while most bins correspond to a bit h; ; = 0. The target implementation processes hy and h; in
parallel. This means that there are two carry registers (cf. Figure , one stores hg ; when the other stores
hi,;. While these leakages slightly differ, we do not attempt to distinguish them. Instead we recover the
combined leakages. That is, we predict the combined leakage h = hg + h1. Note that the addition here is not
in [y, i.e., we can distinguish the case where ho; = hi; = 1 from the case ho; = hq; = 0, although this
case is very rare.

The assumption of all bits leaking the same way is perfectly justified: each bit h; ; takes each column
position exactly once, in a specific row. That means due to the rotation, each key bit leaks in every position
exactly once, averaging out any position-specific leakages.

In addition to the leakage of the carry register A; carry described in Equation (T)), there are related leakages
happening in the same clock cycles. In fact, when h; ; is written to the carry register, the implementation
also reads the word (h; j11...h; j4+32) from the block memory at one address and then stores the word
(hij—32...h;;—1) into the block memory at the same address. Both reading and storing operations will
cause leakages at different levels. Assuming a Hamming weight leakage function here, reading data and
storing data leaks as

/\j,read = wqy - Wt(<hi7j+1 e hi7j+32>) and

Ajstore = W3 - Wt((hij—32... hij—1)),

respectively. Here, wo € R and ws € R are appropriate weights for the different types of operations. The
overall observed leakage is approximated by the following model:

‘Cj =)\j,carry +)\j,read + /\j,store +N

where £; is the overall leakage at the clock cycle where h; ; is written into the carry register and A is the
noise, which is assumed to be Gaussian. While the model is not perfect, it describes the observed leakages
well enough to base a decent key recovery on it.

In order to detect whether a key bit is set, i.e., h; ; = 1, we average over all clock cycles where h; ; is
written to the carry register.

150
. 1
Acarry (j) = 150 E L= avg (w1 - wt(h; j_32 B i j) + Ajread + Ajstore)
=1

Note that, since h; j_32 = 0 with very high probability, Acamy(j) depends directly on the key bit. Further
note that h; ; = 1 has an even stronger influence on Acarry(j £ 32), since it leaks through A carry and either
Ajread O Ajstore- The dependence of Acarry(j) on neighboring key bits h; j1q, with { < 32, implies that each
set key bit not only results in an increased differential signal for its own position (i.e., index j), but also in
the neighboring positions. Note that due to the differing weights, each set key bit imprints a characteristic
shape onto the differential trace. These shapes can (and actually will) overlap if several key bits in the same
region are set.

1.2 \ \
Real Differential trace
] — Simulated Differential trace
I |
oo ' ||
g \
o |
= ‘ il ' l
5 06 I | IH H‘I
i
2 y do
=
= AL W |
' i I‘ [y
‘ LM L
021 -
[& M |
' W
0 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500

key bit h, |

Fig. 3. Differential trace for key rotation. The plot shows the normalized leakage (vertical axis) of both key parts
h = ho 4+ hi. The red/gray line is the simulated leakage while the blue/black line is the observed leakage from the
target implementation.

1.2 T
Real Differential trace
1- — Simulated Differential trace|
o 0.8 -
|
Q
Q
o
=
< 06 -
<
o X: 2900
g Y:0.4211
a []
0.4 X: 2868 X: 2032 B
¥:0.2793 | Y:0.2837
[] []
0.2
0 1 1 1 1 1 1 1 1 1 1
2650 2700 2750 2800 2850 2900 2950 3000 3050 3100 3150
key bit hi i

Fig. 4. A magnified version of Figure [3| that highlights the characteristic shape of a single set bit (center) as well as
the overlap of two (right) and three (left) “adjacent” set bits.

Figure [3| shows the comparison of the simulated differential trace (red/gray line) using the power model
and the real differential trace (blue/black line). The characteristic shape is highlighted in Figure [4] which is
a magnification of a single set bit of the key, surrounded by zeroes.

In summary, the key rotation analysis allows us to detect joint leakages of hg and h;. This is due to
the target implementation that processes both in parallel. Unlike the leakage of the syndrome computation,
the key rotation leakage does not feature a slowly decreasing correlating leakage, but rather a characteristic
shape with easily detectable bounds. This allows for a more precise location of set key bits. Furthermore, the
analysis of the key rotation is mostly input-independent, as will be discussed in Section[d More importantly,
each bit features 150 leakage observations per trace L, resulting in a very strong leakage.

3.4 Key Bit Recovery

The computation of syndrome and key rotation both cause leakages which can be analyzed in the presented
differential traces. In both of the differential traces, characteristic shapes caused by set key bits can be
detected and used to recover the set key bits. In the same way, the traces can be used to detect key bits that
are not set.

For the computation of the syndrome, the differential trace can recover the key bits of hg or h separately,
depending on the ciphertext we use. For the key rotation, since the analyzed implementation processes hg
and h; in parallel, resulting in an overlap of the leakages, the differential trace actually recovers the key bits
of h = hy + hy.

In order to recover key bits, the characteristic shapes need to be detected. We propose a generic shape
detection algorithm that works as follows:

1. Shape Definition From the differential trace, one singular characteristic shape can be identified and
used as a template for set bits. The template is used to generate a shape threshold as shown in Figure
The threshold is defined by the value of features in this shape such as edges, slopes and pulses.

2. Shape Detection For each key bit in the differential trace, we check if this key bit together with the
neighboring key bits can form a characteristic shape. This is done by checking if there are features that
are beyond the threshold. If more than two features exist, it is highly probable that this key bit is set.
If no feature exists, then it is highly probable that this key bit is 0. Otherwise, we mark this key bit as
an undetermined bit.

Note that the shapes will overlap if two set key bits are close to each other. Furthermore, the differential
traces are noisy, hence we can only recover parts of the key bits, leaving the other key bits as undetermined.
By choosing the thresholds for shape detection carefully, the number of detected bits can be maximized while
keeping the number of false positive errors as low as needed.

4 Measurement Setup and Results

We ported the implementation of [von Maurich and Giineysu, [2014] to a Xilinx Virtex-5 LX50 FPGA which
is mounted on a Sasebo-GII side-channel attack evaluation boardﬂ The implementation is clocked at 3 MHz.
Measurements were performed using a Tektronix DPO 5104 oscilloscope at a sampling rate of 100 MS/s.
Since all of our attacks focus on the syndrome computation, only the syndrome computation was recorded.
The syndrome computation takes 245 ms, resulting in long traces. For the ease of analysis, a peak extraction
was performed. In each clock cycle only the point of maximum power consumption is retained. The peak
extraction prevents potential alignment issues and makes data handling much faster.

As mentioned in Section [3] key rotation and syndrome computation run in parallel which leads to a mixed
leakage. To fully exploit the leakages, measurements were obtained in three different scenarios:

® The VHDL code of the QC-MDPC McEliece implementation of [von Maurich and Giineysul, [2014] is available at
http://www.sha.rub.de/research/projects/code/.

10

http://www.sha.rub.de/research/projects/code/

Known Ciphertext In this scenario we assume the adversary to only observe ciphertext-leakage pairs.
Hence, the ciphertexts = are chosen uniformly at random. While this can result in invalid ciphertexts,
the attacker could also just generate valid ciphertexts by choosing plaintexts at will. In this scenario, a
mixed leakage of key rotation and syndrome computation is obtained.

All-Zero Ciphertext In order to minimize the impact of the syndrome computation and storage on the
leakage, we recorded the power consumption for an all-0 ciphertext. The syndrome is never updated
when the ciphertext is 0, while key rotation is always executed. Note that the all-zero word is a valid
codeword without any errors. This corresponds to a chosen ciphertext side-channel attack, without the
need to observe the corresponding plaintext.

Single-One Ciphertext As mentioned in Section the ciphertext weight is chosen to be one in this
scenario, i.e., only a single bit of the ciphertext is set. This is done by adding a one bit error in each
position of the all-0 ciphertext. There are 9602 such ciphertexts since both message and the redundant
part have 4801 bit positions.

4.1 DPA Results of the Syndrome Computation

To extract key leakage from the syndrome computation, the single-1 ciphertexts give the main contribution.
In fact, they provide the leakages of the £, syn(l) term in Equation . The syndrome-storage independent
leakage L, const (1) can either be derived by an average of several all-0 leakage traces or the average of all used
single-1 measurements. The latter approach has the advantage of not requiring additional measurements. We
chose the former approach, as it is slightly less noisy. By subtraction of the two leakage terms, we derive the
leakage of the syndrome computation only. Figure |5|shows the differential trace of the syndrome computation
with respect to hg.

12

o o
[=]
T T

|

<
'S
T

Differential Trace ASyn

02F

| | 1 | | | 1 1 |
0 500 1000 1500 2000 2500 3000 3500 4000 4500
key bit h 0]

Fig. 5. Differential trace for syndrome computation Agyn(j) for ho only. Peak shapes correspond to set bits in the
key part ho. Due to correlation in the leakage of closely located bits, the shapes overlap on several positions.

The magnification of the differential trace in Figure [6] highlights the observed characteristic shapes im-
printed by set key bits hg ; = 1. The shape on the left is caused by a single set key bit hg 115 with neighboring
key bits set as 0. The shape on the right is the result of two overlapping shapes of set bits in position 267
and 306, i. e., h0’267 = h0}306 =1.

Key Extraction To actually recover the key bits from the differential trace Agyn(j), the recovery algorithm
described in Section [3.4] is applied. The first step is to build the threshold based on features in the shape.

11

0.8 -

'syn

<
[0
o
S
= o6l X: 118 B
s Y:0.5068
s X:86 n
3 Y:0.4344 o
o 04 —
X: 150
/ Y:0.2137
02— X: 54 L}
) Y:0.1097
\'\ﬁ\\//\.
0 ! ! ! ! ! ! |
0 100 200 300 400 500 600 700

key bit ho,j

Fig. 6. Magnification of the characteristic shape of a single set key bit (left, ho,118 = 1) and two adjacent set key
bits (center left, ho,267 = ho,306 = 1). The two shapes on the right are due to two other set key bits (ho,501 = 1 and
ho,616 = 1).This plot is a magnification of the gray shaded area of Figure

As shown in Figure @, the set key bit hg ; = 1 for j = 118 caused a characteristic shape where there are two
strong features. One is a rising slope from hg j_g4 to ho ;—32 and the other one is a falling slope from hg ; to
ho,j+32-

An easy way to detect slopes is by computing the backward difference of Agyy(j) as AL, (5) = Asyn(J) —
Agyn(j — 1), which is strictly positive for rising slopes and strictly negative for falling slopes. The number of
values for which A{ (j —64) to AL, (j — 32) is positive and for which AL, (j) to AL, (j + 32) is negative
are counted separately. If both of the features exist, ho ; is taken as 1. If none of the features exist, hg ; is
taken as 0. Otherwise, it is taken as undetermined. As discussed in Section [3:4] due to the overlapping and
noise in the differential trace, there are false positive errors in the recovered key bits. The detection works
very well for set key bits that are surrounded by zeros, and less well for set bits that are located close to each
other. A partial improvement can be achieved by removing (subtracting) the leakage of detected bits from
the leakage trace and thereby decomposing an area of overlapping shapes into its components. However, this
process turned out to be quite error-prone in itself, so that we did not further explore that direction. As
we show in Section [5] such improvements to the detection algorithms are not necessary, as the recovered

information is already plenty to recover the correct key.

Table 1. Key bit recovery rates (#rec) and bit error rates (#error) for ho based on the leakage of the syndrome
computation for various thresholds and number of traces.

Key bit|Total # of| Threshold: 16|Threshold: 20| Threshold: 24| Threshold: 28
value traces |#rec| #error |#rec| #error |#rec| #error |#rec| #error
1-4801 |2636 0 3281 4 4089 12 |4702| 34
0 24801 (2672 0 3143 2 3749 6 4463 17
5-4801 |2681 1 3063 3 3573 6 4133| 10
10 - 4801 [2703 0 3035 3 3439 6 3931 8
1-4801 | 14 | 12(0) | 10 | 7 (0) 3 2 (0) 0 0(0)
1 2-4801 | 32 | 25(1) | 17 | 13(0) | 11 | 8 (0) 3 2(0)
5-4801 | 137|118 (13)| 74 [59 (2) | 30 | 21 (1) | 8 5(0)
10-4801 | 248 | 225 (1) | 166 | 145 (0) | 76 | 60 (2) | 26 | 15(0)

12

Table [1| shows the results using this recovery algorithm. For each experiment, a multiple of 4801 single-1
ciphertexts are used for computing Agy,(j). As expected, a lower threshold reduces the number of detected
zeros, while it increases the number of detected ones. However, with a higher number of detections, the
number of false positives usually goes up as well. Finally, a higher number of observed traces reduces noise
and helps a cleaner shape detection. This is directly obvious from the zero recovery results, where the
number of errors goes down for an increased number of used measurements. For the 1 recovery, the obvious
improvement for more observations is the higher number of recovered bits. However, the number of false
positives also tends to go up quickly with more measurements. This is due to the correlation effect for closely
located bits described in Section The described detection based on thresholds favors the detection of
correlated bits close to true one bits as well. This means that the detected errors are bits located close
to a true 1. In fact, for lower thresholds, the method returns sequences of ones, of which only one (of the
center ones) is a true poitive. This means that for each set key bit there will be a few false positives in the
neighboring bits as well. One could say that the ones are correctly detected, but that there is remaining
uncertainty of the exact location. The number in the parentheses shows the number of false positives that
cannot be explained by this, i. e., false positives that are not due to the choice of the threshold. We will later
see that the remaining errors in the leakage can be fixed in the final full key recovery phase in Section

4.2 DPA Results of the Key Rotation

Next, the results for the DPA of the key rotation are discussed. Since the key rotation is independent of the
ciphertext, the choice of the ciphertext could be arbitrary. However, key rotation and syndrome computation
run in parallel, leading to a mixed leakage. To determine the influence of the syndrome computation, two
different ciphertext scenarios are studied. One is the all-zero ciphertext of which all bits are set as 0 to
minimize the influence of the syndrome computation. In this scenario the syndrome remains all-0 throughout
the entire computation. The other scenario assumes random ciphertexts, where each bit in x is set with a
50% probability. For each scenario we took 256 measurements for various different keys. Note that, in the
second case, a new random ciphertext is generated for each measurement.

T T T
—— Differential trace for random ciphertext
Differential trace for all zero ciphertext
. _

< 0.8 N
[0}

(=2}

T

X

©

Q

- 06

8

€

o

QL

& 04

0.2 p
d Y
{ \
0 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Key Bith,

Fig. 7. Normalized differential leakage trace A, for the key rotation for the bits of A = ho+hi. Whether the ciphertext
is known (green/gray line) or all-0 (blue/black line) has only marginal influence on the observed leakage.

Next, we simply performed averaging over all considered traces in both scenarios. From the resulting
average trace, 4801 - 150 peaks are extracted and used to construct the differential traces A. as explained in

13

Section[3.3] Note that averaging explicitly before the computation of A, or implicitly during the computation
of A. does not influence the result. Figure [7] shows the differential traces for the key rotation, showing the
key bit position (horizontal axis) vs. the differential power (vertical axis) for all key bits. The blue (black)
line indicates the result for the all-0 ciphertext scenario while the green (gray) line indicates the results for
the random ciphertext. The latter one is slightly noisier, but nevertheless provides a well-exploitable leakage
for a low number of observations. Figure 4| shows magnifications of the differential trace to highlight the
characteristic shapes, particularly the one generated by setting the key bit h; 2901 as 1 and the neighboring
key bits as 0. The other shapes in Figure [4] result from the overlapping of characteristic shapes that occur
when set key bits of h are close to each other. We noticed that set key bits for iy result in a slightly different
shape than those of h;. Since this difference cannot as easily be distinguished, we did not further try to
exploit this information.

Key Extraction To extract keys from A., we used the algorithm described in Sec. The first step is to
define the characteristic shape. Distinguishable features such as the rising edge, the pulse in the center and
the falling edge are clearly visible in Figure [7]and are used to detect the shape. These features are quantified
using a threshold vector. Then, for each key bit h; ; in A., we check if there is a pulse at h; ;, a rising edge
at h; j_32 and a falling edge at h; j132. If more than one feature exists for h; j, we take h; ; as 1. If no feature
exists, h;; is taken as 0. If only one feature exists, h; ; is left as undetermined key bit. Depending on the
number of traces used for generating A, it can be noisy and there will be false positive errors in recovered
key bits. Errors can also be introduced by unfavorable overlapping of shapes.

Figure [§] shows the comparison of number of recovered key bits and false positive errors between the
all-zero ciphertext and random ciphertext. In Figure as the number of traces used to generate the
differential trace increases, the number of recovered key bits of 0 increases and the number of false positive
errors decreases for both cases. However, with the all-zero ciphertext, there are less positive errors. Figure 8.2
shows the comparison of the number of recovered key bits of 1 and the false positive errors. It can be seen
that using the all-zero ciphertext recovers more key bits of 1 with fewer false positive errors as the number
of traces increases. In conclusion, the all-zero ciphertext is more advantageous to the DPA of key rotation.
Hence, we use the traces with the all-zeros ciphertext in the following experiment. Note that we used five
different keys to validate the conclusion and thus the figure actually shows the average result of five keys.

5000 115
\ {14
48004
A\ 113
4600 1
o N —
8 8
= 4400t o = 0
I o Q o
7] = 2] =
0 [0 (4}
£ 4200+ ® 2 9 o
) 7) 8 Z
X 4000+ 8 X]
o Q. o 7 <
5 g 2 g
) L n] 0
: 3800) s : g £
o o
£ 3600 * L -
o s} 4
H* H*
3400 2 o 3
~ oA 42
e R = X
3200 10} & &
3000 0 0
1 2 4 8 16 32 64 128 256
of traces # of traces
8.1: Recovered 0 key bits vs. false positives. 8.2: Recovered 1 key bits vs. false positives.

Fig. 8. Key bit recovery rates for known random (o) vs. chosen all-0 (A) ciphertext for recovering 0 key bits (left)
and 1 key bits (right). Solid line indicates the number of recovered bits (out of 90 ones and 4711 zeroes, scale on
right), the dashed line indicates the number of false positives (scale on left).

14

Figure [0] shows how the chosen threshold affects the key recovery. Three different thresholds are used.
The first one (o) is exactly the value extracted from the characteristic shape in A.. The other two (A and
then x) are increased based on the first one. In Figure as the number of traces used to generate the
differential trace increases, the number of recovered 0 key bits increases and the number of false positive
errors decreases for all three thresholds. However, the less aggressive the threshold is, the lower is the number
of false positive errors. In contrast, Figure shows that with the least aggressive threshold (o), more key
bits of 1 can be recovered with a few more false positive errors. Hence, to recover more key bits of 0 with
least false positive errors, the less aggressive threshold should be used. In contrast, to recover key bits of 1
with least false positive errors, the more aggressive threshold should be used.

of recovered key bits set as 0
of false positive errors

of recovered key bits set as 1
of false positive errors

B -
101 * SN ¢
0 " L - - - - b — —p— -

S — —0— —6. -

e

“q‘{

2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
of traces # of traces

9.1: Recovered 0 key bits vs. false positives. 9.2: Recovered 1 key bits vs. false positives.

Fig. 9. Key bit recovery rates for a range of detection thresholds for recovering 0 key bits (left) and 1 key bits (right).
Solid line indicates the number of recovered bits (out of 90 ones and 4711 zeroes, scale on right), the dashed line
indicates the number of false positives (scale on left). Markers o, then A, and then x indicate the increasing values
for the threshold.

Overall, it can be seen that with as little as 10 measurements, more than half the key bits can be
recovered with a remaining number of errors that is small enough to allow for efficient error correction.
With 100 measurements and a careful choice of thresholds, the determined bits are already error-free with
high probability. This strong leakage is partially due to the fact that 150 leakages are extracted from each
measurement, strongly amplifying the amount of leakage gained from each individual trace. Furthermore,
unlike the leakage of the syndrome computation, the characteristic shape of the key rotation favors precise
localization and straightforward error-minimizing detection.

5 Full Key Recovery

Next we analyze how to recover the full key of QC-MDPC McEliece in a scenario where the adversary has
knowledge of several 1 bits of the key as well as several 0 bits of the key, possibly with few errors. We show
that the structure of the key can be used to recover the remaining uncertain bits efficiently, or to detect
remaining errors.

15

5.1 Exploiting a Connection between Secret Key and Public Key

As described in Section the secret key consists of two related parts, hg and h;. Due to the relation
between the secret hg, h; and the public matrix (), we can express hg as:

ho = hy - QT (3)

Likewise, given hg, one can compute hy, since @ is invertible. This means that once the first half of the
secret key is recovered, the second half can be computed using the public key. More interestingly, this
relationship can be used for error detection for each h; independently: since @ is of high weight (each bit
has approximately a 50% chance of being 1), even a single bit error in h} will result in a high weight of
a consequently derived hZ, i.e., wt(h¥) ~ r/2. A correct h;, however, will result in an h; of low weight, in
our case wt(h;) = 45. Unfortunately, we are currently not aware how slightly faulty or noisy information of
ho and h; can be combined more efficiently without a trial and error approach using the abovementioned
relationship.

In one of the attacks described above the adversary observes a combined leakage of hg and hy. This is not
a problem, since knowledge of hg & h; can also enable key recovery. Adding h; on both sides of Equation
we obtain

ho ® hy = hy - (QT @ Lugor). (4)

If side-channel leakage allows us to obtain the combined leakage ho @ h1 and the rank of Q7 @ I4g01 is high,
we can solve this linear system of equations for hy with a computer algebra system like Magma [Bosma
et al [1997]—and then derive hy from Equation . In our experiments, the rank observed for Q7 @ Ig01
was 4800, resulting in two candidate solutions with only one of them having the correct Hamming weight.
So in cases where all ones can be correctly identified, Equations and enable a practical key recovery.

The syndrome computation leakage provides information on the positions of ones in hg or h1, but error
correction would be essential to correct positions that are slightly off. Guessing error positions becomes
infeasible quickly, even with small improvements over an exhaustive search of (48l01) possibilities for [errors.
We did not try to devise elaborate error-correction strategies, as a different attack strategy which relies on
exploiting detected zeroes turned out to be quite effective. We explain this strategy next.

5.2 Efficient Key Recovery From Partial Information

After having identified several 1 bits as well as several 0 bits of the secret key correctly, we aim at an efficient
way to recover remaining unknown or uncertain key bits. For this, we define By, B; and B, as index sets
indicating the locations of definite zeroes, definite ones and positions of undetermined bits in hg @ h; such
that

ByUB;UB, ={0,1,...,4800} . (5)

positions in By indicate that both hg and hy are zero in that position, while positions in By will mean a one
in either hg or hlﬁ Hence, the uncertain positions for h; are B}L = B; U B,, and with Iverson’s convention
[Knuth} [1992] we can summarize our knowledge of ho @ hy and hy as

ho @ hi1 =(1-[i € Bi] +u- [i € Bu])g<ij<sgoo and
hy = <“ i € Bvﬂ>ogi54800’

where u indicates unknown bits (“erasures”). So Equation (4)) yields

(1-[i € Ba] +u- [i € Bul)g<i<asoo = (u-lie BSLDOQS@OO Q" @ Lusor)

6 The (rare) case of ho and hq having a one in the same position is not considered here, as this situation is quite
apparent from the side-channel leakage.

16

As the indices in By indicate definite zeroes in hg @ hy and hi, the corresponding rows in the matrix
QT ® 14501 will always be multiplied with a zero coefficient. We remove these | By| rows and the corresponding
known O-entries in hp, obtaining an updated equation system

(1-[i € Bai] +u-[i € Bul)g<icasoo = (u-lie BiDigBo Q. (6)

with a (smaller) matrix Q' € IE"glgOl_‘B"DMSOl. There are 4801 — |By| — | B;| unknown bits on the left- and
4801 — | Bp| unknown bits on the right-hand side of Equation @ As we are only interested in finding hq,
we can try to eliminate unknown values in hg @ h; by dropping columns from @Q'. One may hope that | B|
columns can be eliminated without)" dropping in rank, so that we end up with a linear system of equations

(1-[i € Bil)sgp, = (u-[i € B]),gp, - Q" (7)
in 4801 — | Bp| unknowns and a matrix Q" € IF§4801_‘B°|)X(4801_‘B“|). If |B,| < |Bp| one may hope that this
linear system of equations can be solved and yields a unique candidate for h;.

To check the practical applicability and feasibility of this approach, we ran several experiments in
Magma [Bosma et al., [1997], solving the equation system given in for several different vectors By and Bj.
We were particularly interested in the situation where knowledge of 1-positions in hg @ hq is ignored (i.e.,
B; = 0), because in our measurements the O-detection was more reliable. With By = (), the resulting system
of equations is homogeneous and thus in addition to h; also has the trivial solution. From Equation (5 we
see that the condition |B,| < |By| now implies that |By| > [4801/2]. Staying above this threshold, in our
experiments we obtained no more than 8 candidates for hy, and the weight condition identified the correct
secret key uniquely.

For | By| < 2400, the kernel of the matrix Q" in Equation gets larger quickly and we obtain additional
candidates for hy, but finding the correct hy may still be feasible by looking at the Hamming weight of the
candidates as long as the number of candidates is not overwhelming.

The results in Section [] show that for the target implementation the attacker can expect to recover more
information from the side-channel than necessary for recovering the secret key. Having |By| comfortably
above the threshold of 2400, a few false positives in By can be dealt with efficiently: Instead of using all of
these bit positions, one can select subsets of size 2401 at random. Assuming a hypergeometric distribution,
with f false positives among the |By| indices, the probability of guessing 2401 error-free positions is

(%7

B
(01
For instance, with |By| = 3281 and f = 4, this probability is still about 2~7-6.
In summary, as long as more than half the bits of the key can be recovered with a low error rate, the
remaining key bits can be determined using the above-described algebraic methods. Knowledge of additional
bits of hg @ h; facilitates the handling of possibly remaining errors. Not being able to recover more than half

the number of key bits can make the search infeasible, although—due to the highly biased key—guessing a
few additional zeroes may still be an option.

Remark 1. If the target platform allows the separation of leakages for ho and hi, the above strategy naturally
carries over when Equation (instead of Equation) is used as starting point.

6 Preventing the Attacks

The described attacks are somewhat specific to the implementation choices of the target, but can be adjusted
to other implementation parameters as well. For example, an implementation that does not process hg and
hy in parallel would simplify the attack and amplify the leakage. Implementations that use a different word
size (the targeted implementation processes 32-bit words due to the BRAM structure of the FPGAs) will

17

influence the described attack as well. The smaller the word size, the more leakages per target bit, most likely
facilitating the attacks further. However, a massively parallelized implementation such as the one described
in [Heyse et al.| [2013] could impede the described attacks, since all bits would always be leaking in parallel.
One might however still be able to exploit resource-specific leakages, e.g., leakage from a carry register.
Furthermore, such an implementation is very resource-consuming and might not find widespread use.

A more reliable way to prevent these attacks are side-channel countermeasures. A good overview of
standard DPA countermeasures is available in [Mangard et al.,[2007]. Countermeasures are typically classified
as masking or hiding countermeasures. Both classes can be applied to an implementation of MDPC McEliece
and, if done correctly, should prevent the above-mentioned attacks. Note that masking would need to be
applied to the syndrome and the key, since the presented attacks target both leakage sources separately. The
disadvantage of SCA countermeasures is usually the large performance overhead they introduce. Masking,
for example, typically doubles the amount of storage needed for internal states. So far, SCA countermeasures
for (QC-)MDPC McEliece have not been studied in detail in the literature, making it an interesting subject
for future work.

To spur the discussion, we point out a plausible solution strategy that should prevent the introduced
attacks while maintaining a comparably low footprint. All of the described attacks take advantage of the
knowledge of when a specific key bit is processed. This advantage only holds for deterministic execution
orders. A countermeasure that randomizes the execution order is known as shuffling and has been discussed
in detail, e. g., in [Tillich and Herbst| [2008]. Shuffling the syndrome computation is fairly simple. Ciphertext
bits and key bits could be processed in a random order. This would require the implementation to be able to
rotate the private key and possibly the syndrome by various offsets while ensuring that these offsets are not
detectable by the adversary. Implementing shuffling in such a way that no additional leakages are introduced
is not a trivial task, as discussed in [Veyrat-Charvillon et all 2012], for instance. However, such an imple-
mentation can be realized with comparably low area overhead, since no new arithmetic units nor additional
storage, e. g., for masks, would be required. Furthermore, common counterattacks such as combing (cf. again
to |Tillich and Herbst| [2008]) would not be helpful in this scenario, since it would require a summation over
all clock cycles, making all key bits leak in parallel and thereby making them indistinguishable.

7 Conclusion

This work presents the first successful differential power analysis of a state-of-the-art McEliece implementa-
tion based on quasi-cyclic MDPC codes. The analysis is not affected by a potentially present padding that
is commonly used to achieve CCA security. Two different leakages are exploited. Both exploited leakages
occur during the syndrome computation step of the decryption. The leakage of the syndrome register gives
information on the two secret key halves hy and hy separately, but is slightly vague in the exact position of
set key bits. Thousands of chosen ciphertext traces are necessary for successful key recovery. The attack on
the key rotation recovers a combined leakage of hy and h;. The leakage model provides precise and strong
leakage. The resulting attack is independent of the ciphertext and succeeds with tens of traces. A significant
part of the key recovery stems from the relation between the private key and the known public key, which
can be exploited to ease the key recovery process. In fact, recovering only half the bits of the (highly biased)
secret key with a low error rate is sufficient for full key recovery.

Acknowledgments. This work is supported by the National Science Foundation under grant CNS-1261399
and grant CNS-1314770. IvM is supported by the German Federal Ministry of Economics and Technology
(Grant 01ME12025 SecMobil). RS is supported by NATO’s Public Diplomacy Division in the framework of
“Science for Peace”, Project MD.SFPP 984520.

18

Bibliography

Roberto Avanzi, Simon Hoerder, Dan Page, and Michael Tunstall. Side-channel attacks on the McEliece and
Niederreiter public-key cryptosystems. Journal of Cryptographic Engineering, 1(4):271-281, 2011.

Elwyn R. Berlekamp, Robert J. McEliece, and Henk C.A. van Tilborg. On the Inherent Intractability of
Certain Coding Problems (Corresp.). IEEE Transactions on Information Theory, 24(3):384-386, May
1978.

Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language.
Journal of Symbolic Computation, 24:235-265, 1997.

Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich. Algebraic Cryptanalysis
of McEliece Variants with Compact Keys. In Henri Gilbert, editor, Advances in Cryptology — EURO-
CRYPT 2010, volume 6110 of Leture Notes in Computer Science, pages 279-298, Berlin Heidelberg, 2010.
International Association for Cryptologic Research, Springer.

Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, Frédéric de Portzamparc, and Jean-Pierre Tillich.
Structural Cryptanalysis of McEliece Schemes with Compact Keys. Cryptology ePrint Archive: Report
2014/210, March 2014a. Available at http://eprint.iacr.org/2014/210.

Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, Frédéric de Portzamparc, and Jean-Pierre Tillich.
Folding Alternant and Goppa Codes with Non-Trivial Automorphism Groups. Cryptology ePrint Archive:
Report 2014/353, May 2014b. Available at http://eprint.iacr.org/2014/353.

Robert Gallager. Low-density Parity-check Codes. Information Theory, IRE Transactions on, 8(1):21-28,
1962.

Stefan Heyse, Amir Moradi, and Christof Paar. Practical Power Analysis Attacks on Software Implemen-
tations of McEliece. In Nicolas Sendrier, editor, Post-Quantum Cryptography — PQCrypto 2010, volume
6061 of Lecture Notes in Computer Science, pages 108-125, Berlin Heidelberg, 2010. Springer.

Stefan Heyse, Ingo von Maurich, and Tim Giineysu. Smaller Keys for Code-Based Cryptography: QC-MDPC
McEliece Implementations on Embedded Devices. In Guido Bertoni and Jean-Sébastien Coron, editors,
Cryptographic Hardware and Embedded Systems — CHES 2013, volume 8086 of Lecture Notes in Computer
Science, pages 273292, Berlin Heidelberg, 2013. Springer.

W. Cary Huffman and Vera Pless. Fundamentals of Error-Correcting Codes. Cambridge University Press,
United Kingdom, 2010.

Donald E. Knuth. Two Notes on Notation. The American Mathematical Monthly, 99(5):403—-422, May 1992.

Kazukuni Kobara and Hideki Imai. Semantically Secure McEliece Public-Key Cryptosystems —Conversions
for McEliece PKC-. In Kwangjo Kim, editor, Practice and Theory in Public Key Cryptosystems — PKC
’01, volume 1992 of Lecture Notes in Computer Science, pages 19-35, Berlin Heidelberg, 2001. Springer.

Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to differential power analysis.
Journal of Cryptographic Engineering, 1(1):5-27, 2011.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Michael Wiener, editor,
Advances in Cryptology — CRYPT0’99, volume 1666 of Lecture Notes in Computer Science, pages 388-397,
Berlin Heidelberg, 1999. Springer.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Revealing the Secrets of
Smartcards. Springer, US, 2007.

Robert J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space Network
Progress Report, 44:114-116, January 1978.

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. MDPC-McEliece:
New McEliece Variants from Moderate Density Parity-Check Codes. Cryptology ePrint Archive, Report
2012/409, 2012. http://eprint.iacr.org/2012/409.

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. MDPC-McEliece: New
McEliece variants from Moderate Density Parity-Check codes. In Proceedings of the 2013 IEEFE Interna-
tional Symposium on Information Theory (ISIT), pages 2069-2073. IEEE, 2013.

http://eprint.iacr.org/2014/210
http://eprint.iacr.org/2014/353
http://eprint.iacr.org/2012/409

Ryo Nojima, Hideki Imai, Kazukuni Kobara, and Kirill Morozov. Semantic security for the McEliece cryp-
tosystem without random oracles. Designs, Codes and Cryptography, 49(1-3):289-305, December 2008.
Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms On a Quantum

Computer. SIAM J. Comput., 26(5):1484-1509, 1997. ISSN 0097-5397.

Abdulhadi Shoufan, Falko Strenzke, H.Gregor Molter, and Marc Stottinger. A Timing Attack against Patter-
son Algorithm in the McEliece PKC. In Donghoon Lee and Seokhie Hong, editors, Information, Security
and Cryptology — ICISC 2009, volume 5984 of Lecture Notes in Computer Science, pages 161-175. Springer,
Berlin Heidelberg, 2010.

Falko Strenzke. A Timing Attack against the Secret Permutation in the McEliece PKC. In Nicolas Sendrier,
editor, Post-Quantum Cryptography — PQCrypto 2010, volume 6061 of Lecture Notes in Computer Science,
pages 95-107, Berlin Heidelberg, 2010. Springer.

Falko Strenzke, Erik Tews, H. Gregor Molter, Raphael Overbeck, and Abdulhadi Shoufan. Side Channels
in the McEliece PKC. In Johannes Buchmann and Jintai Ding, editors, Post-Quantum Cryptography —
PQCrypto 2008, volume 5299 of Lecture Notes in Computer Science, pages 216-229, Berlin Heidelberg,
2008. Springer.

Stefan Tillich and Christoph Herbst. Attacking State-of-the-Art Software Countermeasures — A Case Study
for AES. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded Sys-
tems — CHES 2008, volume 5154 of Lecture Notes in Computer Science, pages 228-243. Springer, Berlin
Heidelberg, 2008.

Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and Frangois-Xavier Standaert. Shuffling
against Side-Channel Attacks: A Comprehensive Study with Cautionary Note. In Xiaoyun Wang and
Kazue Sako, editors, Advances in Cryptology — ASIACRYPT 2012, volume 7658 of Lecture Notes in
Computer Science, pages 740-757. Springer, Berlin Heidelberg, 2012.

Ingo von Maurich and Tim Guneysu. Lightweight code-based cryptography: QC-MDPC McEliece encryption
on reconfigurable devices. In Design, Automation and Test in Furope — DATE 201/, pages 1-6. IEEE,
2014.

Carolyn Whitnall, Elisabeth Oswald, and Francois-Xavier Standaert. The Myth of Generic DPA...and the
Magic of Learning. In Josh Benaloh, editor, Topics in Cryptology — CT-RSA 201/, volume 8366 of Lecture
Notes in Computer Science, pages 183-205, International Publishing, 2014. Springer.

20

	Differential Power Analysis of a McEliece Cryptosystem

