
HAL Id: hal-01382954
https://hal.science/hal-01382954

Submitted on 17 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic Construction of UC-Secure Oblivious Transfer
Olivier Blazy, Céline Chevalier

To cite this version:
Olivier Blazy, Céline Chevalier. Generic Construction of UC-Secure Oblivious Transfer. Applied
Cryptography and Network Security - 13th International Conference, ACNS 2015, New York, NY,
USA, June 2-5, 2015, Revised Selected Papers, 2015, New York, USA, United States. pp.65 - 86,
�10.1007/978-3-319-28166-7_4�. �hal-01382954�

https://hal.science/hal-01382954
https://hal.archives-ouvertes.fr


Generic Construction of UC-Secure Oblivious Transfer

Olivier Blazy1 and Céline Chevalier2

1 Université de Limoges, XLim, France
2 Université Panthéon-Assas, Paris, France

Abstract. We show how to construct a completely generic UC-secure oblivious
transfer scheme from a collision-resistant chameleon hash scheme (CH) and a
CCA encryption scheme accepting a smooth projective hash function (SPHF).
Our work is based on the work of Abdalla et al. at Asiacrypt 2013, where the
authors formalize the notion of SPHF-friendly commitments, i.e. accepting an
SPHF on the language of valid commitments (to allow implicit decommitment),
and show how to construct from them a UC-secure oblivious transfer in a generic
way. But Abdalla et al. only gave a DDH-based construction of SPHF-friendly
commitment schemes, furthermore highly relying on pairings. In this work, we
show how to generically construct an SPHF-friendly commitment scheme from
a collision-resistant CH scheme and an SPHF-friendly CCA encryption scheme.
This allows us to propose an instanciation of our schemes based on the DDH, as
efficient as that of Abdalla et al., but without requiring any pairing. Interestingly,
our generic framework also allows us to propose an instantiation based on the
learning with errors (LWE) assumption. For the record, we finally propose a last
instanciation based on the decisional composite residuosity (DCR) assumption.
Keywords. Commitments, Smooth Projective Hash Functions, CCA encryption,
Oblivious Transfer, UC Framework.

1 Introduction

Oblivious Transfer (OT) was introduced in 1981 by Rabin [Rab81] as a way to allow a
receiver to get exactly one out of k messages sent by another party, the sender. In these
schemes, the receiver should be oblivious to the other values, and the sender should
be oblivious to which value was received. This primitive has been widely used and
studied in the community, and recently, the authors of [ABB+13] propose a generic way
to obtain a UC-secure oblivious transfer scheme from an SPHF-friendly commitment
scheme, and an instantiation based on DDH. In this paper, our goal is to strengthen their
result to obtain a truly generic way to obtain a UC-secure oblivious transfer scheme, so
we follow their path of construction from commitment schemes.

Commitment schemes have become a very useful tool used in cryptographic proto-
cols. These two-party primitives (between a committer and a receiver) are divided into
two phases. In a first commit phase, the committer gives the receiver an analogue of
a sealed envelope containing a value m, while in the second opening phase, the com-
mitter reveals m in such a way that the receiver can verify it was indeed m that was
contained in the envelope. It is required that a committer cannot change the committed
value (i.e., he should not be able to open to a value different from the one he commit-
ted to), this is called the binding property. It is also required that the receiver cannot



learn anything about m before the opening phase, this is called the hiding property. El
Gamal [ElG84] or Cramer-Shoup [CS02] encryptions are famous examples of perfectly
binding commitments, and Pedersen encryption [Ped91] is the most known example of
perfectly hiding commitments.

In many applications, for example password-based authenticated key-exchange in
which the committed value is a password, one wants the decommitment to be implicit,
which means that the committer does not really open its commitment, but rather con-
vinces the receiver that it actually committed to the value it pretended to. In [ACP09],
the authors achieved this property thanks to the notion of Smooth Projective Hash Func-
tions [CS02, GL03], which has been widely used since then (see [KV11, BBC+13b,
ABB+13] for instance). These hash functions are defined such as their value can be
computed in two different ways if the input belongs to a particular subset (the lan-
guage), either using a private hashing key or a public projection key along with a pri-
vate witness ensuring that the input belongs to the language. The hash value obtained is
indistinguishable from random in case the input does not belong to the language (prop-
erty of smoothness) and in case the input does belong to the language but no witness is
known (property of pseudo-randomness).

An additional difficulty arises when one wants to prove the protocols in the uni-
versal composability framework proposed in [Can01]. In a nutshell, security in the UC
framework is captured by an ideal functionality (in an ideal world) and a protocol is
proven secure if, given any adversary to the protocol in the real world, one can con-
struct a simulator of this adversary such that no environment can distinguish between
the execution in the ideal world (between dummy players, the ideal functionality and the
simulator of the adversary) and the execution in the real world (between the real players
executing the real protocol and interacting between themselves and the adversary) in a
non-negligible way. Skipping the details, when the protocol makes use of commitments,
this usually forces those commitments to be both extractable (meaning that a simulator
can recover the value m committed to thanks to a trapdoor) and equivocable (meaning
that a simulator can open a commitment to a value m′ different from the value m it
committed to thanks to a trapdoor), which is quite a difficult goal to achieve.

The now classical way [CF01, ACP09, ABB+13] to achieve both extractability and
equivocability is to combine an equivocable CPA encryption scheme (such as Peder-
sen [Ped91]) and an extractable CCA encryption scheme (such as Cramer-Shoup [CS02])
and to link them with an SPHF in order to obtain an implicit decommitment. What we
show in this paper is that we can broaden the class of primitives that can be used for
the equivocable part, by using chameleon hashes (introduced in [KR00]), which can be
seen as conceptually easier building blocks to understand and to construct.

Related Work. The first UC-secure commitment schemes were given by [CF01] and
[DN02] and the former were the first to formalize the methodology described in the
previous section (combining an equivocable primitive and an extractable primitive).
Building on their idea, the authors of [ACP09] add the notion of smooth projective hash
function to obtain implicit decommitment and obtain the first UC-secure password-
authenticated key-exchange in the standard model as an application. Many works have
been done in the same field since then, for instance [Lin11, FLM11, BCPV13] for the
UC-commitment schemes and [KV11,BBC+13b] for the UC PAKE schemes, in which

2



the relations between commitments and SPHF have proven being very useful. This
relation was formalized in [ABB+13] by the notion of SPHF-friendly commitments,
expliciting the properties to be fulfilled by the commitment in order to accept an SPHF
(and thus to be very useful for all kinds of applications). The authors also prove that
their new notion of SPHF-friendly commitments is strictly stronger than the notion
of UC commitments and give an example of such a commitment scheme based on
Haralambiev commitment [Har11, Section 4.1.4] and Cramer-Shoup encryption, in a
pairing-friendly setting. They also propose a generic way to construct UC one-round
PAKE and oblivious transfer scheme from this primitive.

Many oblivious transfer schemes have been proposed since [Rab81], including some
in the UC framework [NP01,CLOS02]. Recently, some instantiations have tried to reach
round-optimality [HK07], or low communication costs [PVW08]. As already explained,
the authors of [ABB+13] propose a generic way to obtain a UC-secure oblivious trans-
fer scheme from an SPHF-friendly commitment scheme, and an instantiation based on
DDH. Choi et al. [CKWZ13] also propose a generic method and an efficient instan-
tiation secure against adaptive corruptions in the CRS model with erasures, based on
DDH, but it is only 1-out-of-2 and it does not scale to 1-out-of-k OT, for k > 2.

Contributions1. Our first contribution is to give a generic construction of SPHF-friendly
commitments, which have proven since [ABB+13] to be an extremely useful primitive,
from two simple blocks: a collision-resistant chameleon hash (CH) function which is
verifiable (either publicly or for the receiver only) and an SPHF-friendly CCA encryp-
tion scheme. The extra requirement on the CH function is simple to achieve as soon as
only classical algebraic operations are applied to the randomness, and SPHF-friendly
encryption is now well-known since [CS02], with several instances (contrary to SPHF-
friendly commitments, which is a difficult task). We then give three instantiations of
this SPHF-friendly scheme, respectively based on DDH, LWE and DCR.

Our construction thus allows us to provide, as a second and main contribution, a
generic way to obtain a UC-secure OT scheme from the same building blocks (CH and
CCA encryption) and three concrete instantiations from DDH, LWE and DCR. While the
construction in [ABB+13] is an ad hoc solution with pairings, ours is generic and does
not specifically induce pairings. Furthermore, our 3 instantiations come straightforward
from our generic framework (and [ABB+13] can be derived from it).

Concerning complexity comparisons, the most studied assumptions in the literature
are variants of DDH. Our version of 1-out-of-t oblivious transfer is apparently almost
equivalent to that given in [ABB+13] in raw number of elements because we need a
communication complexity of 9m+6 elements in G and a scalar, compared to 8m+42

in G1, m in G2 and a scalar (with t = 2m), but since we do not need a pairing-friendly
setting, none of our elements have to be bigger, hence the comparison is in favor of our
new proposal (by an equivalent of m/2− 1 elements). (Those numbers do not take into
account in both cases the last message that transmits the database, adding an additional
m elements in both cases).

1 This is an extended abstract. The full paper [BC15] is available at the Cryptology Eprint
Archive, http://eprint.iacr.org.

2 It should be noted that their original computation was off by one scalar, probably half the
projection key was missing.

3



To compare with existing protocols in the case of 1-out-of-2 under SXDH, [ABB+13]
needs 12 elements in G1, and 1 in G2 during 3 rounds (some elements previously in G2

can be transferred into G1 in this case, and one can be skipped), [CKWZ13] requires
26 group elements and 7 scalars in 4 rounds ; and using [GWZ09] to achieve a constant-
size CRS, [PVW08] requires 8 rounds and 51 elements. Using plain DDH, we need 15
group elements (but because [ABB+13] requires one in G2 we have strictly the same
communication cost with a better scaling and no pairing computation) hence under
classical instantiation both schemes require to transmit roughly 3200 bits of data.

Communication cost comparisons of various Elliptic Curve based OT schemes

Paper Assumption # Group elements # Rounds
Static Security

[PVW08] + [GWZ09] SXDH 51 8
[CKWZ13] SXDH 26 + 7s 4

Adaptive Security
[ABB+13] SXDH 12 G1 + 1 G2 3
This paper DDH 15 3

Considering classical instantiations on Barreto-Naehrig Curves [BN05], elements
on a DDH curve are at least twice smaller than the big ones on a SXDH one, making
our scheme have a better scaling for 1-out-of-m OT. With recent attacks exploiting the
existence of a pairing, managing to maintain the efficiency while removing the need for
a pairing structure is a strong asset of elliptic curve based cryptography. For construc-
tions based on generic hypothesis, the construction of [PVW08] leads to a non constant
size CRS (in the number of user), while ours achieve constant (and small) CRS size.

2 Definitions

In this section we recall classical definitions and tools that are going to be useful in the
rest of the paper.

Commitments. Formal definitions and results from [ABB+13] are given in the full
version but we give here an informal overview to help the unfamiliar reader with the
following. A non-interactive labelled commitment scheme C is defined by three algo-
rithms:

– SetupCom(1K) takes as input the security parameter K and outputs the global pa-
rameters, passed through the CRS ρ to all other algorithms;

– Com`(x) takes as input a label ` and a message x, and outputs a pair (C, δ), where
C is the commitment of x for the label `, and δ is the corresponding opening data
(a.k.a. decommitment information). This is a probabilistic algorithm.

– VerCom`(C, x, δ) takes as input a commitment C, a label `, a message x, and the
opening data δ and outputs 1 (true) if δ is a valid opening data for C, x and `. It
always outputs 0 (false) on x = ⊥.

4



The basic properties required for commitments are correctness (for all correctly
generated CRS ρ, all commitments and opening data honestly generated pass the ver-
ification VerCom test), the hiding property (the commitment does not leak any infor-
mation about the committed value) and the binding property (no adversary can open a
commitment in two different ways).

A commitment scheme is said equivocable if it has a second setup SetupComT(1K)
that additionally outputs a trapdoor τ , and two algorithms

– SimCom`(τ) that takes as input the trapdoor τ and a label ` and outputs a pair
(C, eqk), where C is a commitment and eqk an equivocation key;

– OpenCom`(eqk, C, x) that takes as input a commitment C, a label `, a message x,
an equivocation key eqk, and outputs an opening data δ for C and ` on x.

such as the following properties are satisfied: trapdoor correctness (all simulated com-
mitments can be opened on any message), setup indistinguishability (one cannot dis-
tinguish the CRS ρ generated by SetupCom from the one generated by SetupComT)
and simulation indistinguishability (one cannot distinguish a real commitment (gener-
ated by Com) from a fake commitment (generated by SCom), even with oracle access
to fake commitments), denoting by SCom the algorithm that takes as input the trap-
door τ , a label ` and a message x and which outputs (C, δ) $← SCom`(τ, x), computed
as (C, eqk) $← SimCom`(τ) and δ ← OpenCom`(eqk, C, x).

A commitment scheme C is said extractable if it has a second setup SetupComT(1K)
that additionally outputs a trapdoor τ , and a new algorithm

– ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and a label
`, and outputs the committed message x, or ⊥ if the commitment is invalid.

such as the following properties are satisfied: trapdoor correctness (all commitments
honestly generated can be correctly extracted: for all `, x, if (C, δ) $← Com`(x) then
ExtCom`(C, τ) = x), setup indistinguishability (as above) and binding extractability
(one cannot fool the extractor, i.e., produce a commitment and a valid opening data to
an input x while the commitment does not extract to x).

We recall in Section 3 the difficulties implied by a commitment being both equivo-
cable and extractable and give a construction of such a commitment.

Smooth Projective Hash Function. Smooth projective hash functions (SPHF) were
introduced by Cramer and Shoup in [CS02] for constructing encryption schemes. A
projective hashing family is a family of hash functions that can be evaluated in two
ways: using the (secret) hashing key, one can compute the function on every point
in its domain, whereas using the (public) projected key one can only compute the
function on a special subset of its domain. Such a family is deemed smooth if the
value of the hash function on any point outside the special subset is independent of
the projected key. The notion of SPHF has already found applications in various con-
texts in cryptography (e.g. [GL03, Kal05, ACP09]). A Smooth Projective Hash Func-
tion over a language L ⊂ X , onto a set G, is defined by five algorithms (Setup,
HashKG,ProjKG,Hash,ProjHash):

5



– Setup(1K) where K is the security parameter, generates the global parameters param
of the scheme, and the description of an NP language L;

– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W ), derives the projection key hp from the hashing key hk.
– Hash(hk, (L, param),W ), outputs a hash value v ∈ G, thanks to the hashing key
hk and W .

– ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, thanks to the pro-
jection key hp and the witness w that W ∈ L.

In the following, we consider L as a hard-partitioned subset of X , i.e. it is compu-
tationally hard to distinguish a random element in L from a random element in X \ L.

A Smooth Projective Hash Function SPHF should satisfy the following properties:

– Correctness: Let W ∈ L and w a witness of this membership. Then, for all hashing
keys hk and associated projection keys hp we have Hash(hk, (L, param),W ) =
ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \ L the following distributions are statistically indis-
tinguishable:

∆0 =

(L, param,W, hp, v)
param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ),
v = Hash(hk, (L, param),W )


∆1 =

{
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W ), v
$← G

}
.

Labelled Encryption Scheme. A labelled public-key encryption scheme E is defined
by four algorithms:

– Setup(1K), where K is the security parameter, generates the global parameters
param of the scheme;

– KeyGen(param) generates a pair of keys, the public encryption key pk and the
private decryption key sk;

– Encrypt`(pk,m; r) produces a ciphertext c on the input messagem ∈M under the
label ` and encryption key pk, using the random coins r;

– Decrypt`(sk, c) outputs the plaintext m encrypted in c under the label `, or ⊥ for
an invalid ciphertext.

An encryption scheme E should satisfy the following properties

– Correctness: for all key pair (pk, sk), any label `, all random coins r and all mes-
sages m, Decrypt`(sk,Encrypt`(pk,m; r)) = m.

6



– Indistinguishability under
chosen-ciphertext attacks: this
security notion IND-CCA can
be formalized by the following
experiments Expind-cca-b

A (K),
where the adversary A trans-
fers some internal state state
between the various calls
FIND and GUESS, and makes
use of the oracle ODecrypt:

Expind-cca-b
A (K)

param
$← Setup(1K)

(pk, sk)
$← KeyGen(param)

(`∗,m0,m1, state)← AODecrypt·(·)(FIND : pk)
c∗ ← Encrypt`

∗
(pk,mb)

b′ ← AODecrypt·(·)(state,GUESS : c∗)
If ((`∗, c∗) ∈ CT ) Return 0
Else Return b′

• ODecrypt`(c): This oracle outputs the decryption of c under the label ` and the
challenge decryption key sk. The input queries (`, c) are added to the list CT .

These experiments implicitly define the advantages Advind-cca
E (A,K) and Advind-cca

E (t).
One sometimes uses the notation Advind-cca

E (qd, t) to bound the number of decryp-
tion queries.

In the following we also want two additional properties. First we want an additional
functionality, we want to be able to supersede the decryption, by an implicit decommit-
ment. So we require the encryption to admit an efficient implicit decommitment. We
will call an SPHF-friendly encryption, an encryption where there exists an SPHF for
the Language of valid ciphertexts of a message m using as sole witness the randomness
used in the encryption.

We then are going to want to strengthen the idea of ind-cca encryption. In the sense
that we are going to encrypt vector of messages, and when the challenges vectors shares
some component we want to provide the randomness used specifically for those compo-
nents to the adversary. (Intuitively this would be done to allow an honest computation
of the SPHF on this part). In [ABB+13], they call such property VIND-PO-CCA for
Partial Opening, and show that Cramer-Shoup encryption obeys such property. We re-
call this security notion in the full version for the sake of completeness. We denote by
nEncrypt`(pk,m; r) and nDecrypt`(sk, c) the corresponding algorithms for encryption
or decryption of vectors of n bits.

Chameleon Hash. A Chameleon Hash Function is traditionally defined by three algo-
rithms CH = (KeyGen,CH,Coll):

– KeyGen(K): Outputs the chameleon hash key ck and the trapdoor tk;
– CH(ck,m; r): Picks a random r, and outputs the chameleon hash a.
– Coll(ck,m, r,m′, tk): Takes as input the trapdoor tk, a start message and random-

ness pair (m, r) and a target message m′ and outputs a target randomness r′ such
that CH(ck,m; r) = CH(ck,m′; r′).

The standard security notion for CH is collision resistance, which means it is in-
feasible to find (m1, r1), (m2, r2) such that CH(ck,m1, r1) = CH(ck,m2, r2) and
m1 6= m2 given only the Chameleon hash key ck. Formally, CH is (t, ε) − coll if
for the adversary A running in time at most t we have:

Pr

[
(ck, tk)

$← KeyGen(K); ((m1, r1), (m2, r2))
$← A(ck)

∧ CH(ck,m1; r1) = CH(ck,m2; r2) ∧m1 6= m2

]
≤ ε.

7



However, any user in possession of the trapdoor tk is able to find a collision using Coll.
Additionally, Chameleon Hash functions have the uniformity property, which means
the hash value leaks nothing about the message input. Formally, for all pair of messages
m1 and m2 and the randomly chosen r, the probability distributions of the random
variables CH(ck,m1, r) and CH(ck,m2, r) are computationally indistinguishable.

We need here the hash value to be verifiable, so that we add two VKeyGen and Valid
algorithms (executed by the receiver) and we modify the existing algorithms as follows:

– VKeyGen(ck): Outputs the chameleon designated verification key vk and the trap-
door vtk. This trapdoor can be empty or public if the chameleon hash is publicly
verifiable.

– CH(ck, vk,m; r): Picks a random r, and outputs the chameleon hash a as well as
the witness d, i.e. the corresponding data needed to verify a.

– Valid(ck, vk,m, a, d, vtk): Allows to check that the sender knows how to open a
Chameleon Hash a to a specific value m for the witness d. The verification can be
public if vtk is empty or public, or specific to the receiver otherwise.

– Coll(ck, vk,m, r,m′, tk): Takes as input the public keys, the trapdoor tk, a start
messagem and randomness r and a target messagem′ and outputs a target random-
ness r′ such that if CH(ck, vk,m; r) = (a, d), then CH(ck, vk,m′; r′) = (a, d′).

Once again, we expect the chameleon hash to be collision resistant on the first
part of the output, which means it is infeasible to find (m1, r1), (m2, r2) such that
CH(ck, vk,m1, r1) = (a, d1) and CH(ck,m2, r2) = (a, d2) and m1 6= m2 given only
the Chameleon public keys ck and vk.

We expect the verification to be sound, which means that, given a tuple (m, a, d)
satisfying Valid(ck, vk,m, a, d, vtk), there always exists at least one tuple (r, d′) such
that CH(ck, vk,m; r) = (a, d′).

Protocols in the UC Framework. The goal of the UC framework is to ensure that
UC-secure protocols will continue to behave in the ideal way even if executed in a con-
current way in arbitrary environments. It is a simulation-based model, relying on the
indistinguishability between the real world and the ideal world. In the ideal world, the
security is provided by an ideal functionality F , capturing all the properties required
for the protocol and all the means of the adversary. In order to prove that a protocol Π
emulates F , one has to construct, for any polynomial adversary A (which controls the
communication between the players), a simulator S such that no polynomial environ-
ment Z (the distinguisher) can distinguish between the real world (with the real players
interacting with themselves and A and executing the protocol π) and the ideal world
(with dummy players interacting with S and F) with a significant advantage. The ad-
versary can be either adaptive, i.e. allowed to corrupt users whenever it likes to, or
static, i.e. required to choose which users to corrupt prior to the execution of the ses-
sion sid of the protocol. After corrupting a player,A has complete access to the internal
state and private values of the player, takes its entire control, and plays on its behalf.

UC-Secure Oblivious Transfer. The ideal functionality of an Oblivious Transfer (OT)
protocol is depicted in Figure 1. It is inspired from [CKWZ13, ABB+13].

8



The functionality F(1,k)-OT is parametrized by a security parameter K. It interacts with an
adversary S and a set of parties P1,. . . ,Pn via the following queries:

– Upon receiving an input (Send, sid, ssid, Pi, Pj, (m1, . . . ,mk)) from party Pi,
with mi ∈ {0, 1}K: record the tuple (sid, ssid, Pi, Pj , (m1, . . . ,mk)) and reveal
(Send, sid, ssid, Pi, Pj) to the adversary S. Ignore further Send-message with the same ssid
from Pi.

– Upon receiving an input (Receive, sid, ssid, Pi, Pj, s) from party Pj , with s ∈
{1, . . . , k}: record the tuple (sid, ssid, Pi, Pj , s), and reveal (Receive, sid, ssid, Pi, Pj)
to the adversary S. Ignore further Receive-message with the same ssid from Pj .

– Upon receiving a message (Sent, sid, ssid, Pi, Pj) from the adversary S: ignore the
message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not recorded; other-
wise send (Sent, sid, ssid, Pi, Pj) to Pi and ignore further Sent-message with the same
ssid from the adversary.

– Upon receiving a message (Received, sid, ssid, Pi, Pj) from the adversary S: ig-
nore the message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not recorded;
otherwise send (Received, sid, ssid, Pi, Pj ,ms) to Pj and ignore further Received-
message with the same ssid from the adversary.

Fig. 1. Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT

3 Generic Construction of UC-Secure Oblivious Transfer

In this section, we show how to construct in a generic way a UC-secure oblivious trans-
fer from any collision-resistant chameleon hash and CCA-2 encryption scheme.

In [ABB+13], the authors give a way to construct such a UC-secure oblivious trans-
fer protocol from an SPHF-friendly commitment, but they only give an instantiation of
such an SPHF-friendly commitment in a DDH-based setting, using Haralambiev com-
mitment scheme [Har11] and Cramer-Shoup encryption scheme [CS02].

Our goal is thus to strengthen the generic part of the construction, by showing how
to construct, in a generic way, a UC-secure SPHF-friendly commitment scheme in any
setting, from a collision-resistant chameleon hash and a CCA-2 encryption scheme.

3.1 From Commitment to Oblivious Transfer

Introduction. In an oblivious transfer scheme, we consider the interaction between a
server, possessing a database called DB containing t = 2m lines, and a user, willing
to request the line j of the database in an oblivious way. Informally, this implies that
the user will gain no information about the other lines of the database, and also that the
server will obtain no information about the specific line the user wants to obtain.

In the protocol described in [ABB+13], from a high point of view3, the user sends
to the server a commitment of the number j of the line it is willing to obtain. The server
then computes a pair of keys for a smooth projective hash function (SPHF) adapted to
the commitment. It keeps secret the hash key and sends the projection key to the user,

3 Note that we omit here for the sake of simplicity the creation of a secure channel between the
user and the server (this is only needed in the adaptive version of the protocol).

9



along with the hash value of all the lines of the database. Thanks to the properties of the
SPHF, the user will then be able to recover the particular line it wants, using the public
projection key and the secret random coins it used to create its committed value in the
first place. The properties of the SPHF also ensure that the server has no idea about the
line the user is requiring, and that the user cannot obtain any information from the hash
values of the other lines of DB, which are exactly the requirements of a secure OT.

The authors of this protocol prove its security in the UC framework, which implies
the use of a commitment with strong security properties. Indeed, the simulator of a
user needs to be able to change its mind about the line required, hence an equivocable
commitment; and the simulator of a server also needs to be able to extract the line
required by the user, hence an extractable commitment. Unfortunately, combining both
equivocability and extractability on the same commitment scheme, especially if we
require this commitment scheme to admit an SPHF, is a difficult task and requires
more security properties, as we recall in the following.

Properties for Commitments. We informally recall these specific properties, defined
in [ABB+13] and formally stated in the full version. We call a commitment scheme
E2 (for extractable and equivocable and the necessary properties) if the indistinguish-
able setup algorithm outputs a common trapdoor that allows both equivocability and
extractability, and the two following properties are satisfied: strong simulation indis-
tinguishability (one cannot distinguish a real commitment (generated by Com) from a
fake commitment (generated by SCom), even with oracle access to the extraction oracle
(ExtCom) and to fake commitments (using SCom)) and strong binding extractability
(one cannot fool the extractor, i.e., produce a commitment and a valid opening data
(not given by SCom) to an input x while the commitment does not extract to x, even
with oracle access to the extraction oracle (ExtCom) and to fake commitments (using
SCom)).

A commitment is said to be robust if one cannot produce a commitment and a label
that extracts to x′ (possibly x′ = ⊥) such that there exists a valid opening data to a
different input x, even with oracle access to the extraction oracle (ExtCom) and to fake
commitments (using SCom).

Finally, a commitment is said to be SPHF-friendly if it is an E2 commitment that
admits an SPHF on the languages Lx = {(`, C)| ∃δ, VerCom`(C, x, δ) = 1}, and that
is both strongly-simulation-indistinguishable and robust.

3.2 Generic Construction of SPHF-Friendly Commitment

Introduction. We start by a high-level description of the (Cramer-Shoup-based) com-
mitment given in [ABB+13] in the pairing-friendly setting (G1, g1, h1,G2, g2,GT , p, e).
They set T = g2

t, t being a value chosen at random in Zp. We omit the labels for the
sake of simplicity. First, they cut the message M to be committed into bits, denoted
here as M = (Mi)i ∈ {0, 1}m. They then compute a TC4 Haralambiev [Har11] equiv-
ocable commitment of each bitMi: a = (ai)i with ai = g2

ri,MiTMi with ri,Mi
chosen

at random in Zp and ri,Mi
= 0. The opening values (for decommitment) are the values

di,j = g1
ri,j . They then compute a multi-Cramer-Shoup encryption b = (bi,j)i,j of

d = (di,j)i,j with randomness s = (si,j)i,j . The commitment is (a, b), the opening

10



information being s. To open the commitment, the receiver checks the validity of the
ciphertexts bi,Mi

, extracts each value di,Mi
from bi,Mi

and si,Mi
and finally checks

whether the equality e(g1, ai/T
Mi) = e(di,Mi , g2) holds.

The equivocability of the commitment is ensured by the knowledge of t, enabling
the sender to set ri,Mi

= ri,Mi
± t rather than ri,Mi

= 0. The extractability is ensured
by the knowledge of the decryption keys of the Cramer-Shoup encryption.

Our first goal, in this concrete instantiation, is to get rid of the pairing setting, and in
particular of the pairing verification, in order to be able to propose constructions in other
settings. To this aim, we change the TC4 commitment of Mi for a verifiable chameleon
hash of Mi. Making this change enables us to get a generic version of this commit-
ment, requiring only “compatible” chameleon hash (playing the role of the TC4 scheme
above) and CCA encryption schemes (playing the role of the Cramer-Shoup above). The
chameleon hash can either be publicly verifiable (which gives us a non-interactive com-
mitment), or verifiable by the receiver, which requires a pre-flow, in which the server
generates a verification key and its trapdoor and sends the verification key to the sender.

Building Blocks. We assume the existence of compatible CCA-encryption (Setup,
KeyGen,Encrypt,Decrypt) and chameleon hash (KeyGen,VKeyGen,CH,Coll,Valid),
in the sense that is feasible to compute a CCA-encryption of the opening value of the
chameleon hash. For example, a Pedersen Chameleon Hash is not compatible with
Cramer Shoup encryption, as we would need to encrypt the randomness as a scalar,
while the decryption algorithm only allows us to recover group elements.

In order for our commitment to accept an SPHF, we require the CCA-encryption
to accept an SPHF on the language of valid ciphertexts. The precise language needed
will depend on the way the chameleon hash is verified, but will be easily constructed
by combining several simple languages as described in [BBC+13a].

We require the chameleon hash to be verifiable by the receiver. For the sake of con-
cision, we describe here the case where the chameleon hash is only verifiable by the
server. In this case, we need a pre-flow, in which the server is assumed to execute the
algorithm VKeyGen to generate a verification key and its trapdoor and send the veri-
fication key to the sender. This makes the commitment not completely non-interactive
anymore but it should be noted that if the global protocol is not one-round, these values
can be sent by the receiver during the first round of the protocol. In the case where the
chameleon hash is publicly verifiable, one simply has to consider the keys vk and vtk
empty, and ignore the pre-flow.

Construction. We now describe the different algorithms of our chameleon-hashed tar-
geted commitment protocol CHCS from player P to Q (see Section 2 for the notations
of the algorithms).

– Setup and simulated setup algorithms: SetupComT(1K) (the algorithm for setup
with trapdoors) generates the various parameters param, for the setting of the SPHF-
friendly labelled CCA-encryption scheme and the chameleon hash scheme. It then
generates the corresponding keys and trapdoors: (ck, tk) for the chameleon hash
scheme and (ek, dk) for the encryption scheme.
For SetupCom(1K) (the algorithm for setup without trapdoors), the setting and the
keys are generated the same way, but forgetting the way the keys were constructed
(such as the scalars, in a DDH-based setting), thus without any trapdoor.

11



The algorithms both output the CRS ρ = (ek, ck, param). In the first case, τ denotes
the trapdoors (dk, tk).

– Pre-flow (verification key generation algorithm): playerQ executes VKeyGen(ck)
to generate the chameleon designated verification key vk and the trapdoor vtk and
sends vk to the sender P .

– Targeted commitment algorithm: Com`(M ;Q) from player P to player Q, for
M = (Mi)i ∈ {0, 1}m and a label `, works as follows:

• For i ∈ J1,mK, it chooses ri,Mi at random and computes CH(ck, vk,Mi; ri,Mi)
to obtain the hash value ai and the corresponding opening value di,Mi . It sam-
ples at random the values ri,1−Mi

and di,1−Mi
. We denote as a = (a1, . . . , am)

the tuple of commitments and d = (di,j)i,j .
• For i ∈ J1,mK and j = 0, 1, it gets b = (bi,j)i,j = 2mEncrypt`

′

pk(d; s), where
s is taken at random and `′ = (`,a).

The commitment is C = (a, b), and the opening information is the m-tuple δ =
(s1,M1

, . . . , sm,Mm
).

– Verification algorithm: VerCom`(vtk, C,M , δ) first checks the validity of the ci-
phertexts bi,Mi with randomness si,Mi , then extracts di,Mi from bi,Mi and si,Mi ,
and finally checks the chameleon hash ai with opening value di,Mi

, for i ∈ J1,mK,
via the algorithm Valid(ck, vk,Mi, ai, di,Mi

, vtk).

– Simulated targeted commitment algorithm: SimCom`(τ ;Q) from the simulator
to playerQ, takes as input the equivocation trapdoor, namely tk, from τ = (dk, tk),
and outputs the commitment C = (a, b) and equivocation key eqk = s, where

• For i ∈ J1,mK, it chooses ri,0 at random, computes (ai, di,0) = CH(ck, vk, 0; ri,0),
and uses the equivocation trapdoor tk to compute ri,1 used to open the chameleon
hash to 1 such that CH(ck, vk, 1; ri,1) is equal to (ai, di,1). This leads to a
and d, making di,j the opening value for ai,j for all i ∈ J1,mK and j = 0, 1.

• b is built as above: b = (bi,j)i,j = 2mEncrypt`
′

pk(d; s), where eqk = s is taken
at random and `′ = (`,a).

– Equivocation algorithm: OpenCom`(eqk, C,M) simply uses part of the equivo-
cation key eqk (computed by the SimCom algorithm) to obtain the opening infor-
mation δ = (s1,M1

, . . . , sm,Mm
) in order to open to M = (Mi)i.

– Extraction algorithm: ExtCom`(τ, vtk, C) takes as input the extraction trapdoor,
namely the decryption key dk, from τ = (dk, tk), the verification trapdoor vtk and
a commitment C = (a, b). For i ∈ J1,mK and j = 0, 1, it first extracts the value
di,j from the ciphertext bi,j , using the decryption key dk. Then, for i ∈ J1,mK, it
checks the chameleon hash ai with opening values di,0 and di,1 with the help of
the algorithm Valid(ck, vk, j, ai, di,j , vtk) for j = 0, 1. If only one opening value
di,j satisfies the verification equality of the chameleon hash, then j = Mi. If this
condition holds for each i ∈ J1,mK, then the extraction algorithm outputs (Mi)i.
Otherwise (either if b could not be correctly decrypted, or there was an ambiguity
while checking a, with at least one chameleon hash ai with two possible opening
values di,0 and di,1), it outputs ⊥.

12



Security Result. Given a publicly verifiable collision-resistant chameleon hash and a
secure CCA-encryption accepting an SPHF on the language of valid ciphertexts, the
above construction provides a commitment scheme which is SPHF-friendly.

Proof. According to the results recalled at the beginning of this section, page 10, we
first need to prove that this E2 commitment is strongly-simulation-indistinguishable and
robust. Due to lack of space, the proof of this result is postponed to the full version.

One then additionally needs to construct an SPHF on the languages LM = {(`, C)|
∃δ such that VerCom`(vtk, C,M, δ) = 1}. Recall that the CCA-encryption admits an
SPHF on the languages Lenc

M = {(`, C)| ∃r such that Encrypt`(pk,M ; r)) = C}, di-
rectly giving us the required SPHF since the algorithm VerCom, on input C = (a, b),
first checks the CCA-encryptions bi,Mi

and then verifies the chameleon hashes ai for
all i. More precisely, the required language is as follows: LM = {(`, C)|∀i ∈ {1, . . . ,m}
∃ri,Mi

, si,Mi
, di,Mi

such that mEncrypt∗,`(pk, (di,Mi
)i; (si,Mi

)i) = (bi,Mi
)i and that

CH(ck, vk,Mi; ri,Mi) = (ai, di,Mi)}, on which one can easily construct an SPHF by
disjunction using the method described in [ACP09, BBC+13a]4.

3.3 Generic Construction of UC-Secure Oblivious Transfer

Introduction. We denote by DB the database of the server containing t = 2m lines,
and j the line requested by the user in an oblivious way. We assume the existence of
a Pseudo-Random Generator (PRG) F with input size equal to the plaintext size, and
output size equal to the size of the messages in the database and a IND-CPA encryp-
tion scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa) with plaintext size at
least equal to the security parameter. We also assume the existence of compatible CCA-
encryption and chameleon hash with the properties described in the former section, and
we generically obtain from them the SPHF-friendly commitment scheme given above.

Protocol. We exactly follow the construction given in [ABB+13], giving the protocol
presented on Figure 2. The only difference is that we take advantage of the pre-flow to
ask the server to generate the CH verification keys (vk, vtk). For the sake of simplicity,
we only give the version for adaptive security, in which the server generates pk and c to
create a somewhat secure channel (they would not be used in the static version).

Security Result. The oblivious transfer scheme described in Figure 2 is UC-secure
in the presence of adaptive adversaries, assuming reliable erasures and authenticated
channels, as soon as the commitment scheme is constructed from a secure publicly-
verifiable chameleon hash and a secure CCA encryption scheme admitting an SPHF on
the language of valid ciphertexts, as described in the former section.

The proof remains the same; It is given in the full version for completeness.

4 The notation mEncrypt∗,`(pk, (di,Mi)i; (si,Mi)i) simply means that we compute
2mEncrypt`(pk, (di,j)i,j ; (si,j)i,j) and take the m components corresponding to j =Mi for
every i.

13



CRS: ρ = (ek, ck, param)
$← SetupCom(1K), paramcpa

$← Setupcpa(1
K).

Pre-flow:
1. Server generates a key pair (pk, sk) $← KeyGencpa(paramcpa) for E , stores sk and com-

pletely erases the random coins used by KeyGen

2. Server generates a verification key pair (vk, vtk) $← VKeyGen(ck) for CH, stores vtk and
completely erases the random coins used by VKeyGen

3. Server sends pk and vk to User

Index query on j:
1. User chooses a random value J , computes R← F (J) and encrypts J under pk:
c

$← Encryptcpa(pk, J)

2. User computes (C, δ) $← Com`(j) with ` = (sid, ssid, Pi, Pj)
3. User stores δ and completely erases J , R and the random coins used by Com and

Encryptcpa and sends C and c to Server

Database input (n1, . . . , nt):
1. Server decrypts J ← Decryptcpa(sk, c) and then R← F (J)

2. For s = 1, . . . , t: Server computes hks
$← HashKG(Ls, param),

hps ← ProjKG(hks, (Ls, param), (`, C)), Ks ← Hash(hks, (Ls, param), (`, C)),
and Ns ← R⊕Ks ⊕ ns

3. Server erases everything except (hps, Ns)s=1,...,t and sends them over a secure channel

Data recovery:
Upon receiving (hps, Ns)s=1,...,t, User computes
Kj ← ProjHash(hpj , (Lj , param), (`, C), δ) and gets nj ← R⊕Kj ⊕Nj .

Fig. 2. UC-Secure 1-out-of-t OT from an SPHF-Friendly Commitment (for Adaptive Security)

4 Instantiation Based on Cramer-Shoup Encryption (DDH)

Let us now show how to build SPHF-friendly commitment schemes from various as-
sumptions. While it may seem to be a tremendously far-fetched idea for a construction,
we are going to show throughout the following sections that in fact such schemes can
be easily built on any of the main modern fields of cryptographic hypotheses.

We start with the construction based on DDH: Since it is easier to understand, it will
help to underline the key points. This commitment revisits the one used in [ABB+13]
but we remove the pairing used in it thanks to the methods described in the previous
section, by generating vtk on the fly. For the chameleon hash, we are going to use a
CDH-based Pedersen encryption scheme. However as such CH is not designated veri-
fier, we are going to transform it in an Haralambiev way [Har11, Section 4.1.4]. For the
CCA encryption we will rely on an extended version of Cramer-Shoup encryption.

14



4.1 Building Blocks

CDH-based Chameleon Hash5

– KeyGen(K): Outputs the chameleon hash key ck = (g, h) and the trapdoor tk = α,
where gα = h;

– VKeyGen(ck): Generates vk = f and vtk = logg(f)
– CH(ck, vk,m; r): Picks a random r ∈ Zp, and outputs the chameleon hash a =
hrgm. Sets d = fr.

– Coll(m, r,m′, tk): outputs r′ = r + (m−m′)/α.
– Valid(ck, vk,m, a, d, vtk): The user outputs d, so that one can check if a = hm ·
d1/vtk.

The trivial way to check this CH requires a pairing instead of knowing vtk. Note that
this trivial verification indeed leads to the protocol described in [ABB+13]. Instead, we
let the verifier (the server in latter use) picks a new f and its discrete logarithm.

2m-labelled multi twisted Cramer-Shoup Encryption Scheme
We first recall the Cramer-Shoup encryption scheme, which is IND-CCA under the

DDH assumption.

– KeyGen(K): Assuming two independent generators g and h, for random scalars
x1, x2, y1, y2, z

$← Zp, we set sk = (x1, x2, y1, y2, z) to be the private decryption
key and ek = (g1, g2, c = gx1

1 gx2
2 , d = gy1

1 gy2

2 , h1 = gz1 ,H) to be the public
encryption key, whereH is a random collision-resistant hash function fromH.

– If M ∈ G, the Cramer-Shoup encryption is defined as CS`(pk,M ; r) = (u =
gr1, v = gr2, e = hr ·M,w = (cdθ)r), where θ = H(`, u, v, e).

– Such a ciphertext is decrypted by M = e/uz , after having checked the validity of
the ciphertext: w ?= ux1+θy1vx2+θy2 .

The above scheme can be extended naturally to encrypt vectors of group elements
D = (D1, . . . , D2m) ∈ G2m, by having 2m tuples of random scalars in the secret
key, and a global value θ for the encryption. The authors of [ABB+13] proved that this
scheme is VIND-PO-CCA under the DDH assumption.

4.2 Diffie-Hellman Based Commitment Scheme

We simply apply the construction described in Section 3 to obtain the commitment
scheme from these blocks.

– SetupComT(1K) generates a multiplicative group param = (p,G, g);
ek = (g1, g2, c, d, h1,H) and the decryption key dk corresponding to the various
discrete log in basis g, ck = (g, h), tk the respective discrete logarithm.
For SetupCom(1K), the CRS is generated the same way, but forgetting the scalars,
and thus without any trapdoor.
The algorithms both output ρ = (ek, ck, param).

5 As there is no pairing in our construction, we do not really need the linear based version of
both schemes, but similar variants can be imagined based on the linear assumption or even on
any matrix assumption [EHK+13].

15



– Pre-flow: During the preflow, the server Q runs VKeyGen(ck) and outputs vk = f
and keeps its discrete logarithm vtk.

– Com`(M ;Q) from player P to player Q, for M = (Mi)i ∈ {0, 1}m and a label `,
works as follows:
• For i ∈ J1,mK, it chooses a random ri,Mi ∈ Zp, a random ri,1−Mi , and com-

putes ai = gMihri,Mi and sets di,j = fri,j for j = 0, 1, which makes di,Mi

part of the opening value for ai toMi. Let us write a = (a1, . . . , am), the tuple
of commitments.

• For i ∈ J1,mK and j = 0, 1, it gets b = (bi,j)i,j = 2mEncrypt`
′
(pk,d; s),

where s is from the random string and `′ = (`,a).
The commitment is C = (a, b), and the opening information is the m-tuple δ =
(sM1

, . . . , sMm
).

– VerCom`(C,M , δ) checks the validity of the ciphertexts bi,Mi
with sMi

, extracts
di,Mi

from bi,Mi
and si,Mi

, and checks whether (ai/gMi)vtk = di,Mi
.

– SimCom`(τ) takes as input the equivocation trapdoor, namely tk, and outputs C =
(a, b) and eqk = s, where
• For i ∈ J1,mK, it chooses a random ri,0, sets ai = gri,0 , and uses the equivo-

cation trapdoor to computes the randomness ri,1 = ri,0 − 1/tk. This leads to
a and d;

• b is built as above: b = (bi,j)i,j = 2mEncrypt`
′
(pk,d; s), with random scalars

eqk = (s∗,i,j)i,j .

– OpenCom`(eqk, C,M) simply uses eqk to set the opening value δ = (sM1
, . . . ,

sMm
) in order to open to M = (Mi)i.

– ExtCom`(τ, C) takes as input the extraction trapdoor, namely the decryption key
dk and the chameleon verification trapdoor vtk. Given b, it can decrypt all the
bi,j into di,j and checks consistency with (ai/g

j)vtk ?= di,j or not. If, for each i,
exactly one j = Mi satisfies the equality, then the extraction algorithm outputs
(Mi)i, otherwise (no correct decryption or ambiguity with several possibilities) it
outputs ⊥.

4.3 The SPHF Associated with the Commitment Scheme

For the sake of simplicity, we first give an explicit writing of the said SPHF when the
strings are of length one.

This SPHF is defined on Cramer-Shoup encryption (see for instance [BBC+13b]),
except that it is done on an encryption of “an encryption of M , such that the pro-
jected hash value of this encryption is the value sent in the commitment of M”, rather
than simply on an encryption of M . But the internal language is easily verifiable, mak-
ing this SPHF having the good properties simply applying the methodology described
in [BBC+13b].

– Com`(b;Q): A commitment to a bitmi, can now be written asC = hrmi gmi , b1,0 =
(hs01 g

r0 , gs01 , g
s0
2 , (cd

β)s0), b1,1 = (hs11 g
r1 , gs11 , g

s1
2 , (cd

β)s1).
where β = H(hrbgmi , (h

sj
1 g

rj , g
sj
1 , g

sj
2 )j∈J0,1K) and the session id.

– VerCom`(C, b, δ):

16



• ProjKG(C, b;Q): To implicitly check if the commitment is a valid commit-
ment to b, one simply has to compute projection keys hp = hλfµ, hpmi

=

hµ1g
µmi
1 g

νmi
2 (cdβ)θmi , where all new Greek letters are random scalars. And

the hash value Hmi = (C/gmi)λ · bhkmi
mi .)

• ProjHash(C, b, hpmi
;P ): The prover will compute H ′mi

= hp
smi
mi hprmi .

If everything was done honestly, those two values are equal, otherwise they are
seemingly random. To see why this is smooth, considering the number of free variables
in the system of equations generated by the public view of the projection key hp guar-
antees that not enough information leaks about the hashing keys in order to weaken the
smoothness.

In the real protocol where the string is cut into bits, one simply has to do an AND of
all those languages, where H =

∏
Hi,mi

, and where one uses a vector of projections
keys hpi,mi

. To optimize the construction on bit strings, one can simply use the polyno-
mial trick from [BBC+13a], where they provide hp1, a random scalar ε and assume that
hpi = hp

ε(i−i)
1 , a classical inversion argument on the matrices of discrete logarithm of

the given exponents will show that the SPHF remains smooth.
Efficiency consideration shows that the pre-flow requires 2 group elements (1 for pk,

1 for vk), for each bit we need 9 elements (1 for ai and 2*4 for bi,{0,1}, we also have
the additional encryption for the verification linked to the pre-flow (so 2 elements). We
now need to give two elements for the hp, and in case of more that one bit, a random
scalar ε. Overall this leads to 9m+ 6 group elements and a scalar.

5 Instantiation Based on Dual Regev Encryption (LWE)

Lattices present an interesting challenge, since because of the noise many properties are
harder to achieve. However, our construction requires only two simple blocks to work.

Chameleon Hash
We present here a Chameleon Hash constructed from the SIS assumption, follow-

ing the chameleon hash given in [CHKP10] but using the Micciancio-Peikert trapdoor
generation [MP12]. We here only present the scheme, since the security proof comes
directly following the proof of Lemma 4.1 in [CHKP10].

Let k = dlog qe = O(logK) and m = O(Kk). Let D = DZm̄×Kk,ω(
√

log K) be the
Gaussian distribution over Zm̄×Kk with parameter ω(

√
logK) and let s = O(

√
Kk) be

a Gaussian parameter. Let the randomness space be defined as R = DZm,s·ω(
√

log K).
Then, the Chameleon Hash is defined as follows:

– KeyGen(K): choose a random matrix A0
$← ZK×`

q .
Sample (A1,R1)

$← GenTrapD(1K, 1m, q). Define ck = (A0,A1) and tk = R1.
– VKeyGen(ck): Outputs vk = ⊥, vtk = ⊥
– CH(ck, vk,m; r): choose a vector r from the Gaussian distributionDZm,s·ω(

√
log K),

r← DZm,s·ω(
√

log K). Compute the chameleon hash value c = A0m+A1r. Return
the chameleon hash c and the opening information r. (which we will later commit
using the CCA2 scheme)

17



– Coll(tk, (m0, r0),m1): compute u = (A0m0 +A1r0)−A0m1 and sample r1 ∈
Zm according to DΛ⊥u (A1),s·ω(

√
log K), r1

$← SampleD(R1,A1,u, s).
– Verify(ck, vtk,m, c, r): accept if ‖r‖ ≤ s ·ω(

√
logK) ·

√
m and c = A0m+A1r;

otherwise, reject.

It should be noted, that the trapdoor allows to recover not only a collision, but also
a preimage if need be.

Naive 2m-labelled multi LWE-based Encryption Scheme
Katz and Vaikuntanathan proposed in [KV09] a labelled CCA-Encryption with an

approximate SPHF. In order to achieve the 2m-labelled, one simply has to use the same
label in all the encryptions, and then add a one-time signature, built for example by
using the previous chameleon hash.

Oblivious Transfer using an Approximate SPHF
The approximate SPHF presented in [KV09] is sufficient for our application with a

small modification to our generic framework. Indeed, instead of obtaining two identical
values for Hash and ProjHash, the correctness only guarantees that for a well-formed ci-
phertext, those two values have a small Hamming distance, hence xoring the two values
together leads to a string with low Hamming weight. Assuming the line in the database
is first encoded using an Error Correcting Code, and then masked by the server using
the Hash value, the user can then use his projective hash value to recover a word near
a valid encoding for the required entry, and then decoding using the Error Correcting
Code as the remaining nose is small, he will recover the valid string. On invalid lines,
the noise is seemingly random, hence beyond the decoding limit of any possible code.

6 Instantiation Based on Paillier Encryption (Composite
Residuosity)

The solution is pretty straightforward on how to instantiate the previous scheme while
relying on a DCR assumption. This simply requires the generic transformation from
any native DDH scheme into a DCR based one presented in [HO09].

It is interesting to note that this boils down to using the Paillier-based CCA en-
cryption presented in [CS02], in addition to a DCR-based Chameleon Hash encryption.
(Operations are done modulo N2 except if indicated otherwise)

For lack of space, we only present here the two needed building blocks and postpone
the description of the commitment scheme and the associated smooth projective hash
function to the full version.

DCR-based Chameleon Hash
We simply use a direct transposition of the Chameleon Hash described in Section 4

in a group of order ZN2 . While this may be improved, the description remain simple.

2m-labelled multi DCR-based Encryption Scheme
We use the variant of the CCA-2 encryption introduced in [CS02]. The encryption

key ek is now a tuple (g, s, s̃), where g = N + 1, s = gk0 and s̃i = gki where k
$←

J0, bN2/2cKβ+2, and the encryption process becomes:

18



Encrypt(pk,M ;w): pick w $← J0, N/2K and compute γ = H(`′, gw,Msw, s̃w1 ), and
b = (gw,Msw, s̃w1

∏β+1
j=2 s

wγj
j ).

Once again, knowing the respective discrete logarithms in the encryption keys al-
lows to decrypt the ciphertext.

Acknowledgements. This work was supported in part by the French ANR-14-CE28-
0003 EnBiD Project.

References

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David
Pointcheval. SPHF-friendly non-interactive commitments. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 214–234.
Springer, December 2013.

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projec-
tive hashing for conditionally extractable commitments. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 671–689. Springer, August 2009.

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and
Damien Vergnaud. Efficient UC-secure authenticated key-exchange for algebraic
languages. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume
7778 of LNCS, pages 272–291. Springer, February / March 2013.

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and
Damien Vergnaud. New techniques for SPHFs and efficient one-round PAKE proto-
cols. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 449–475. Springer, August 2013.

[BC15] Olivier Blazy and Céline Chevalier. Generic Construction of UC-Secure Oblivious
Transfer. Cryptology ePrint Archive, 2015. Full version of the present paper.

[BCPV13] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Analysis
and improvement of Lindell’s UC-secure commitment schemes. In Michael J. Jacob-
son Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors,
ACNS 13, volume 7954 of LNCS, pages 534–551. Springer, June 2013.

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897
of LNCS, pages 319–331. Springer, August 2005.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, August 2001.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110
of LNCS, pages 523–552. Springer, May 2010.

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient,
adaptively secure, and composable oblivious transfer with a single, global CRS. In
Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS,
pages 73–88. Springer, February / March 2013.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503. ACM Press, May 2002.

19



[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EURO-
CRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, April / May 2002.

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding uni-
versally composable commitment schemes with constant expansion factor. In Moti
Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 581–596. Springer, Au-
gust 2002.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An alge-
braic framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer,
August 2013.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196
of LNCS, pages 10–18. Springer, August 1984.

[FLM11] Marc Fischlin, Benoît Libert, and Mark Manulis. Non-interactive and re-usable uni-
versally composable string commitments with adaptive security. In Dong Hoon Lee
and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 468–
485. Springer, December 2011.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based authen-
ticated key exchange. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 524–543. Springer, May 2003. http://eprint.iacr.org/
2003/032.ps.gz.

[GWZ09] Juan A. Garay, Daniel Wichs, and Hong-Sheng Zhou. Somewhat non-committing
encryption and efficient adaptively secure oblivious transfer. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 505–523. Springer, August 2009.

[Har11] Kristiyan Haralambiev. Efficient Cryptographic Primitives for Non-Interactive Zero-
Knowledge Proofs and Applications. PhD thesis, New York University, 2011.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation
in two rounds. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS,
pages 111–129. Springer, August 2007.

[HO09] Brett Hemenway and Rafail Ostrovsky. Lossy trapdoor functions from smooth ho-
momorphic hash proof systems. Electronic Colloquium on Computational Complex-
ity (ECCC), 16:127, 2009.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer.
In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 78–95.
Springer, May 2005.

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS 2000. The Internet
Society, February 2000.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-
based authenticated key exchange from lattices. In Mitsuru Matsui, editor, ASI-
ACRYPT 2009, volume 5912 of LNCS, pages 636–652. Springer, December 2009.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenti-
cated key exchange. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
293–310. Springer, March 2011.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commitments based on the
DDH assumption. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632
of LNCS, pages 446–466. Springer, May 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 700–718. Springer, April 2012.

20



[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao
Kosaraju, editor, 12th SODA, pages 448–457. ACM-SIAM, January 2001.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
129–140. Springer, August 1991.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 554–571. Springer, August 2008.

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report
TR81, Harvard University, 1981.

21


