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Abstract

Accurate segmentation of hippocampus from infant magnetic resonance (MR) images is very 

important in the study of early brain development and neurological disorder. Recently, multi-atlas 

patch-based label fusion methods have shown a great success in segmenting anatomical structures 

from medical images. However, the dramatic appearance change from birth to 1-year-old and the 

poor image contrast make the existing label fusion methods less competitive to handle infant brain 

images. To alleviate these difficulties, we propose a novel multi-atlas and multi-modal label fusion 

method, which can unanimously label for all voxels by propagating the anatomical labels on a 

hypergraph. Specifically, we consider not only all voxels within the target image but also voxels 

across the atlas images as the vertexes in the hypergraph. Each hyperedge encodes a high-order 

correlation, among a set of vertexes, in different perspectives which incorporate 1) feature affinity 

within the multi-modal feature space, 2) spatial coherence within target image, and 3) population 

heuristics from multiple atlases. In addition, our label fusion method further allows those reliable 

voxels to supervise the label estimation on other difficult-to-label voxels, based on the established 

hyperedges, until all the target image voxels reach the unanimous labeling result. We evaluate our 

proposed label fusion method in segmenting hippocampus from T1 and T2 weighted MR images 

acquired from at 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old. Our 

segmentation results achieves improvement of labeling accuracy over the conventional state-of-

the-art label fusion methods, which shows a great potential to facilitate the early infant brain 

studies.

1 Introduction

The human brain undergoes a rapid physical growth and fast functional development during 

the first year of life. In order to characterize such dynamic changes in vivo, accurate 

segmentation of anatomical structures from the MR images is very important in imaging-

based brain development studies. Since hippocampus plays an important role in learning and 

memory function, many studies aim to find the imaging markers around hippocampus. 

Unfortunately, the poor image contrast and dramatic appearance change make the 

segmentation of hippocampus from the infant images in the first year of life very 

challenging, due to the dynamic white matter myelination progress [1]. Since different 
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modalities convey diverse imaging characteristics at different brain development phases, 

integration of multi-modal imaging information can significantly improve the segmentation 

accuracy[2]. However, the modulation of each modality is hard-coded and subjective to the 

expert’s experience.

In medical image analysis area, there has been a recent spike in multi-atlas patch based 

segmentation methods [3–5], which first register all atlas images to the underlying target 

image and then propagate the labels from the atlas domain to the target image. The 

assumption behind is that two voxels should bear the same anatomical label if their local 

appearances are similar. However, a critical issue in current multi-atlas patch based label 

fusion methods is that the labels are determined separately at each voxel. As a result, there is 

no guarantee that labeled anatomical structures are spatially consistent. On the other hand, 

conventional graph-cut based methods [6] can jointly segment the entire ROI by finding a 

minimum graph cut. However, only the image information within the target image is utilized 

during this segmentation.

To combine the power of multi-atlas and graph-based approaches, we propose a novel multi-

atlas and multi-modal label fusion method for segmenting the hippocampus from the infant 

brain images in the first year of life. Hypergraph has shown its superiority in image retrieval 

[7, 8] and recognition [9]. Our idea is to use hypergraph to leverage (1) the information 

integration from multiple atlases and multiple imaging modalities, and (2) the label fusion 

for all target image voxels under consideration.

Specifically, we regard all voxels within the target image and the atlas images as the vertexes 

in the graph. In hypergraph, we generalize the concept of conventional graph edge (only 

connects two vertexes at a time) to the hyperedge (groups a set of vertexes simultaneously), 

in order to reveal the high-order correlations for more than two voxels. In general, our 

hyperedges in the multi-atlas scenario encode three types of voxels correlations: (1) feature 
affinity: only the vertexes with similar appearance are connected by hyperedge, (2) spatial 
coherence: the vertexes located in a certain neighborhood from target image belong to the 

same hyperedge, and (3) atlas correspondence: each vertex from target image and its 

corresponding vertexes across all atlas images form the hyperedge. It is worth noting that the 

hypergraph is very flexible to incorporate the multi-modal information by constructing the 

above three types of hyperedges w.r.t. different imaging modalities. After constructing the 

hypergraph, the vertexes from both the atlas image voxels and the target image voxels with 

high labeling confidence are considered bearing the known labels. Thus, our label fusion 

method falls into the semi-supervised hypergraph learning framework, i.e., the latent labels 

on the remaining voxels in the target image are influenced by the connected vertexes with 

known labels. The principle to propagate the labels is that the vertexes sitting in the same 

hyperedge should have the same label, with the minimal discrepancy of labels on the 

vertexes with existing labels before and after label propagation.

Our proposed method has been comprehensively evaluated on segmenting hippocampus 

from T1 and T2 weighted MR images at 2-week-old, 3-month-old, 6-month-old, 9-month-

old and 12-month-old. The segmentation result shows a great improvement compared to the 

state-of-the-art method [3–5] in terms of labeling accuracy.
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2 Method

Given the atlases (including T1, T2 weighted MR images and the ground truth label of 

hippocampus), the goal is to segment the hippocampus from the unlabeled target image. 

Since the T1 and T2 weighted images are acquired from the same subject at the same time, it 

is not difficult to register them to the same space. Due to the dynamic appearance change 

and poor image resolution, it is challenging to apply deformable image registration for the 

infant images in the first year of life. Thus, only linear registration is used to map each atlas 

to the underlying target image domain. After that, our label fusion method consists of two 

main steps: 1) hypergraph construction (Section 2.1) and 2) label propagation (Section 2.2), 

as detailed below.

2.1 Hypergraph Construction

We assume that N atlas images, each with T1 and T2 weighted MR images, are used to label 

the target image. The hypergraph is constructed to accommodate the complete information 

from both the multi-atlas and multi-modalities images, where the hypergraph is denoted as 

= ( , ℰ, W) with the vertex set , the hyperedge set ℰ and its weight W. In order for 

computation efficiency, only the voxels within a bounding box (shown in the left column of 

Fig. 1 which covers the hippocampus with enough margin) are used as the vertexes, instead 

of using the voxels from the entire image.

Hypergraph Initialization—Assume the number of voxels inside the bounding box is q. 

The hypergraph vertexes are built on every voxel from the bounding boxes of the target 

image and the atlas images. For each atlas image, we vectorize the voxels in the bounding 

box into a column vector s with the length of q, where s = 1, …, N. With the same 

vectorising order, we can obtain the column vector of graph vertexes from target image, 

denoted by . Thus, the vertex set  is eventually the combination of voxels from the target 

image and all atlas images, i.e.,  = { , 1, …, N}. It is worth noting that each element 

in s bears the known label and the label on each element of  is currently unknown.

It is clear that the voxels along the interface of multiple structures are more difficult to 

determine the labels than other points. In light of this, we go one step further to classify the 

elements in  into two categories based on their difficulties in labeling. To achieve it, we use 

an existing label fusion method, such as the majority voting, to predict the label of each 

element in  as well as the confidence value in terms of the voting predominance. If the 

influence for voting one label dominates the other labels, we regard the labeling result on the 

underlying target image voxel has high confidence to determine its label. Otherwise, we 

regard the underlying target image voxel needs other heuristics to find its label. Thus, we 

can divide  into two parts, L (low confidence) and H (high confidence), where the 

number of elements in L and H is qL and qH (q = qL + qH), respectively.

The advantage of separate  to L and H is that it allows the label propagation from not 

only the atlas images but also the some reliable regions of the target image, which are more 

specific to label fusion of underlying image. Specifically, for each element in H and { s|s 
= 1, …, N}, we assign the label with either 0 (background) or 1 (hippocampus). For each 

element in L, the label value is assigned to 0.5 since the label is uncertain. Following the 
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same order of , we stack all the label values into a label vector y. As shown in the left 

bracket in Fig. 1, the first part of y is the uncertain labels for voxels L (in gray), followed 

by the known labels from H and { s|s = 1, …, N} (hippocampus in white and background 

in black). Thus, our hypergraph based label fusion turns into a semi-supervised learning 

scenario, i.e., optimize for a new label vector f (in the right of Fig. 1) which should be 1) as 

close to y as possible and 2) propagate the known labels from H and { s|s = 1, …, N} to 

the difficult-to-label vertexes L. The leverage of label propagation is a set of hyperedges, as 

detailed next.

Hyperedge Construction—Since the goal is to estimate the latent labels for the difficult-

to-label voxels in the target image, we only construct hyperedges centered at each vertex u ∈ 
L in the low confidence voxel set. In total, we constructed 2 × 3 types of hyperedges w.r.t. 

two imaging modalities and three measurements. Specifically, for each modality, we 

construct the following three hyperedges on each vertex u:

• Feature Affinity (FA) hyperedge eFA. It consists of K nearest vertexes (v ∈ ), 

where their patchwise similarities w.r.t. the underlying vertex u are the highest K 
hits in the feature space.

• Local Coherence (LC) hyperedge eLC. It consists of all the vertexes v ∈  from 

the target image and being located within a spatial neighborhood of u.

• Atlas Correspondence (AC) hyperedge eAC. It consists of all vertexes v ∈ { s|s 
= 1, …, N} across the atlas images at the corresponding spatial locations w.r.t. u.

Since each of the above hyperedge is centered by u, we call u as the owner of hyperedge e 
(we omit the superscript of e hereafter).

Incidence Matrix Construction—After the construction of hyperedges for each u, we 

build a incidence matrix H with row representing the vertexes  and column representing 

the hyperedges ℰ, which encode all the information within the hypergraph . Each entry 

H(v, e) in H measures the affinity between the each vertex v and the owner u of the 

hyperedge e ∈ ℰ:

H(v, e) = exp  −
‖p(v) − p(u)‖2

2

σ2 if  v ∈ e

0 if  v ∉ e

(1)

where the ‖․‖2 is the L2 norm computed between intensity image patch p(v) and p(u) for 

vertex v and the hyperedge owner u. σ is the averaged patchwise similarity between u and all 

vertexes within the hyperedge e. For simplicity, each hyperedge is initialized with an equal 

weight, W(e) = 1. The degree of a vertex v is defined as d(v) = Σe∈ℰ W(e)H(v, e), and the 

degree of hyperedge is defined as δ(e) = Σv∈ H(v, e). Thus, two diagonal matrices Dv and 

De can be formed with each entry along the diagonal using the vertex degree and hyperedge 

degree, respectively.
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According to this formulation, the construction of the hypergraph captures the high-order 

relationship among the all the vertices across different image modalities, feature affinities, 

local neighborhood coherences and the atlas correspondences. And any two vertexes within 

the same hyperedge should have similar labels. Following gives the detailed hypergraph 

learning for label propagation.

2.2 Labels Propagation via Hypergraph Learning

Given the initialization on the hypergraph, we employed a semi-supervised learning method 

to perform the label fusion on the constructed hypergraph. The objective function [10] is 

defined as:

arg min
f

{ℛemp(f) + λΩ(f)} (2)

where f is the likelihood of hippocampus on each vertex v ∈ . The first term ℛemp(f) is an 

empirical loss, which prevent the dramatic change for those the high probability values in f. 
The second term Ω(f) is a regularization term on the hypergraph, which restrict the labels at 

similar range for those vertexes within a same hyperedge. The λ is a positive weighing 

parameter between the two terms.

The first empirical loss term ℛemp(f) is defined by

ℛemp(f) = ‖f − y‖2 (3)

The empirical loss term is designed for the minimization of the differences before and after 

label fusion.

The second term Ω(f) is a regularizer on the hypergraph, which defined as follows:

Ω(f) = 1
2 ∑

e ∈ ℰ
∑

u, v ∈ 𝒱

W(e)H(u, e)H(v, e)
δ(e)

f(u)
d(u) − f(v)

d(v)
2

= fT(I − Θ)f = fTΔf (4)

where Θ = Dv
− 1

2HWDe
−1HTDv

− 1
2 , and Δ can be viewed as normalized hypergraph Laplacian 

matrix. Here, the regulation term Ω(f) constrains the labels of vertexes in the same 

hyperedge should held a similar value during the label propagation. Thus, the objective 

function, Equation (2), can be rewritten as:

arg min
f

{‖f − y‖2 + λfTΔf} (5)

By differentiating the objective function with respect to f, the optimal f can be computed 

iteratively as below:
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f = (I + 1
λ(I − Θ))

−1
y (6)

Given the estimated f, the anatomical label on each difficult-to-label target voxel u ∈ L can 

be determined by

Hippocampus f(u) > 0.5
Background otherwise

(7)

It should be noted that using the semi-supervised learning to perform the binary 

classification on the hypergraph allows prediction of the entire target image voxels 

simultaneously, while combining several correlations across all the voxels between the target 

image and atlas images.

3 Experiments

3.1 Date acquisition and preprocessing

In the experiments, MR images of 10 healthy infant subjects are acquired from a Siemens 

head-only 3T scanner. For each subject, both T1- and T2-weighted MR images were 

acquired in five data sets at 2 weeks, 3 months, 6 months, 9 months and 12 months of age. 

T1-weighted MR images were acquired with 144 sagittal slices at a resolution of 1 × 1 × 

1mm3, while T2-weighted MR images were acquired with 64 axis slices at resolution of 

1.25 × 1.25 × 1.95mm3. For each subject, the T2-weighted MR image is linearly aligned to 

the T1-weighted MR image at the same age and then further resampled to 1 × 1 × 1mm3. 

Standard preprocessing was performed including skull stripping [11], intensity 

inhomogeneity correction [12]. The manual segmentations of the hippocampal regions for 

all 10 subjects are available and used as ground-truth for evaluation.

3.2 Evaluation of the proposed method

For all the experiments, the patch size is set as 5 × 5 × 5 voxels. The number of nearest 

neighborhood vertexes K is 10 in constructing eFA. The spatial neighborhood in constructing 

eLC and eAC is set to 3 × 3 × 3 voxel. Parameter λ in equation (2) is 10.

To evaluate the performance of the proposed method, we adopted the leave-one-out cross-

validation. In each cross-validation step, one subject is used as target images and the 

remaining 9 subjects were used as the atlas images. Our proposed hypergraph patch labeling 

(HPL) method is compared with three state-of-the-art multi-atlas patch-labeling methods: 

local-weighted majority voting (LMV) [3], non-local mean (NLM) [4] and sparse patch 

labeling (SPL) [5].

Table 1 gives the average dice ratio of four comparison methods for 2-week, 3-month, 6-

month, 9-month and 12-month data respectively. It can be seen that our method can achieve 

better segmentation accuracy than all other three counterpart methods. Fig. 2 further shows 
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the impact of using our proposed method for segmenting the infant hippocampus compared 

with other different labeling methods under different modalities.

Finally, Fig. 3 shows the final segmentation results by the four methods and their 

corresponding manually segmentations for one typical subject at 2-week-old. Through visual 

inspection, our estimated labeling results (bottom line) are closer to the ground truth (yellow 

contours).

4 Discussion and Conclusion

With our proposed method, we achieved a better segmentation result with fewer atlases 

compared with the state-of-the-art patch-based method. The reasons are due to the 

followings: (1) the label propagation based on the hypergraph can adaptively combine the 

complementary information both from T1- and T2- weighed images; (2) for each image 

modality, three types of voxels correlations are considered, i.e. feature affinity, local spatial 

neighborhood and atlas corresponding spatial regions, which extensively exploits the high 

order correlations among a group of voxels; (3) Instead of labeling each voxel independently 

as in the existing methods, our semi-supervised hypergraph learning method performs a 

global optimization to predict the anatomical labels for all the voxels in the target image 

simultaneously. (4) Through the label propagation process, we allow the high confidence 

voxels to guide the nearby low confidence voxels, which provides valuable heuristics to 

overcome the uncertainty in label fusion.

In this paper, we propose a multi-atlas and multi-modal label fusion method for the 

segmentation of the hippocampus from infant MR images. We combine the advantages of 

conventional multi-atlas and graph-based approaches by encoding the feature affinity within 

the multi-modal feature space, spatial coherence, and the atlas information via hypergraph. 

Then, the whole label fusion procedure falls into the semi-supervised hypergraph learning 

framework, where the estimation of the latent anatomical labels is adaptively influenced by 

the connected counterparts in the hypergraph. The experiment results show more accurate 

hippocampus labeling results from MR images in the different phases of first year of life, 

using our proposed method with comparison to the state-of-the-art methods.
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Fig. 1. 
The framework of hypergraph learning based label propagation.
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Fig. 2. 
Comparison of the average dice ratio of the ten infant subjects between different labeling 

methods across five time points: 2-week (M0), 3-month (M3), 6-month (M6), 9-month (M9) 

and 12-month (M12)
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Fig. 3. 
Infant hippocampus segmentation comparison between the automatic segmentation using the 

four methods (red circles) and the ground truth (yellow circles)
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Table 1

The average dice ratio and standard deviation of four comparison methods: local-weighted majority voting, 

non-local mean, sparse patch labeling and hypergraph patch labeling for 2 week, 3 month, 6 month, 9 month 

and 12 month data.

LMV NLM SPL HPL

2 week 0.45 ± 0.12* 0.51 ± 0.12 0.57 ± 0.10 0.60 ± 0.11

3 month 0.49 ± 0.09* 0.54 ± 0.10* 0.61 ± 0.04 0.64 ± 0.04

6 month 0.48 ± 0.09* 0.58 ± 0.11 0.65 ± 0.06 0.67 ± 0.07

9 month 0.46 ± 0.07* 0.59 ± 0.08* 0.66 ± 0.04 0.67 ± 0.04

12 month 0.48 ± 0.10* 0.61 ± 0.05* 0.70 ± 0.04 0.71 ± 0.04

(* indicates the significant improvement of HPL over other compared methods (p<0.05), T1+T2).
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