Skip to main content

Reverse Neuron Level Decomposition for Cooperative Neuro-Evolution of Feedforward Networks for Time Series Prediction

  • Conference paper
  • First Online:
  • 1209 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9592))

Abstract

A major challenge in cooperative neuro-evolution is to find an efficient problem decomposition that takes into account architectural properties of the neural network and the training problem. In the past, neuron and synapse Level decomposition methods have shown promising results for time series problems, howsoever, the search for the optimal method remains. In this paper, a problem decomposition method, that is based on neuron level decomposition is proposed that features a reverse encoding scheme. It is used for training feedforward networks for time series prediction. The results show that the proposed method has improved performance when compared to related problem decomposition methods and shows competitive results when compared to related methods in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stephen, H.K.: In the Wake of Chaos: Unpredictable Order in Dynamical Systems. University of Chicago Press, Chicago (1993)

    MATH  Google Scholar 

  2. Parras-Gutierrez, E., Rivas, V., Garcia-Arenas, M., del Jesus, M.: Short, medium and long term forecasting of time series using the L-Co-R algorithm. Neurocomputing 128, 433–446 (2014). http://www.sciencedirect.com/science/article/pii/S0925231213008990

    Article  Google Scholar 

  3. Chandra, R., Zhang, M.: Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 186, 116–123 (2012)

    Article  Google Scholar 

  4. Potter, M., De Jong, K.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Mnner, R. (eds.) Parallel Problem Solving from Nature PPSN III. LNCS, vol. 866, pp. 249–257. Springer, Berlin Heidelberg (1994)

    Chapter  Google Scholar 

  5. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 9, 937–965 (2008)

    MathSciNet  MATH  Google Scholar 

  6. García-Pedrajas, N., Ortiz-Boyer, D.: A cooperative constructive method for neural networks for pattern recognition. Pattern Recogn. 40(1), 80–98 (2007)

    Article  MATH  Google Scholar 

  7. Chandra, R., Frean, M.R., Zhang, M.: Crossover-based local search in cooperative co-evolutionary feedforward neural networks. Appl. Soft Comput. 12(9), 2924–2932 (2012)

    Article  Google Scholar 

  8. Gomez, F., Mikkulainen, R.: Incremental evolution of complex general behavior. Adapt. Behav. 5(3–4), 317–342 (1997)

    Article  Google Scholar 

  9. Chandra, R., Frean, M., Zhang, M.: On the issue of separability for problem decomposition in cooperative neuro-evolution. Neurocomputing 87, 33–40 (2012)

    Article  Google Scholar 

  10. Chandra, R., Frean, M., Zhang, M.: An encoding scheme for cooperative coevolutionary feedforward neural networks. In: Li, J. (ed.) AI 2010. LNCS, vol. 6464, pp. 253–262. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Mackey, M., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)

    Article  Google Scholar 

  12. Lorenz, E.: Deterministic non-periodic flows. J. Atmos. Sci. 20, 267–285 (1963)

    Google Scholar 

  13. SILSO World Data Center, The International Sunspot Number (1834–2001), International Sunspot Number Monthly Bulletin and Online Catalogue, Royal Observatory of Belgium, Avenue Circulaire 3, 1180 Brussels, Belgium (2015). Accessed on 02 February 2015. http://www.sidc.be/silso/

  14. NASDAQ Exchange Daily: 1970–2010 Open, Close, High, Low and Volume (2015). Accessed on 02 February 2015. http://www.nasdaq.com/symbol/aciw/stock-chart

  15. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNCS, vol. 898, pp. 366–381. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Sello, S.: Solar cycle forecasting: a nonlinear dynamics approach. Astron. Astrophys. 377, 312–320 (2001)

    Article  Google Scholar 

  17. Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization. Evol. Comput. 10(4), 371–395 (2002)

    Article  Google Scholar 

  18. Gholipour, A., Araabi, B.N., Lucas, C.: Predicting chaotic time series using neural and neurofuzzy models: a comparative study. Neural Process. Lett. 24, 217–239 (2006)

    Article  Google Scholar 

  19. Lin, C.-J., Chen, C.-H., Lin, C.-T.: A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 39(1), 55–68 (2009)

    Article  Google Scholar 

  20. Chandra, R.: Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction. IEEE Transactions onNeural Networks and Learning Systems (2015). (In Press)

    Google Scholar 

  21. Rojas, I., Valenzuela, O., Rojas, F., Guillen, A., Herrera, L., Pomares, H., Marquez, L., Pasadas, M.: Soft-computing techniques and arma model for time series prediction. Neurocomputing 71(4–6), 519–537 (2008)

    Article  Google Scholar 

  22. Ardalani-Farsa, M., Zolfaghari, S.: Residual analysis and combination of embedding theorem and artificial intelligence in chaotic time series forecasting. Appl. Artif. Intell. 25, 45–73 (2011)

    Article  Google Scholar 

  23. Chandra, R.: Competitive two-island cooperative coevolution for training Elman recurrent networks for time series prediction. In: International Joint Conference on Neural Networks (IJCNN), Beijing, China, pp. 565–572, July 2014

    Google Scholar 

  24. Chand, S., Chandra, R.: Cooperative coevolution of feed forward neural networks for financial time series problem. In: International Joint Conference on Neural Networks (IJCNN), Beijing, China, pp. 202–209, July 2014

    Google Scholar 

  25. Chand, S., Chandra, R.: Multi-objective cooperative coevolution of neural networks for time series prediction. In: International Joint Conference on Neural Networks (IJCNN), Beijing, China, pp. 190–197. July 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravneil Nand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nand, R., Chandra, R. (2016). Reverse Neuron Level Decomposition for Cooperative Neuro-Evolution of Feedforward Networks for Time Series Prediction. In: Ray, T., Sarker, R., Li, X. (eds) Artificial Life and Computational Intelligence. ACALCI 2016. Lecture Notes in Computer Science(), vol 9592. Springer, Cham. https://doi.org/10.1007/978-3-319-28270-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28270-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28269-5

  • Online ISBN: 978-3-319-28270-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics