
Maximizing Throughput in Energy-Harvesting
Sensor Nodes

Stanley P. Y. Fung

Department of Computer Science, University of Leicester, Leicester, United Kingdom.
pyf1@le.ac.uk

Abstract. We consider an online throughput maximization problem in
sensor nodes that can harvest energy. The sensor nodes generate and
forward packets, which cost energy; they can also harvest energy from
the environment, but the amount of energy that can be harvested is not
known in advance. We give a number of algorithms and lower bounds for
the case of a single node. We consider both the general case and some
types of ‘non-idling’ adversaries where we can get better bounds. We also
consider the case of networks with multiple nodes and demonstrate that
some very simple scenarios already admit no competitive algorithms.

1 Introduction

Background. Sensor networks are often deployed in areas where it is infeasible
to maintain a constant energy supply to the sensor nodes. Often the nodes
are equipped with batteries, and a node can only operate until its battery is
exhausted. There are many research work on how to extend the useful lifetime of
the sensor node or the sensor network by careful scheduling. If the sensor node is
equipped with some energy-harvesting device, e.g., solar cells so it can replenish
used energy, it can help make the system work longer or even indefinitely. This
creates a challenge of designing algorithms that can make use of this harvested
energy effectively.

The model. We consider the scenario where each sensor node senses the environ-
ment, generates packets and sends them to a target destination. First consider a
single node. The model was defined in [12]. Time consists of discrete time steps
1, 2, A packet j is specified by a 3-tuple (r(j), d(j), v(j)), which represents
its release time, deadline and value. A packet with release time r(j) and deadline
d(j) can only be sent in one of the time steps between r(j) and d(j), inclusive.
Sending a packet costs one unit of energy. The sensor is equipped with a battery
with a capacity of C, and an energy-harvesting device that may harvest some
amount of energy h(t) at each time step t. Let e(t) denote the energy level of the
battery at the beginning of time t (excluding energy harvested at this time step).
A packet can only be sent if the node has sufficient energy, i.e. e(t)+h(t) ≥ 1. The
energy remaining at the next step is given by e(t+1) = min(C, e(t)+h(t)−x(t))
where x(t) = 1 if a packet is sent at time t and x(t) = 0 otherwise. We assume

there is no ‘leak’ of the battery so the energy level stays the same when no
packets are sent. The objective is to maximize the profit or weighted throughput
of the schedule, i.e. the sum of values of all packets sent.

Note that h(t) is not known in advance and only become known at time t.
Packet arrivals are also unknown in advance: packets with release time r(j) are
not known until time r(j). Therefore, this is an online problem. We measure
the performance of online algorithms using competitive analysis [1]: an online
algorithmA is r-competitive if the value produced byA is always at least 1/r that
of the optimal offline algorithm OPT over all input instances. For randomized
online algorithms we use the expected value of A instead for comparison.

Generalizing from a single node, we also consider the model where nodes are
connected into a network. Packets may have different sources and destinations,
and each sensor node needs to forward traffic generated by other nodes as well.
In our model, in each time step each node can send one packet to another node.
Each packet takes one time unit to pass the link between two nodes. Thus if a
packet is sent at time t in an upstream node, it appears as a packet with release
time t + 1 in the next downstream node. Sending a packet takes one unit of
energy, and we ignore the energy required to listen to or receive packets. The
objective is to maximize the total value of packets reaching their destinations.

Before going any further we introduce some definitions and notations. Let
V = maxj v(j)/minj v(j). An instance is underloaded if all packets can be sent by
OPT, respecting deadlines and energy availability. An algorithm or an adversary
(the optimal offline algorithm) is non-idling if, at every time step, it must send
a packet as long as there is energy available and there are packets pending.

Previous work and our contributions. For the case of a single node, the problem
without energy considerations is known as the unit job scheduling problem (UJS)
and was studied extensively; see [5] for a survey. The current best deterministic
upper and lower bounds are 1.828 [4] and 1.618 [3, 6, 14] respectively while for
randomized algorithms they are 1.58 [2] and 1.25 [3].

There has been a lot of work in the sensor network community on the problem
of energy harvesting although most of them study the problem with somewhat
different objective functions, or assume that there are knowledge of probabil-
ity distributions or even complete knowledge of packet arrivals and/or energy
harvesting. For example, [11] assumed that future energy harvesting is known;
[8] assumed both the packet arrivals and energy replenishment follow a Poisson
process. The only algorithmic, worst-case analysis without prior probability as-
sumptions that we are aware of is [12]. It considers the case of a single node, and
the authors gave deterministic upper and lower bounds of V against general ad-
versaries. Then they turned their attention to non-idling adversaries and claimed
to give a randomized algorithm that is 1.25-competitive against such adversaries.
We show that this is not true even when energy is not a limiting factor. (Note: in
subsequent communications [9] one of the authors stated that their ‘non-idling’
adversary is more restricted than just not being allowed to idle; it is not allowed
to have any kind of ‘reserving’ of energy by scheduling fewer packets. It was not
made precise what it means, but it seems to share similar spirit of the strongly

non-idling adversary that we define later. In any case, we show that their upper
bound is not correct even when there is unlimited energy, and in such scenarios
any definition of non-idling is irrelevant since there is always no harm in moving
packets earlier to those idle time steps. The authors have also since published
a corrigendum [13] which gave a 2.5-competitiveness proof.) In fact we prove a
general lower bound of 2 for all randomized algorithms, and a lower bound of
Ω(
√
V) for deterministic algorithms, against oblivious, non-idling adversaries.

As can be seen, a non-idling adversary is still very powerful. Thus we define
a more restricted strongly non-idling adversary, and against such adversaries
we prove a deterministic upper bound of 2 1 and a matching randomized lower
bound.

Back to the general adversary case, we show that the correct deterministic
competitive ratio should in fact be V +1. We also consider the unweighted packet
case and show that if packets have agreeable deadlines, i.e., packets released
earlier have earlier deadlines, then the Earliest Deadline First algorithm (EDF)
is 1-competitive.

Finally we consider the case of a network of nodes. When energy is not a
restriction, the problem becomes the one considered by [10]. They considered the
case of an uplink tree, where the nodes are connected into a tree and the root node
is the sink, and packets can originate in any node but the destination is always the
sink. This is a common scenario in sensor network applications. They showed that
it is possible to achieve 1-competitiveness for unweighted, underloaded instances.
For general network topologies and general source/destination pairs they gave a
tight O(P logP) competitive ratio bound, where P is the maximum route length.
In the case with energy we demonstrate that the problem has poor cometitive
ratios even for some very simple scenarios.

Due to space constraints some proofs will only appear in the full paper.

2 Non-idling adversary

Proposition 1. The competitive ratio of RAND [12] is at least 1.265 against
an oblivious, non-idling adversary, even when there are no energy limitations.

In fact we show the following lower bounds for all non-idling randomized
algorithms:

Theorem 1. No non-idling randomized algorithm is better than (2 − 2√
V+1

)-

competitive against an oblivious, non-idling adversary. For deterministic algo-
rithms the lower bound is Ω(

√
V).

1 In [12] it was stated that the greedy algorithm is 2-competitive against non-idling
adversaries, apparently as a corollary from [7] which is about UJS. However our
problem is not a special case of UJS, even for strongly non-idling adversaries. We
give a separate 2-competitive proof, both because of this and because of the difference
in the (strongly) non-idling definitions.

Proof. Consider a setting with two packets j1(1, 1,
√
V) and j2(1, 2, 1), a battery

with C = 2 and an initial e(1) = 2, and no energy harvested throughout. Suppose
an online randomized algorithm A sends j1 at time 1 with probability p and
j2 with probability 1 − p. (These are the only two possibilities as it is non-
idling.) If p ≤ 1+V

2V , no further packets are released. A can send j2 at time 2
if it has not already done so at time 1, so the expected profit of A, E[A] =
p(
√
V + 1) + (1− p)(1) = 1 + p

√
V . The optimal profit is clearly 1 +

√
V , so the

competitive ratio is at least

1 +
√
V

1 + p
√
V
≥ 1 +

√
V

1 + 1+V
2V

√
V

=
2V + 2V

√
V

2V + V
√
V +

√
V

=
2V + 2

√
V

V + 2
√
V + 1

= 2− 2√
V + 1

Otherwise if p > 1+V
2V then j3(3, 3, V) arrives. If A sent j1 at time 1 then it

must send j2 at time 2 since it is non-idling, leaving no energy for j3, whereas if
it sent j2 at time 1 then there is no pending packet to send at time 2 and so has
the remaining energy to send j3. Hence E[A] = p(

√
V + 1) + (1 − p)(1 + V) =

1 +V − p(V −
√
V). OPT will send j2 at time 1 and j3 at time 3. Note that this

OPT is non-idling. The competitive ratio is therefore

1 + V

1 + V − p(V −
√
V)

>
1 + V

(1 + V) + 1+V
2V (
√
V − V)

=
2V

2V + (
√
V − V)

= 2− 2√
V + 1

For deterministic algorithms, the proof is basically the same but p can only
take on two discrete values {0, 1}. If an online algorithm A sends j2 at t = 1
(i.e. p = 0) then no more packets arrive and the competitive ratio is 1 +

√
V .

Otherwise if j1 is sent (p = 1) then j3 arrives and the competitive ratio is
1+V

1+V−(V−
√
V)

= Θ(
√
V). ut

3 Strongly non-idling adversary

The instances in Theorem 1 illustrate a curious aspect of the problem. When
faced with two packets p and q with v(p) > v(q) and d(p) < d(q), it seems
natural to give preference to p over q. Such algorithms are called rational. Here
however, the algorithm has to send q and discard p, even when v(p) is much
higher than v(q), in order to get good performance by saving the energy for a
later packet.

To get around this, we put further restrictions on what the adversary can do.
We say a packet p dominates another packet q if (i) v(p) > v(q) and d(p) ≤ d(q),
or (ii) v(p) ≥ v(q) and d(p) < d(q). We call a schedule S irrational if there are
two packets p 6∈ S and q ∈ S, q is sent in a time step t such that r(p) ≤ t ≤ d(p),
and yet p dominates q. We call an adversary strongly non-idling if it is non-
idling and it never returns an irrational schedule. Note that when there is no
energy limitation or when non-idling is not required, this additional assumption
is redundant: clearly substituting q with p gives a schedule at least as good.
However, what may happen is that sending p first may mean the adversary is

forced to send q later due to its non-idling property, consuming the energy that
could be used for sending future high-value packets, whereas sending q first may
‘kill off’ p and thus save the energy. The situation in the proof of Theorem 1
would not happen in strongly non-idling adversaries: OPT would not be allowed
to discard j1.

For strongly non-idling adversaries we first show a simple deterministic lower
bound of 2, then show that the greedy algorithm is 2-competitive and thus
optimal.

Theorem 2. Any deterministic algorithm is at least 2-competitive against a
strongly non-idling adversary.

Proof. Consider a setting with two packets j1(1, 1, 1) and j2(1, 2, 1 + ε), where
ε > 0 is very small, a battery with C = 2 and an initial e(1) = 2, and no energy
harvested throughout. Clearly OPT can send both packets, hence if an online
algorithm A does not send both packets then no more packets arrive, giving a
competitive ratio of at least (2 + ε)/(1 + ε) ≈ 2. Otherwise A sends j1 at t = 1
and j2 at t = 2, consuming all energy. Then j3(3, 3, V) arrives, which A has no
energy to send. OPT sends j2 at t = 1, dropping j1 which a strongly non-idling
adversary can do (it would not be allowed to do so if v(j1) ≥ v(j2)), and then
send j3. The competitive ratio is 1+ε+V

2+ε > 2 for large V . ut

We first define a total ordering of packets as follows. For two packets x and
y, we say x � y if (i) v(x) > v(y), or (ii) v(x) = v(y) and d(x) < d(y), or (iii)
v(x) = v(y) and d(x) = d(y) and ID(x) < ID(y), where ID() is a unique ID
given to each packet for tie-breaking purposes. The algorithm GREEDY works
as follows: at each time step, as long as there is energy to send a packet and
there is at least one pending packet, send the one that is ‘largest’ according to
the � ordering, i.e. the packet x such that there is no other packet with y � x.

We assume OPT and GREEDY tie-break using the IDs consistently: if two
packets x and y have the same values and deadlines, and ID(x) < ID(y) (so
GREEDY favours x), then OPT would not leave x out of its schedule but include
y. In addition, we can assume that if OPT sent two packets x and y, where x � y,
one at time step t1 and another at t2, where t1 < t2, and that both packets are
available during [t1..t2], then x is sent at t1 and y at t2 and not the other way
round. This follows from a simple exchange argument; note that this does not
affect the energy levels or the non-idling requirement at any other time steps.

Theorem 3. GREEDY is 2-competitive against a strongly non-idling adver-
sary.

Proof. Let G denote the schedule produced by GREEDY. Let e(t) and e∗(t)
denote the energy in the battery at time t of G and OPT respectively. We prove
by induction the invariant that

(Inv-E): at any time t, e(t) ≥ e∗(t)

and at the same time describe how the packet values in OPT can be charged to
those in G.

Clearly (Inv-E) is true initially. When energy is harvested the battery of G
increases at least as much as that of OPT, unless the battery of G is fully charged
before that of OPT in which case (Inv-E) holds anyway.

Consider a time t, and assume (Inv-E) is true up to time t. If GREEDY does
not send a packet at t, then clearly (Inv-E) is maintained at t+ 1. Moreover, if
OPT sends a packet x then by (Inv-E) GREEDY also has the energy to send
packets, so the only reason that it is idle is because x has already been sent
earlier. Charge x to itself in G.

Now suppose GREEDY sends a packet y and OPT sends a packet x. Clearly
(Inv-E) remains true at t+1. If v(x) ≤ v(y), simply charge the value of x to y. If
v(x) > v(y), then x must already be sent by G earlier since otherwise G would
have sent it instead at this time step; charge x to itself in that earlier time step.

Finally suppose GREEDY sends a packet y but OPT idles. We will show
below that this can only happen if OPT has zero energy (e∗(t) = 0 and h(t) = 0).
This means (Inv-E) is still maintained after this time step. No packet values from
OPT need to be charged.

Consider each packet in G, it receives at most two charges, one from a future
copy of itself in OPT and another from a packet sent by OPT at the same time
step which has at most the same value as the packet in G. Summing over all
packets in G, this shows that GREEDY is 2-competitive.

We now return to prove that if GREEDY sends a packet but OPT idles at
time t, then OPT must have zero energy. Suppose this is not true. Then OPT
must have no pending packets at t since it is non-idling. Let x1 be the packet
sent by G at t. This packet x1 must have been sent by OPT at an earlier time
t1 < t, since otherwise it would be pending for OPT at t. Consider the packet x2
sent by G at time t1. This packet must exist, i.e., G cannot idle at t1, because
x1 is pending, and G must have energy to send it because of (Inv-E) and the
fact that OPT has energy to send x1. Moreover, x2 � x1 because otherwise x1
would be sent here instead by GREEDY. x2 must be sent by OPT: otherwise if
d(x2) ≥ t then it would still be pending at t so OPT could not idle at t, whereas
if d(x2) < t then d(x2) < d(x1) and so x2 dominates x1, and thus a strongly
non-idling adversary could not have discarded x2 and schedule x1 at t1. Let t2
be the time where OPT sent x2. It must be that t2 < t, since otherwise OPT
would not idle at t. In fact it must be that t2 < t1: otherwise, if t1 < t2 < t then
both x1 and x2 have been released and have not reached their deadlines during
[t1..t2], so by our assumption OPT would have sent x2 first (because x2 � x1).

We then repeat the argument: again G cannot be idle at t2 and must send
a packet x3, because it has the energy to do so by (Inv-E) and because x2 is
pending at t2. Moreover this means x3 � x2 � x1. Then, x3 must appear in OPT:
if d(x3) ≥ t then OPT would not idle at t; if t1 ≤ d(x3) < t then d(x3) < d(x1)
and x3 dominates x1 and thus OPT could not have discarded x3 when it could
schedule it at t1; if d(x3) < t1 then d(x3) < d(x2) and similarly x3 dominates
x2. Furthermore it must appear in a time step t3 where t3 < t2: it cannot appear

after t since OPT could send it at t; if it appeared between t2 and t1 then OPT
would swap x2 and x3; and if it appeared between t1 and t then OPT would
swap x1 and x3.

Continuing like this, we can build a ‘chain’ of xi’s. In general, let ti be the
time where OPT sent xi, where ti < ti−1 < ... < t1 < t and xi � xi−1 � ... � x1.
G cannot be idle at ti because xi, which G sent at ti−1, is pending and it has
at least one unit of energy by (Inv-E). Let xi+1 be the packet sent by G at ti.
Moreover xi+1 � xi, since otherwise G would have sent xi instead of xi+1 at
ti. Then xi+1 must appear in OPT or else a strongly non-idling adversary must
include xi+1 and discard one of x1, ..., xi instead, depending on its deadline.
Moreover it must appear in a time step ti+1 where ti+1 < ti: it cannot appear
after t since OPT could send it at t; if it appeared between tj and tj−1 for some
j > 1 then OPT would swap xi+1 and xj ; and if it appeared between t1 and t
then OPT would swap xi+1 and x1.

This process can go on indefinitely, but there are only a finite number of time
steps before t and all these time steps t1, t2, ... and packets x1, x2, ... are distinct.
Hence we will eventually run into a contradiction. ut

In fact we give a randomized lower bound of 2, showing that randomization
does not help.

Theorem 4. No randomized algorithm is better than (2−ε)-competitive against
a strongly non-idling (and oblivious) adversary.

Proof. In the following we give a construction involving k rounds, and which
shows a lower bound of 2− 1

k+1 , for any integer k. Since k can be made arbitrarily
large this proves the theorem.

Fix the capacity C = 2. At time 1 the battery is full. Fix a large x. At each
round i ≥ 1, an early packet ji(2i − 1, 2i − 1, xi−1) and a late packet ki(2i −
1, 2i, xi−1 + δ) arrive, where δ > 0 is very small (in the following calculations we
ignore δ). Also at round i ≥ 2 a unit of energy is harvested at the beginning,
i.e., h(2i− 1) = 1.

First consider round 1 and suppose at time 1 an online algorithm A sends j1
with probability 1− p1 and k1 with probability p1. If it sent j1 first then it must
send k1 at time 2, consuming all energy, while if it sent k1 first then j1 expires.

If p1 <
k+1
2k+1 , then a big packet (3, 3, x) arrives and no further rounds are

released. The expected profit of A is E[A] = p1(1 + x) + (1 − p1)(2) = p1x +
2 − p1, while OPT sends k1 and the big packet. Hence the competitive ratio
R = 1+x

p1x+2−p1 ≈
1
p1
> 2k+1

k+1 for large x. On the other hand, if p1 ≥ 2k
2k+1 , then

no more packets or rounds arrive. OPT gets 2 while E[A] = p1(1) + (1− p1)(2),
hence R = 2

2−p1 ≥
2k+1
k+1 . Finally, if k+1

2k+1 ≤ p1 <
2k
k+1 , we proceed to round 2.

In general, we only proceed to round i if k+1
2k+1 ≤ p1..pj <

2k+1−j
2k+1 for all

previous rounds 1 ≤ j ≤ i− 1. Suppose we are at the beginning of round i, and
two packets and one unit of energy is released. Consider the event (*):

In all previous rounds the late packets were sent immediately on arrival.

Thus none of the early packets were sent and this leaves one unit of energy
(plus the one just arrived). This happens with probability p1p2...pi−1. Let pi
be the conditional probability that A sends ki at time 2i − 1, conditional on
(*) happens. In this case ji cannot be sent, and there is one unit of energy left
afterwards. And with conditional probability 1− pi, again conditional on (*), ji
is sent instead, forcing ki to be sent at the next time step and with no energy left
afterwards. Finally, with the rest of probability 1− p1p2...pi−1, in at least one of
the previous rounds both the early and the late packets were sent, meaning there
is no energy left at the beginning of round i (other than the one just harvested),
so only one of ji or ki can be sent (and one of them must be sent). We now
consider three cases.

Case 1: p1p2...pi <
k+1
2k+1 . A big packet (2i + 1, 2i + 1, xi) arrives and no

more rounds arrive. Since xi is much larger than any other packet values, we
only consider the value of this big packet in the profits. The only way A can
send this big packet is to have (*) and also send the late packet at this round
immediately on arrival; thus E[A] = (p1..pi)(x

i). Clearly OPT can get xi. Hence
R = 1

p1..pi
> 2k+1

k+1 .

Case 2: p1p2..pi ≥ 2k+1−i
2k+1 . No further packet arrives. The two packets in

round i, of value xi−1, dominate the profits, hence we only consider them. The
only way that A can sent both of these packets is to have (*), then send the
early packet ji first; this happens with probability p1..pi−1(1− pi). In all other
scenarios, A can send one of the two packets this round. Thus E[A] = xi−1(1 +
p1..pi−1(1− pi)). OPT gets 2xi−1. Hence

R =
2

1 + p1..pi−1(1− pi)
=

2

1 + p1..pi−1 − p1..pi
≥ 2

1 + 2k+1−i+1
2k+1 − 2k+1−i

2k+1

=
2k + 1

k + 1
.

Case 3: k+1
2k+1 ≤ p1p2..pi <

2k+1−i
2k+1 . We proceed to round i+ 1.

Since Case 3 cannot happen when i = k, the construction stops latest at
round k and in all cases the lower bound is at least (2k + 1)/(k + 1). ut

4 Unrestricted adversary

4.1 Weighted instances

In [12] it was shown that, against general adversaries (i.e., they can idle), any
deterministic non-idling rational algorithm is V -competitive. We first show that
the correct competitive ratio for any deterministic non-idling algorithms is in
fact V + 1, rational or not.

Consider the following counterexample with two packets j1(1, 3, 1), j2(2, 2, V),
battery capacity C = 1, initial energy e(1) = 1, and harvesting energy h(3) = 1
and h(t) = 0 for any other t. A non-idling algorithm must send j1 at time 1
and then cannot send j2. OPT would send j2 and j1 at time 2, 3 respectively,
obtaining a profit of V + 1. Thus the competitive ratio is at least V + 1.

The following lemma is useful for a number of results later on. Given the
schedules of OPT and that of an online algorithm A, we say a time step t is an

OPT-only step if OPT sends a packet at t, but A does not despite having at
least one pending packet, because it has no energy. We call a time step A-only if
A sends a packet, but OPT does not despite having at least one unit of energy.

Lemma 1. For the k-th OPT-only step in the schedule, there must be at least
k A-only steps before it in the schedule.

Theorem 5. Any non-idling algorithm is (V + 1)-competitive.

Proof. We consider how to charge the values of packets sent by OPT to those
by the online algorithm A. Any packet sent by OPT is charged to itself in A if it
is also sent by A. If at time t OPT sends a packet x that A does not send, and
A sends another packet y instead at this time step, then charge x to y. Clearly
v(x)/v(y) ≤ V . If at time t OPT sends x but A idles because it has no pending
packets, then x must have been sent by A already and therefore its value is
already charged. Thus the only remaining case is when OPT sends x but A idles
because it has no energy to send any packet, i.e., it is an OPT-only step.

Suppose there are a total of k OPT-only steps. By Lemma 1, there are at
least k A-only steps. We charge each of the k packets in these OPT-only steps
to each of these k packets in A in A-only steps (in some arbitrary way). Again,
if x is the packet in OPT making the charge and y is the one in A receiving it
then v(x)/v(y) ≤ V .

Each packet in A is charged by at most two packets: one which is itself, and
the other either from OPT in the same time step, or from some OPT-only time
steps, but not both. Thus the ratio of total charges received by a packet to the
value of the packet sent by A is at most V + 1. This shows that A is (V + 1)-
competitive. ut

We can also easily prove matching randomized upper and lower bounds of
Θ(log V):

Theorem 6. Against unrestricted adversaries, any randomized algorithm is Ω(log V)-
competitive. There exists an O(log V)-competitive randomized algorithm.

4.2 Unweighted instances

It might appear that if packets are unweighted, EDF is optimal. However it
is not the case: following the same example in the beginning of the previous
subsection, EDF, or any non-idling algorithm, is not better than 2-competitive.
It also follows from Theorem 5 that any non-idling algorithm is 2-competitive.

It can be observed from those examples that such ‘deadline inversion’ is the
problem to getting optimal schedules. We formalise this by showing that for
instances with agreeable deadlines, i.e. d(i) < d(j) implies r(i) ≤ r(j), EDF is 1-
competitive against unrestricted adversaries. Note that EDF is 1-competitive for
unweighted instances against non-idling adversaries (without the agreeable dead-
line assumption) since neither OPT nor the online algorithm can idle and clearly
it is best to send the packet with the earliest deadline when it is the only thing

that distinguishes packets. Therefore, in a sense we can replace the requirement
of a non-idling adversary with agreeable deadlines to get to 1-competitiveness.
Note that agreeable deadline instances include the case where all packets have
the same ‘lax time’ (d(j)− r(j)) as a special case.

Similar to Theorem 3, we use IDs as a consistent way of tie-breaking dead-
lines. We assume EDF prefers packets with earlier release times among those
that have the same deadline, and if release times are also equal, then the one
with a smaller ID. We say x ≺ y if d(x) < d(y), or d(x) = d(y) and r(x) < r(y),
or d(x) = d(y) and r(x) = r(y) and ID(x) < ID(y).

We also assume OPT follows a canonical structure, in that: (i) if it sent a
packet x at time t1 before sending a packet y at time t2, and r(y) ≤ t1, then
it must be that x ≺ y; (ii) OPT does not idle unnecessarily, i.e., if OPT was
idle at t1 and sends a packet x at a later time step t2, then it must be that x
cannot be moved earlier to t1 without affecting other parts of the schedule (e.g.
due to energy availability), or that simply x was not released at t1, or that there
is no energy available at t1. Both assumptions are without loss of generality by
applying standard exchange arguments.

Lemma 2. Let e∗(t) and e(t) be the energy in the battery of OPT and EDF at
time t respectively. Then at any time t,
Claim 1: e∗(t) ≥ e(t).
Claim 2: if OPT sent a packet x at t then EDF could not send x before t.

Proof. We prove both claims together by induction on t. Both claims are obvi-
ously true for the first time step t = 1. It is also easy to see that Claim 1 is true
for t = 2: it can only be falsified if OPT sent a packet at time 0 but EDF idles,
but they have the same starting energy and the same set of pending packets, so
EDF must also send a packet if OPT can.

Suppose Claim 1 is true for all time steps up to and including t, and Claim
2 is true for all time steps up to but excluding t. Claim 1 is true for time t + 1
unless OPT sends a packet x at t but EDF idles. It is also true if any idling of
EDF is due to that it has no energy (e(t) + h(t) = 0). But if e(t) + h(t) > 0,
EDF will send x instead of staying idle unless x has already been sent. Hence
it remains to prove that x cannot have been sent earlier in EDF, i.e., to prove
Claim 2 is true at time t.

So suppose x was sent by EDF at time t′ < t. Consider the two cases.
Case 1: OPT is idle at t′. EDF has the energy to send a packet, so e(t′) +

h(t′) > 0, and applying the induction hypothesis of Claim 1 to time t′, e∗(t′) ≥
e(t′). Hence e∗(t′) +h(t′) > 0 and OPT has the energy to send a packet at t′. So
the only reason why x is not sent by OPT at t′ must be that during (t′..t], there
is an energy-critical time step, i.e. a step s where e∗(s) + h(s) = 1 and a packet
z is sent by OPT there, so that if x was sent at t′ instead it would use up one
unit of energy and z then could not be sent at s. Furthermore assume s is the
earliest such energy-critical step in (t′..t]. We have z ≺ x since otherwise OPT
would swap x and z. Hence either d(z) < d(x), which implies r(z) ≤ r(x) by
the definition of agreeable deadlines, or d(z) = d(x) and the definition of ≺ also

implies r(z) ≤ r(x). But then z could have been sent by OPT at t′ because it
has energy available and because there are no other energy-critical step between
t′ and s. Hence there is a contradiction.

Case 2: OPT sent a packet y at t′. y must still be pending in EDF at t′ by
induction hypothesis on Claim 2, yet EDF chooses to send x, hence x ≺ y. But
then OPT would have swapped x and y (note that d(x) ≤ d(y)). ut

Theorem 7. EDF is 1-competitive for unweighted instances with agreeable dead-
lines (against unrestricted adversaries).

Proof. Consider each packet x sent by OPT at a time step t. If EDF sends some
packet at t, charge x to that packet. Otherwise, EDF idles despite the fact x
is still pending (by Claim 2 of Lemma 2), so it can only be because it has no
energy, i.e., it is an OPT-only step. By Lemma 1, there must be at least as
many A-only steps as OPT-only steps, so pair them up arbitrarily and charge
the packet values as in the proof of Theorem 5.

Any packet sent by EDF can only receive charge from one other packet: if it
is an A-only step that it only receives from a packet in an OPT-only step, and
if it is a step where both OPT and A send packets then it gets charged from the
corresponding packet in OPT. ut

As a note, this automatically means that EDF is V -competitive for weighted,
agreeable-deadline instances.

5 Network Topologies

Here we consider a network with more than one node. We will restrict ourselves
to unweighted packets. We use the notation (r(j), d(j), s(j), t(j)) for a packet
j where s(j) and t(j) are the source and destination nodes. We use hN (t) to
denote the energy harvesting function for node N .

The situation is already very bad even for unweighted instances:

Proposition 2. The competitive ratio is unbounded even for line networks and
even for unweighted instances if packets have different destinations.

Proof. Consider a line network with four nodes a, b, c, d and two packets p1(1, 3, a, c),
p2(1, 5, a, d). All batteries are initially empty. We have ha(1) = 1 and ha(t) = 0
for t ≥ 2, hb(1) = hc(1) = 0. Hence an online algorithm A can only send one
of the two packets. If A sends p1, then hb(2) = 0, so p1 will expire. OPT sends
p2 instead, with hb(3) = 1, hc(4) = 1. If A sends p2 instead, then hb(2) = 1 but
hc(t) = 0 for all t, so p2 expires while OPT sends p1. ut

Proposition 3. EDF has an infinite competitive ratio even when all packets
have the same source and destination in a line network with only three nodes.

Proof. Consider a line network a, b, c and two packets p1(1, 3, a, c), p2(1, 4, a, c).
Again nodes have empty batteries initially, ha(1) = 1 and ha(t) = 0 afterwards,

and hb(t) = 0 for all t 6= 3 and hb(3) = 1. EDF sends p1 first, but node b has
no energy at time 2 and hence p1 expires, and node a has no energy at time 2
onwards so p2 also expires. OPT sends p2 at time 1, waits at node b at time 2
until it has energy at time 3. Thus EDF gets 0 while OPT gets 1. ut

To try to get around this, we make an additional assumption that the in-
stance is underloaded. We note that it is quite common in the real-time systems
community to consider underloaded instances. However we still have the follow-
ing:

Proposition 4. For a line network where all packets have a common desti-
nation (the sink), any non-idling algorithm is at least (n + 1)-competitive for
unweighted and underloaded instances against unrestricted adversaries, where n
is the number of nodes (excluding the sink).

Proof. Consider a line network with n nodes (in this order) N0, N1, ..., Nn where
N0 is the sink. Each node N1..Nn have C = 1, initial battery energy 0 and the
following energy harvesting function: h(1) = 1, h(t) = 0 for 2 ≤ t ≤ n + 1, and
h(t) = 1 for t ≥ n + 2. Packet p0 is released to node Nn with r(p0) = 1 and
d(p0) very large. For each 1 ≤ i ≤ n, packet pi is released to node Ni with
r(pi) = n+ 1 and d(pi) = n+ i+ 1. These packets are tight, i.e., they must be
forwarded immediately at every node to reach N0 in time. A non-idling algorithm
will send p0 along the line from time 1 to n, consuming the only unit of energy
at each node along the way. Then when the tight packets arrive at time n + 1,
they cannot be forwarded immediately and hence all are lost. OPT withholds
p0 and stays idle up to and including time n. At time n+ 1 it forwards each of
p1..pn by one node. Starting at time n + 2 all nodes have plenty of energy, so
they continue to forward packets p1..pn to the sink. Finally p0 is sent. ut

We believe the bound is indeed tight, i.e., for underloaded instances any non-
idling algorithm is O(n)-competitive in line networks with a common sink, or
even for uplink trees where n is the total number of vertices. Note that without
energy limitations EDF is 1-competitive for uplink trees, but for arbitrary non-
idling algorithms it can also be as bad as (n + 1)-competitive. Also, it is not
true that the competitive ratio may be upper bounded by the depth of the tree
rather than the number of nodes: we have an example to show that any non-
idling algorithm is Ω(n)-competitive for an uplink tree even with a depth of
2.

6 Conclusion

Most importantly we want to get an upper bound in the case of uplink trees or at
least line networks. In the single node case, it is interesting to see whether there
are other ways to get non-trivial competitiveness with reasonable assumptions.
The power of randomized algorithms, or algorithms that choose to idle, remain
to be investigated. For example in the unrestricted adversary case, it is not clear
whether it is possible to get (idling) algorithms with competitive ratio better
than V + 1; or for non-idling algorithms, what are the upper bounds.

References

1. Borodin, A. and El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press, New York (1998)

2. Chin, F. Y. L., Chrobak, M., Fung, S. P. Y., Jawor, W., Sgall, J. and Tichý,
T.: Online Competitive Algorithms for Maximizing Weighted Throughput of Unit
Jobs. Journal of Discrete Algorithms 4(2), 255–276 (2006)

3. Chin, F. Y. L., Fung, S. P. Y.: Online Scheduling with Partial Job Values: Does
Timesharing or Randomization Help? Algorithmica 37(3), 149–164 (2003)

4. Englert, M., Westermann, M.: Considering Suppressed Packets Improves Buffer
Management in Quality of Service Switches. SIAM Journal on Computing 41(5),
1166–1192 (2012)

5. Goldwasser, M. H.: A Survey of Buffer Management Policies for Packet Switches.
SIGACT News 45(1), 100–128 (2010)

6. Hajek, B.: On the Competitiveness of Online Scheduling of Unit-Length Packets
with Hard Deadlines in Slotted Time. In: Proceedings of 35th Annual Conference
on Information Sciences and Systems, pp. 434–438 (2001)

7. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer Overflow Management in QoS Switches. SIAM Journal on Computing
33(3), 563–583 (2004)

8. Lei, J., Yates, R., Greenstein, L.: A Generic Model for Optimizing Single-Hop
Transmission Policy of Replenishable Sensors. IEEE Transactions on Wireless
Communications 8(2), 547–551 (2009)

9. Li, F.: Personal communication (2014)
10. Mao, Z., Koksal, C. E., Shroff, N. S.: Optimal Online Scheduling with Arbitrary

Hard Deadlines in Multihop Communication Networks. In: Proceedings of IEEE
INFOCOM, pp. 2463–2471 (2013)

11. Moser, C., Brunelli, D., Thiele, L., Benini, L.: Real-time Scheduling for Energy
Harvesting Sensor Nodes. Real-Time Systems 37, 233–260 (2007)

12. Wang, H., Zhang, J. X., Li, F.: Worst-Case Performance Guarantees of Schedul-
ing Algorithms Maximizing Weighted Throughput in Energy-Harvesting Networks.
Sustainable Computing: Informatics and Systems 4, 172–182 (2014)

13. Wang, H., Zhang, J. X., Li, F.: Corrigendum to “Worst-case Performance Guar-
antees of Scheduling Algorithms Maximizing Weighted Throughput in Energy-
Harvesting Networks”. Sustainable Computing: Informatics and Systems 5, 64
(2015)

14. Zhu, A.: Analysis of Queueing Policies in QoS Switches. Journal of Algorithms 53,
137–168 (2004)

