
Tissue P systems can be simulated
efficiently with counting oracles?

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,
Antonio E. Porreca, and Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{leporati, luca.manzoni, mauri, porreca, zandron}@disco.unimib.it

Abstract. We prove that polynomial-time tissue P systems with cell
division or cell separation can be simulated efficiently by Turing ma-
chines with oracles for counting problems. This shows that the corre-
sponding complexity classes are included in P#P, thus improving, under
standard complexity theory assumptions, the previously known upper
bound PSPACE.

1 Introduction

Tissue P systems [4] are known to solve NP-complete (and coNP-complete)
problems in polynomial time when cell division [9] or cell separation rules [6]
are available in addition to the standard, context-sensitive communication rules.
In terms of complexity classes, this is denoted by NP ∪ coNP ⊆ PMCT DC
and NP ∪ coNP ⊆ PMCTSC , respectively. Division and separation rules allow
the creation of exponentially many cells in polynomial time; the difference is that
division replicates the contents of the original cell, while separation distributes
such contents between the resulting cells according to the nature of the objects.

The previously known upper bound to the classes of problems solved in polyno-
mial time by tissue P systems with cell division [11] or separation [10] is PSPACE,
a class of problems also solved by P systems with active membranes [1]. Unlike
these, tissue P systems lack a complex hierarchical membrane structure, a lim-
itation they share with P systems with elementary active membranes, where
membranes containing further membranes cannot divide; the problems solved
by the latter are known to be bounded by P#P [3], a class conjecturally smaller
than PSPACE.

In this paper we show that the P#P upper bound also applies to tissue
P systems with cell division or cell separation; we describe a simulation that
runs in polynomial time by delegating the communication between regions to an
oracle for a counting problem.
? This work was partially supported by Università degli Studi di Milano-Bicocca,
FA 2013: “Complessità computazionale in modelli di calcolo bioispirati: Sistemi a
membrane e sistemi di reazioni”.



2 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

2 Basic notions

We begin by recalling the definition of tissue P systems with division and
separation rules; for a more detailed introduction on multiset processing and
tissue P systems, we refer the reader to the original paper [4].

Definition 1. A tissue P system is a structure Π = (Γ,E,w1, . . . , wd, R), where:

– Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
– E ⊆ Γ is the alphabet of objects initially located in the external environment,
in infinitely many copies;

– d ≥ 1 is the degree of the system, i.e., the initial number of cells;
– w1, . . . , wd are finite multisets over Γ , describing the initial contents of the d
cells; here 1, . . . , d are labels identifying the cells of the P systems, and 0 is
the label of the external environment;

– R is a finite set of rules.

The rules of R are of the following types:

(a) Communication rules, denoted in this paper by [u]h ↔ [v]k and in the
literature by (h, u/v, k), where h and k are distinct labels (including the
environment), and u and v are multisets over Γ (at least one of them
nonempty): these rules are applicable if there exists a region with label h
containing u as a submultiset and a region k containing v as a submultiset;
the effect of the rule is to exchange u and v between the two regions. If h = 0
(resp., k = 0) then u (resp., v) must contain at least an object from Γ−E, i.e.,
an object with finite multiplicity1. In this paper we consider a rule [u]h ↔ [v]k
and its syntactic reverse [v]k ↔ [u]h to be the same rule.

(b) Division rules, of the form [a]h → [b]h [c]h, where h 6= 0 is a cell label
and a, b, c ∈ Γ : these rules can be applied to a cell with label h containing
at least one copy of a; the effect of the rule is to divide the cell into two
cells, both with label h; the object a is replaced in the two cells by b and c,
respectively, while the rest of the original multiset contained in h is replicated
in both cells.

(c) Separation rules, of the form [a]h → [Γ1]h [Γ2]h, where h 6= 0 is a cell label,
a ∈ Γ , and {Γ1, Γ2} is a partition of Γ : these rules can be applied to a cell
with label h containing at least one copy of a; the effect of the rule is to
separate the cell into two cells, both with label h; the object a is consumed,
while the objects from Γ1 in the original multiset contained in h are placed
inside one of the cells, and those from Γ2 in the other. All separation rules
in R must share the same partition {Γ1, Γ2} of Γ .

A tissue P system with cell division only uses communication and division
rules, while a tissue P system with cell separation only uses communication and
separation rules.
1 Since communication rules are applied in a maximally parallel way, this restriction
avoids the situation where infinitely many objects from the environment simultane-
ously enter a cell.



Tissue P systems can be simulated efficiently with counting oracles 3

A configuration C of a tissue P system consists of a multiset over Γ − E
describing the objects appearing with finite multiplicity in the environment,
and a multiset of pairs (h,w), where h is a cell label and w a finite multiset
over Γ , describing the cells. A computation step changes the current configuration
according to the following set of principles:

– Each object can be subject to at most one rule, and each cell can be subject
to any number of communication rules or, alternatively, a single division or
separation rule.

– The application of rules is maximally parallel : each region is subject to a
maximal multiset of rules (i.e., no further rule can be applied).

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

A halting computation C = (C0, . . . , Ck) of the tissue P system Π is a finite
sequence of configurations, where C0 is the initial configuration, every Ci+1 is
reachable from Ci via a single computation step, and no rules are applicable in Ck.

Tissue P systems can be used as language recognisers by employing two
distinguished objects yes and no: we assume that all computations are halting,
and that either yes or object no (but not both) is released into the environment,
and only in the last computation step, in order to signal acceptance or rejection,
respectively. If all computations starting from the same initial configuration are
accepting, or all are rejecting, the tissue P system is said to be confluent.

In order to solve decision problems (i.e., decide languages), we use families of
recogniser tissue P systems Π = {Πx : x ∈ Σ?}. Each input x is associated with
a tissue P system Πx that decides the membership of x in the language L ⊆ Σ?

by accepting or rejecting. The mapping x 7→ Πx must be efficiently computable
for inputs of any length, as discussed in detail in [5].

Definition 2. A family of tissue P systems Π = {Πx : x ∈ Σ?} is said to
be (polynomial-time) uniform if the mapping x 7→ Πx can be computed by two
polynomial-time deterministic Turing machines E and F as follows:

– F (1n) = Πn, where n is the length of the input x and Πn is a common tissue
P system for all inputs of length n, with a distinguished input cell.

– E(x) = wx, where wx is a multiset encoding the specific input x.
– Finally, Πx is simply Πn with wx added to its input cell.

On the other hand, the family Π is said to be (polynomial-time) semi-uniform
if there exists a single deterministic polynomial-time Turing machine H such
that H(x) = Πx for each x ∈ Σ?.

Any explicit encoding of Πx is allowed as output of the construction, as long
as the number of cells and objects represented by it does not exceed the length
of the whole description, and the rules are listed one by one. This is also called a
permissible encoding [5].



4 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

The class of problems solved by uniform (resp., semi-uniform) families of conflu-
ent tissue P systems with cell division is denoted by PMCT DC (resp., PMC?

T DC);
the corresponding classes for tissue P systems with separation are PMCTSC
and PMC?

TSC . The inclusions PMCT DC ⊆ PMC?
T DC and PMCTSC ⊆ PMC?

TSC
hold by definition, since uniformity is a special case of semi-uniformity.

Finally, we recall the definitions of the complexity classes #P and P#P [7].

Definition 3. The complexity class #P consists of all the functions f : Σ? → N,
also called counting problems, with the following property: there exists a polyno-
mial time nondeterministic Turing machine N such that, for each x ∈ Σ?, the
number of accepting computations of N on input x is exactly f(x).

Definition 4. The complexity class P#P consists of all decision problems solv-
able in polynomial time by deterministic Turing machines with oracles for #P

functions. These are Turing machines Mf , with f ∈ #P, having a distinguished
oracle tape and a query state such that, when Mf enters the query state, the
string x on the oracle tape is replaced in one step with the binary encoding of f(x).

3 Simulating tissue P systems

When simulating a tissue P system, we can limit ourselves to explicitly storing the
configuration of the external environment (i.e., its multiset of objects), since this
is where the result objects yes and no ultimately appear. This configuration can
be stored in polynomial space by keeping track of the multiplicities of the objects
in binary, with a special marker for those appearing with infinite multiplicity.

This is possible as long as we have a way to update this configuration even when
not storing the configurations of the cells; this requires computing the multisets
of objects communicated from or to the environment at each computation step.
We are going to prove that such task can be performed in polynomial time by
querying a #P oracle, by adapting the proof of an analogous result for P systems
with elementary active membranes [3].

The query we would ideally ask is “How much does the multiplicity of object a
in the environment of Π change at time step t?”; however, we only know how to
answer this query by simulating an entire computation of the tissue P system
in polynomial space [11]. In order to try to reduce its complexity, we break it
down into multiple queries with additional inputs describing the history of the
computation up to the previous time step, and partially including the simulation
of the current step. These extra inputs are computed using the answers to previous
queries.

First of all, we need a way to distinguish multiple cells having the same
label. Since cell division can create at most 2t cells with the same label after t
computation steps, we assume that each of these has a unique identifier in the
range [0, 2t); we do not require the identifiers to be contiguous, or that a cell
keep the same identifier during each step of the computation.

Since we are only dealing with confluent tissue P systems in this paper, we
can also make assumptions on how the rules to be applied during each step must



Tissue P systems can be simulated efficiently with counting oracles 5

h0 h2 h3

k0 k2

a
a

aa

a a

a
a

a

a

c

a

c

d
d

b b

b
b

d

Fig. 1. Configuration of a tissue P systemΠ after two computation steps. The subscripts
of the cell labels represent the identifiers of the corresponding cell.

be chosen. Without loss of generality, we give a linear priority to the rules, giving
higher priority to communication rules, and applying a division (or separation)
rule in a cell only when no communication occurs. Within the two groups of
rules (communication versus division and separation), we fix an arbitrary total
ordering. In particular, each communication rule is applied as many times as
possible before applying any of those with lower priority.

We can now define a table associating each communication rule [u]h ↔ [v]k
with the set of identifiers of cells with labels h and k applying it at time t. Since
describing arbitrary subsets of identifiers would require exponential space, we
exploit once again the confluence assumption, and stipulate that each rule must
be applied as many times as possible by all copies of h (resp., k) whose identifier
belongs to a range of the form [0,Mh) (resp., [0,Mk)) for some upper bound Mh

(resp., Mk), where zero is an allowable number of applications. This corresponds
to establishing another priority, over cells sharing the same label, given by the
numerical ordering of the identifiers.

Definition 5. A communication table for a tissue P system Π is a func-
tion T : R× N→ N4 such that, for r = [u]h ↔ [v]k and t ∈ N,

T [r, t] = (Mh, ∆h,Mk, ∆k)

denotes that the cells with label h where rule r is applied at time t are those having
identifiers in the range [0,Mh]; in particular, the rule is applied as many times
as possible for identifiers strictly lower than Mh, and ∆h times (a non-maximal
number of times) for identifier Mh. The values Mk and ∆k, symmetrically, denote
the instances of cell k where r is applied.

A procedure for computing a communication table for a tissue P system is
described later, as a portion of Algorithm 1.

Example 1. Consider the configuration in Fig. 1 of a tissue P system Π after two
computation steps, with three instances of cell h (having identifiers 0, 2, and 3)



6 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

and two instances of cell k (with identifiers 0 and 2), and consider the following
two communication rules:

r1 = [aa]h ↔ [b]k r2 = [c]h ↔ [d]k

By giving priority to r1 over r2, and to lower identifiers over higher ones, we
determine a unique way to apply the rules: rule r1 is applied three times between h0
and k2, and once between h2 and k2, while rule r2 is applied once between h2
and k0, and once between h3 and k0. Notice that k0 applies r1 zero times, which
happens to be maximal in this case (since k0 does not contain any copy of b). Thus,
the smallest ranges of identifiers for h where r1 and r2 are applied maximally
are [0, 2) and [0, 4), respectively, while those for k are [0, 3) and [0, 1), respectively.
Furthermore, h2 applies r1 one extra time. Thus, according to the reasoning above,
the communication table for Π has T [r1, 2] = (2, 1, 3, 0) and T [r2, 2] = (4, 0, 1, 0).

Notice that a communication table for the first t steps of Π can be stored in
polynomial space with respect to t and the length of the description of Π.

Let us now focus on the simulation of tissue P systems with division only, and
let us formulate a query that allows us to perform this task without simulating
the individual cells.

Query Q. Given a tissue P system with division Π = (Γ,E,w1, . . . , wd, R), a
time step t in unary notation, a communication rule r = [u]h ↔ [v]k, and a
communication table T for Π, with entries T [ρ, τ ] filled for all τ < t and for τ = t
if ρ has priority over r, how many times is rule r applied at time t by cells with
label h, assuming the availability of enough copies of v in cells with label k?

An oracle for query Q allows us to simulate tissue P systems with cell division
with a polynomial slowdown.

Lemma 1. PMC?
T DC ⊆ PQ.

Proof. Let L ∈ PMC?
T DC be a language, and let Π = {Πx : x ∈ Σ?} be a

semi-uniform family of tissue P systems with division deciding L in polynomial
time. Algorithm 1 describes how each Πx can be constructed and simulated,
given the input string x, by a deterministic Turing machine with an oracle for Q.

In line 1 we obtain the description of Πx by simulating the machine providing
the semi-uniformity construction for Π on input x. This, by definition, can be
carried out in polynomial time with respect to the length of x.

The loop of lines 2–14 is executed for each simulated time step t, hence, by
hypothesis, a polynomial number of times. Inside this loop, the algorithm iterates
across all communication rules r = [u]h ↔ [v]k of Π in priority order (lines 3–9)
in order to fill the corresponding entry T [r, t] of the communication table.

We begin (line 4) by assuming that all existing copies of h, i.e., the full range
of identifiers [0, 2t), are allowed to apply rule r, as if there were enough copies
of multiset v among the copies of k; we make the same assumption for k. We
then ask the oracle for Q how many times rule r is applied in cells with label h
(line 6) and k (line 7) under those assumptions; call p and q those two numbers



Tissue P systems can be simulated efficiently with counting oracles 7

1 construct Πx = (Γ,E,w1, . . . , wd, R) from x
2 for each time step t do
3 for each rule r = [u]h ↔ [v]k ∈ R in priority order do
4 T [r, t] := (2t, 0, 2t, 0)
5 repeat
6 p := no. of applications of [u]h ↔ [v]k in h at time t according to T
7 q := no. of applications of [u]h ↔ [v]k in k at time t according to T
8 update T [r, t] by binary search
9 until p = q
10 for each rule r = [u]h ↔ [v]0 do
11 p := no. of applications of r in h at time t according to T
12 remove p instances of v and add p instances of u to the environment
13 if yes or no appear in the environment then
14 accept or reject accordingly

Algorithm 1. Simulation of semi-uniform families of tissue P systems with cell division.

of applications. If p 6= q, then the number of copies of u in cells with label h
differs from the number of copies of v in cells with label k; for the simulation to
be consistent with the current configuration of Π, we need to ensure that p = q.
Suppose, for the sake of example, that p < q. Then, we reduce the range of
cells with label k by repeatedly adjusting the corresponding value Mk and re-
evaluating q with further queries. By performing a binary search (line 8), we can
find in polynomial time (log 2t iterations) the smallest range [0,Mk) of identifiers
maximising the value of q, with the constraint q ≤ p. The difference p − q is
finally recorded as ∆k, the number of times r must be applied by the cell having
label k and identifier Mk. (The argument is symmetric if the initial values of p
and q are such that p > q.) This querying procedure is performed even if h = 0
or k = 0, i.e., one of them is the label of the environment.

The loop of lines 10–12 updates the configuration of the environment that
we explicitly store, by asking the oracle the final number of applications of rules
involving the environment, and adjusting the environment multiset accordingly.
Notice that the rules not involving the environment are not simulated, since the
configurations of the cells are not stored by Algorithm 1. In lines 13 and 14 the
computation is halted when one of the result objects yes or no finally appears.

Since the number of queries needed, as well as the number of bookkeeping
operations, is polynomially bounded, the simulation can be performed in PQ.

In order to give a more precise upper bound of the complexity of simulating
tissue P systems, we can now analyse query Q in detail, proving that it can be
answered in polynomial time by a counting machine.

Lemma 2. Query Q is in #P.

Proof. Given a query Q with parameters Π, t, r, and T , Algorithm 2 describes
a nondeterministic procedure for the parallel simulation of all cells of Π having



8 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

1 id := 0
2 for each time step τ ∈ {0, . . . , t} do
3 newid := 2× id
4 newmultiset := ∅
5 for each rule ρ = [u]h ↔ [v]k in priority order do
6 (Mh, ∆h,Mk, ∆k) := T [ρ, τ ]
7 if id < Mh then
8 remove as many copies of u as possible from multiset
9 add the same number of copies of v to newmultiset
10 else if id =Mh then
11 remove ∆h copies of u from multiset
12 add the same number of copies of v to newmultiset
13 if a rule [a]h → [b0]h [b1]h is applicable then
14 nondeterministically guess a bit i
15 newid := newid + i
16 remove a from multiset
17 add bi to newmultiset
18 id := newid
19 multiset := multiset ∪ newmultiset
20 accept as many times as the no. of applications of r in step t

Algorithm 2. Nondeterministic simulation of the cells having label h, with computation
of the number of applications of communication rule r at time t.

label h, where each computation actually simulates a single cell. This algorithm
manages the identifiers of the cells as follows: the identifier of the unique copy of
cell h in the initial configuration is 0 (line 1); if the identifier of a copy of h at
time τ is id , then in the next time step (line 18) the identifier is 2× id (line 3); if,
furthermore, the cell divides, then the new copy, simulated by the computation
where i = 1, has identifier 2× id +1 (line 15). This identifier schema is essentially
identical to the one proposed by Sosík and Cienciala [11], and satisfies the two
requirements described above: uniqueness among cells with the same label, and
range [0, 2t) after t steps.

The algorithm simulates sequentially all steps up to t (line 2). In line 4
it initialises an empty multiset newmultiset to collect the objects entering the
cell via communication rules, or rewritten via division rules; since the rules are
simulated sequentially, we employ this auxiliary multiset (in addition to the
actual content of the cell, named multiset in the pseudocode) in order to avoid
applying more than one rule to each object.

The loop of lines 5–12 iterates across all communication rules ρ involving h
(on either side of the rule). In line 6 we read the values corresponding to the
ranges of identifiers for cell labels h and k where rule ρ is applied in the current
time step. If the identifier of the cell being simulated belongs to the range [0,Mh),
then we apply rule ρ as many times as possible (lines 7–9). On the other hand, if



Tissue P systems can be simulated efficiently with counting oracles 9

the identifier is exactly Mh, we only apply the rule ∆h times (line 10–12). The
rule is not applied if the identifier is strictly greater than Mh.

If a division rule is applicable in the cell (this, in particular, requires that
no communication rule was applied previously), then we apply the first one in
priority order (line 13). This consists in nondeterministically choosing which of
the two resulting cells the current computation will continue to simulate (line 14)
and updating the identifier and contents of the selected cell (lines 15–17). Notice
that this establishes a bijection between computations of the algorithm and
instances of cell h.

We can then update the values of id and add to multiset the objects that
appeared inside the current copy of cell h during the computation step just
simulated (lines 18 and 19).

After having simulated t steps, we can check the number of times m that
input rule r was applied in the cell during the last step. The algorithm can now
“fork” m accepting computations2 (line 20). This value contributes to the total
number of accepting computations of the algorithm, which will then correspond
to the number of applications of rule r at time t, as required.

By combining Lemmata 1 and 2 we finally obtain our main result.

Theorem 1. PMCT DC ⊆ PMC?
T DC ⊆ P#P.

3.1 Tissue P systems with separation

Simulating separation rules [a]h → [Γ0]h [Γ1]h instead of (or in addition to)
division rules only requires a slight change to lines 13 and 17 of Algorithm 2.
After having nondeterministically chosen which of the two resulting cells to
simulate (bit i), we need to update multiset by removing the objects in Γ1−i.
Since this can also be performed in polynomial time, query Q remains in #P

and, as a consequence, the simulation of tissue P systems with separation has
the same complexity.

Theorem 2. PMCTSC ⊆ PMC?
TSC ⊆ P#P.

4 Conclusions

We have proved a P#P upper bound to the class of problems solvable in polyno-
mial time by uniform or semi-uniform families of tissue P systems using division or
separation rules. The simulation of tissue P systems we provided is also relatively
robust with respect to the addition of features; for instance, it can be easily
adapted to accommodate charges, evolution and dissolution rules from P systems
with active membranes [3].

This is the same upper bound that holds [3] for P systems with active
membranes where division can only be applied to elementary membranes (i.e.,
2 This can be performed in polynomial time even if m is exponential, as it suffices to
guess Θ(logm) nondeterministic bits.



10 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

not containing further membranes). These two variants of P systems share the
inability to create the complex nested structures of dividing membranes (such
as exponentially large full binary trees) that allow unrestricted P systems with
active membranes to solve PSPACE-complete problems in polynomial time [1].
It would be interesting to understand if it is possible to formalise this intuitive
reasoning and link such membrane structure “complexity” with the ability of
P systems to solve problems in polynomial time.

We do not know yet whether the P#P upper bound is tight, or whether it can
be lowered. Based on analogous results for P systems with active membranes [2],
we conjecture that P#P is indeed a precise characterisation of the problems
solvable by general tissue P systems with division or separation; however, tissue
P systems with maximum communication rule length (i.e., number of objects
appearing in a communication rule) bounded by a small constant might prove to
be weaker. It would be particularly interesting to analyse the borderline case of
tissue P systems with division having rules of length at most 2, or those with
separation having rules of length at most 3, which is the minimum necessary to
solve classically intractable problems [8].

References

1. Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by
recognizing P systems with restricted active membranes. Fundamenta Informaticae
58(2), 67–77 (2003)

2. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane
division, oracles, and the counting hierarchy. Fundamenta Informaticae 138(1–2),
97–111 (2015)

3. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating
elementary active membranes, with an application to the P conjecture. In: Gheorghe,
M., Rozenberg, G., Sosík, P., Zandron, C. (eds.) Membrane Computing, 15th
International Conference, CMC 2014, Lecture Notes in Computer Science, vol. 8961,
pp. 284–299. Springer (2015)

4. Martín-Vide, C., Păun, Gh., Pazos, J., Rodríguez-Patón, A.: Tissue P systems.
Theoretical Computer Science 296(2), 295–326 (2003)

5. Murphy, N., Woods, D.: The computational power of membrane systems under
tight uniformity conditions. Natural Computing 10(1), 613–632 (2011)

6. Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue-like P systems.
Journal of Complexity 26(3), 296–315 (2010)

7. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
8. Pérez-Jiménez, M.J.: The P versus NP problem from the membrane computing

view. European Review 22(01), 18–33 (2014)
9. Păun, Gh., Pérez-Jiménez, M.J., Riscos Núñez, A.: Tissue P systems with cell

division. International Journal of Computers, Communications & Control 3(3),
295–303 (2008)

10. Sosík, P., Cienciala, L.: Computational power of cell separation in tissue P systems.
Information Sciences 279, 805–815 (2014)

11. Sosík, P., Cienciala, L.: A limitation of cell division in tissue P systems by PSPACE.
Journal of Computer and System Sciences 81(2), 473–484 (2015)


	Tissue P systems can be simulatedefficiently with counting oracles

