Skip to main content

Age and Time Operator of Evolutionary Processes

  • Conference paper
  • First Online:
Quantum Interaction (QI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9535))

Included in the following conference series:

Abstract

The Time Operator and Internal Age are intrinsic features of Entropy producing Innovation Processes. The innovation spaces at each stage are the eigenspaces of the Time Operator. The internal Age is the average innovation time, analogous to lifetime computation. Time Operators were originally introduced for Quantum Systems and highly unstable Dynamical Systems. The goal of this work is to present recent extensions of Time Operator theory to regular Markov Chains and Networks in a unified way and to illustrate the Non-Commutativity of Net Operations like Selection and Filtering in the context of Knowledge Networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dugas, R.: A History of Mechanics, Griffon, Switzerland. Dover Republication, New York (1988)

    Google Scholar 

  2. Laplace, P.: Essai Philosophique sur les Probabilités, Transl. by F. Truscott and F. Emory, Dover, New York (1951)

    Google Scholar 

  3. Littmann, M.: Planets Beyond: Discovering the Outer Solar System. Wiley, New York (1988)

    Google Scholar 

  4. Clausius, R.: The Mechanical Theory of Heat. McMillan, London (1879)

    Google Scholar 

  5. Poincaré, H.: Les Methodes Nouvelles de la Mécanique Céleste Vols 1-3, Gauthier-Villars, Paris; English Translation, American Inst. Physics, New York (1993)

    Google Scholar 

  6. Barrow-Green, J.: Poincaré and the three body problem. American Mathematical Society and London Mathematical Society (1997)

    Google Scholar 

  7. Prigogine, I.: From Being to Becoming. Freeman, New York (1980)

    Google Scholar 

  8. Lighthill, J.: The recently recognized failure of predictability in Newtonian dynamics. Proc. Roy. Soc. London A407, 35–50 (1986)

    Article  Google Scholar 

  9. Kolmogorov, A.N.: Entropy per unit time as a metric invariant of Automorphisms. Dokl. Akad. Nauk SSSR 124, 754–755 (1959)

    MathSciNet  MATH  Google Scholar 

  10. Cornfeld, I., Fomin, S., Ya, Sinai: Ergodic Theory. Springer-Verlag, Berlin (1982)

    Book  MATH  Google Scholar 

  11. Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, New York (1998)

    MATH  Google Scholar 

  12. Misra, B.: Nonequilibrium Entropy, Lyapounov variables, and ergodic properties of classical systems. In: Proceedings of the National Academy of Sciences USA, vol. 75, pp. 1627–1631 (1978)

    Google Scholar 

  13. Misra, B., Prigogine, I., Courbage, M.: From deterministic dynamics to probabilistic descriptions. Phy. A: Stat. Mech. Appl. 98(1), 1–26 (1979). doi:10.1016/0378-4371(79)90163-8

    Article  MathSciNet  Google Scholar 

  14. Courbage, M., Misra, B.: On the equivalence between Bernoulli dynamical systems and stochastic Markov processes. Phy. A: Stat. Mech. Appl. 104(3), 359–377 (1980). doi:10.1016/0378-4371(80)90001-1

    Article  MathSciNet  Google Scholar 

  15. Misra, B., Prigogine, I., Courbage, M.: Lyapunov variable: entropy and measurements in quantum mechanics. Proc. Nat. Acad. Sci. USA 76, 4768–4772 (1979)

    Article  MathSciNet  Google Scholar 

  16. Pauli, W.: Prinzipien der Quantentheorie 1. In: S. Flugge (ed.) Encyclopedia of Physics, vol. 5, Springer-Verlag, Berlin. English Translation: P. Achuthan and K. Venkatesan, General Principles of Quantum Mechanics. Springer, Berlin (1980)

    Google Scholar 

  17. Putnam, C.R.: Commutation Properties of Hilbert Space Operators and Related Topics. Springer-Verlag, Berlin (1967)

    Book  Google Scholar 

  18. Courbage, M.: On necessary and sufficient conditions for the existence of time and entropy operators in quantum mechanics. Lett. Math. Phy. 4(6), 425–432 (1980). doi:10.1007/BF00943427

    Article  MathSciNet  MATH  Google Scholar 

  19. Lockhart, C.M., Misra, B.: Irreversibility and measurement in quantum mechanics. Phy. A: Stat. Mech. Appl. 136(1), 47–76 (1986). doi:10.1016/0378-4371(86)90042-7

    Article  MathSciNet  Google Scholar 

  20. Antoniou, I., Suchanecki, Z., Laura, R., Tasaki, S.: Intrinsic irreversibility of quantum systems with diagonal singularity. Phy. A: Stat. Mech. Appl. 241(3), 737–772 (1997)

    Article  Google Scholar 

  21. Courbage, M., Fathi, S.: Decay probability distribution of quantum-mechanical unstable systems and time operator. Phy. A: Stat. Mech. Appl. 387(10), 2205–2224 (2008)

    Article  Google Scholar 

  22. Rosenfeld, L.: Questions of irreversibility and ergodicity. In: Caldirola, P. (eds.) Proceedings of the International School of Physics “Enrico Fermi”, Course XIv, pp. 1–20. Academic Press, New York (1960)

    Google Scholar 

  23. George, C., Prigogine, I., Rosenfeld, L.: The macroscopic level of quantum mechanics. Kon. Danske Videns. Sels. Mat-fys. Meddelelsev 38(12), 1–44 (1973)

    MathSciNet  Google Scholar 

  24. Atmanspacher, H.: Propositional lattice for the logic of temporal predictions. In: Antoniou, I., Lambert, F. (eds.) Solitons and Chaos, pp. 58–70. Springer, Berlin (1991)

    Chapter  Google Scholar 

  25. Luzzi, R., Ramos, J.G., Vasconcellos, A.R.: Rosenfeld-prigogine’s complementarity of description in the context of informational statistical thermodynamics. Phys. Rev. E 57, 244–251 (1998)

    Article  Google Scholar 

  26. Antoniou, I.: Internal Time and Irreversibility of Relativistic Dynamical Systems, Ph.D. thesis, University of Brussels (1988)

    Google Scholar 

  27. Antoniou, I., Misra, B.: Non-unitary transformations of conservative to dissipative evolutions. J. Phys. A. Math. Gen. 24, 2723–2729 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Antoniou, I.: Information and dynamical systems. In: Atmanspacher, H., Scheingraber, H. (eds.) Information Dynamics, pp. 221–236. Plenum, New York (1991)

    Chapter  Google Scholar 

  29. Antoniou, I., Misra, B.: Relativistic internal time operator. Int. J. Theor. Phy. 31, 119–136 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lockhart, C.M., Misra, B., Prigogine, I.: Geodesic instability and internal time in relativistic cosmology. Phy. Rev. D 25(4), 921 (1982). doi:10.1103/PhysRevD.25.921

    Article  MathSciNet  Google Scholar 

  31. Antoniou, I., Sadovnichii, V., Shkarin, S.: Time operators and shift representation of dynamical systems. Physica A299, 299–313 (1999)

    Article  Google Scholar 

  32. Antoniou, I., Suchanecki, Z.: Non-uniform time operator Chaos Wavelets Interval. Chaos Solitons Fractals 11, 423–435 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Antoniou, I.: The time operator of the cusp map. Chaos Solitons Fractals 12, 1619–1627 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Antoniou, I., Shkarin, S.A.: Resonances and time operator for the cusp map. Chaos Solitons Fractals 17, 445–448 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Antoniou, I., Gustafson, K., Suchanecki, Z.: On the inverse problem of statistical physics: from irreversible semigroups to chaotic dynamics. Physica A 252, 345–361 (1998)

    Article  Google Scholar 

  36. Antoniou, I., Suchanecki, Z.: Time Operators Associated to Dilations of Markov Processes. In: Iannelli, M., Lumer, G. (eds.) Evolution Equations: Applications to Physics, Industry, Life Sciences Economics. Progress in Nonlinear Differential Equations and their Applications, vol. 55, pp. 13–23. Birkhauser Verlag, Basel (2003)

    Google Scholar 

  37. Antoniou, I., Prigogine, I., Sadovnichii, V., Shkarin, S.: Time operator for diffusion. Chaos Solitons Fractals 11, 465–477 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Antoniou, I., Gustafson, K.: Haar’s wavelets and differential equations. J. Diff. Equ. 34, 829–832 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Antoniou, I., Gustafson, K.: Wavelets and stochastic processes. Math. Comput. Simul. 49, 81–104 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Antoniou, I., Gustafson, K.: The time operator of wavelets. Chaos, Solitons Fractals 11, 443–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Antoniou, I., Suchanecki, Z.: Internal time and innovation. In: Buccheri, R., et al. (eds.) The Nature of Time: Geometry, Physics and Perception. Kluwer, Netherlands (2003)

    Google Scholar 

  42. Antoniou, I., Christidis, T.: Bergson’s time and the time operator. Mind Matter 8(2), 185–202 (2010)

    Google Scholar 

  43. Gialampoukidis, I.: The time operator and age of evolutionary processes, Ph.D. thesis, School of Mathematics, Aristotle University of Thessaloniki (2014)

    Google Scholar 

  44. Gialampoukidis, I., Gustafson, K., Antoniou, I.: Time operator of Markov chains and mixing times. Applications to financial data. Phy. A: Stat. Mech. Appl. 415, 141–155 (2014)

    Article  MathSciNet  Google Scholar 

  45. Gialampoukidis, I., Gustafson, K., Antoniou, I.: Financial time operator for random walk markets. Chaos Solitons Fractals 57, 62–72 (2013). doi:10.1016/j.chaos.2013.08.010

    Article  MathSciNet  Google Scholar 

  46. Gustafson, K., Antoniou, I.: Financial time operator and the complexity of time. Mind Matter 11(1), 83–100 (2013)

    MathSciNet  Google Scholar 

  47. Gialampoukidis, I., Antoniou, I.: Age, innovations and time operator of networks. Physica A 432, 140–155 (2015)

    Article  MathSciNet  Google Scholar 

  48. Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1948)

    Google Scholar 

  49. Bergson, H.: Société Française de Philosophie Conference Proceedings, Bulletin de la Société française de Philosophie, vol. 22(3), pp. 102–113 (1922)

    Google Scholar 

  50. Gialampoukidis, I., Antoniou, I.: Entropy, age and time operator. Entropy 17, 407–424 (2015). doi:10.3390/e17010407

    Article  Google Scholar 

  51. Atmanspacher, H.: Dynamical entropy in dynamical systems. In: Atmanspacher, H., Ruhnau, E. (eds.) Time, Temporality, Now, Experiencing Time and Concepts of Time in an Interdisciplinary Perspective, pp. 327–346. Springer, Heidelberg (1997)

    Google Scholar 

  52. Kolmogorov, A.N.: Foundations of the Theory of Probability, 2nd English edn. Chelsea, New York (1956)

    MATH  Google Scholar 

  53. Kemeny, J.G., Snell, J.L.: Finite Markov Chains, D. Van Nostrand (1960)

    Google Scholar 

  54. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    Google Scholar 

  55. Bollobás, B.: Random Graphs. Springer, New York (1998)

    Book  Google Scholar 

  56. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). doi:10.1126/science.286.5439.509

    Article  MathSciNet  Google Scholar 

  57. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74(1), 47 (2002). doi:10.1103/RevModPhys.74.47

    Article  MathSciNet  MATH  Google Scholar 

  58. Levene, M., Loizou, G.: Kemeny’s constant and the random surfer. Am. Math. Monthly 109, 741–745 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Jenamani, M., Mohapatra, P.K., Ghose, S.: A stochastic model of e-customer behavior. Electron. Commer. Res. Appl. 2(1), 81–94 (2003). doi:10.1016/S1567-4223(03)00010-3

    Article  Google Scholar 

  60. Kirkland, S.: Fastest expected time to mixing for a Markov chain on a directed graph. Linear Algebra Appl. 433(11), 1988–1996 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Crisostomi, E., Kirkland, S., Shorten, R.: A Google-like model of road network dynamics and its application to regulation and control. Int. J. Control 84(3), 633–651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 30(1), 107–117 (1998)

    Article  Google Scholar 

  63. Hamilton, J.D.: A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica: J. Econometric Soc. 57, 357–384 (1989)

    Article  MATH  Google Scholar 

  64. Makris, G., Antoniou, I.: Cryptography with chaos. Chaotic Model. Simul. (CMSIM) 1, 169–178 (2013)

    Google Scholar 

  65. Meyers, A. (ed.): Encyclopedia of Complexity and Systems Science. Springer, New York (2009)

    MATH  Google Scholar 

  66. Watts, J., Strogatz, S.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  67. Strogatz, S.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)

    Google Scholar 

  68. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  69. Caldarelli, G., Vespignani, A.: Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science. World Scientific, Singapore (2007)

    Book  Google Scholar 

  70. Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  71. Jackson, M.: Social and Economic Networks. Princeton University Press, New Jersey (2008)

    MATH  Google Scholar 

  72. Lewis, T.G.: Network Science: Theory and Applications. Wiley, Hoboken (2010)

    Google Scholar 

  73. Estrada, E.: The Structure of Complex Networks. Oxford University Press, New York (2010)

    Google Scholar 

  74. Euler, L.: Solutio problematic ad Geometriam situs pertinentis. Comm. Academiae Petropolitanae, 8, 128–140 (1736)

    Google Scholar 

  75. Poincaré, H.: Analysis situs. J. de l’École Polytechnique ser 2(1), 1–123 (1895)

    Google Scholar 

  76. Lefschetz, S.: Applications of Algebraic Topology: Graphs and Networks. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  77. Biggs, N., Lloyd, E., Wilson, R.: Graph Theory 1736–1936. Clarendon Press, Oxford (1977)

    Google Scholar 

  78. Heykin, S.: Neural Networks: A Comprehensive Foundation. Pearson Prentice Hall, New Jersey (1999)

    Google Scholar 

  79. Moreno, J.L.: Who Shall Survive? A New Approach to the Problem of Human Interrelations, 3d edn. Nervous and Mental Disease Publishing Co., Washington, D.C. (1978)

    Google Scholar 

  80. Freeman, L.: The Development of Social Network Analysis: A Study in the Sociology of Science. Empirical Press, Vancouver (2004)

    Google Scholar 

  81. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, New York (1994)

    Book  Google Scholar 

  82. Newman, M.: Communities, modules and large-scale structure in networks. Nature Phy. 8, 25–31 (2012)

    Article  Google Scholar 

  83. Edmonds, B., Meyer, R. (eds.): Simulating Social Complexity: A Handbook. Springer, Berlin (2013)

    Google Scholar 

  84. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433(7023), 312–316 (2005)

    Article  Google Scholar 

  85. Krol, D., Fay, D., Gabryś, B.: Propagation Phenomena in Real World Networks. Springer, New York (2015)

    Book  Google Scholar 

  86. Knuth, D.: Two notes on notation. Am. Math. Monthly 99(5), 403–422 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  87. Cross, R., Parker, A.: The Hidden Power of Social Networks. Harvard Business Press, Boston (2004)

    Google Scholar 

  88. Ioannidis, E., Antoniou, I.: Knowledge Networks Dynamics. Hellenic Mathematical Society Congress (to appear)

    Google Scholar 

Download references

Acknowledgements

The present work has benefitted from the highly interactive and at the same time relaxed atmosphere which emerged during the Quantum Interaction Conference. Special thanks to H. Atmanspacher and T. Filk who catalyzed the event, for fruitful discussions and for supporting our contribution. We acknowledge the Aristotle University of Thessaloniki and especially the Research Committee for supporting one of us (IG) and the Faculty of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Antoniou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Antoniou, I., Gialampoukidis, I., Ioannidis, E. (2016). Age and Time Operator of Evolutionary Processes. In: Atmanspacher, H., Filk, T., Pothos, E. (eds) Quantum Interaction. QI 2015. Lecture Notes in Computer Science(), vol 9535. Springer, Cham. https://doi.org/10.1007/978-3-319-28675-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28675-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28674-7

  • Online ISBN: 978-3-319-28675-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics