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Visibility Graphs of Anchor Polygons

Hossein Boomari and Alireza Zarei

Sharif University of Technology,
Department of Computer Science

Abstract. Visibility graph of a polygon corresponds to its internal di-
agonals and boundary edges. For each vertex on the boundary of the
polygon, we have a vertex in this graph and if two vertices of the poly-
gon see each other there is an edge between their corresponding vertices
in the graph. Two vertices of a polygon see each other if and only if
their connecting line segment completely lies inside the polygon. Rec-
ognizing visibility graphs is the problem of deciding whether there is a
simple polygon whose visibility graph is isomorphic to a given graph.
Another important problem is to reconstruct such a polygon if there is
any. These are well-known and well-studied, but yet open problems in
geometric graphs and computational geometry. However, these problems
have been solved efficiently for special cases where the target polygon is
known to be a tower or a spiral polygon. In this paper, we solve these
recognizing and reconstruction problems for another type of polygons,
named anchor polygons.

Keywords: Visibility graph, polygon reconstruction, recognizing visi-
bility graph, anchor polygon.

1 Introduction

Visibility graph of a simple planar polygon is a graph in which there is a vertex
for each vertex of the polygon and for each pair of visible vertices of the polygon
there is an edge between their corresponding vertices in this graph. Two points
in a simple polygon are visible from each other if and only if their connecting
segment completely lies inside the polygon. In this definition, each pair of adja-
cent vertices on the boundary of the polygon are assumed to be visible from each
other. This implies that we have always a Hamiltonian cycle in a visibility graph
which determines the order of vertices on the boundary of the corresponding
polygon.

Computing the visibility graph of a given simple polygon has many applica-
tions in computer graphics [10], computational geometry [9] and robotics [11].
There are several efficient polynomial time algorithms for this problem [9].

This concept has been studied in reverse as well: Is there any simple polygon
whose visibility graph is isomorphic to a given graph and if there is such a
polygon, is there any way to reconstruct it (find positions for its vertices on
the plain)? The former problem is known as recognizing visibility graphs and
the latter one is known as reconstructing polygon from visibility graph. Both
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these problems are widely open. The only known result about the computational
complexity of these problems is that they belong to PSPACE [1] complexity class
and more specifically belong to the class of Existence theory of reals [8]. This
means that it is not even known whether these problems are NP-Complete or can
be solved in polynomial time. Even, if we are given the Hamiltonian cycle of the
visibility graph which determines the order of vertices on the boundary of the
target polygon, the exact complexity class of these polygons are still unknown.

However, these problems have been solved efficiently for special cases of tower
and spiral polygons. In these special cases, we know that the given graph and
the Hamiltonian cycle correspond to a tower polygon or a spiral one. A tower
polygon consists of two concave chains on its boundary whose share one vertex
and the other end point of these chains are connected by a segment (See Fig. 1.a).
A spiral polygon has exactly one concave and one convex chain on its boundary
(See Fig. 1.b). The recognizing and reconstruction problems have been solved
for tower polygons in linear time in terms of the size of the graph [3]. It has
been shown in [3] that a given graph is the visibility graph of a tower polygon if
and only if by removing the edges of the Hamiltonian cycle from the graph, an
isolated vertex and a connected bipartite graph are obtained and the bipartite
graph has strong ordering following the order of vertices in the Hamiltonian
cycle. A strong ordering on a bipartite graph G(V,E) with partitions U and
W is a pair of <V and <W orderings on respectively U and W such that if
u <U u′, w <W w′, and there are edges (u,w′) and (u′, w) in E, the edges
(u′, w′) and (u,w) also exist in E. Graphs having such ordering are also called
strong permutation graphs. The recognizing and reconstruction problems have
been solved efficiently for spiral polygons, too [2]. Because we need this method
in our algorithm, we describe this method in more details in Section 2.

Although there is a bit progress on the recognizing and reconstruction prob-
lems, there have been plenty of studies on characterizing visibility graphs [2, 3,
5, 6, 12–14]. In 1988, Ghosh introduced three necessary conditions for visibility
graphs and conjectured their sufficiency [5]. In 1990, Everett proposed a graph
that rejects Ghosh’s conjecture [1]. He also refined the third necessary condition
of Ghosh to a new stronger condition [6]. In 1992, Abello et al. built a graph
satisfying Ghosh’s conditions and the stronger version of the third condition
which was not the visibility graph of any simple polygon [15] rejecting the suf-
ficiency of these conditions. Again, in 1997, Ghosh added his forth necessary
condition and conjectured that this condition along with his first two conditions
and the stronger version of the third condition are sufficient for a graph to be
a visibility graph. Finally, in 2005 Streinu proposed a counter example for this
conjecture [7]. Alongside these tries in 1994, Abello et al proposed four necessary
constraints for a graph to be visibility graph of a polygon and they conjectured
that these constraints are verifiable efficiently [17]. Later in 1995, Abello et al
showed these constraints are sufficient for recognizing and reconstruction of 2-
spiral polygons1, without much contribution to their computational complexity
[16].

1 polygons with at most 2 concave chains
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In this paper, we consider these problems for another type of polygons called
anchor polygons. The boundary of an anchor polygon is composed of two con-
cave chains and a convex one (See Fig. 1.c). We characterized these polygons
with some efficiently realizable constraints and show that both recognizing and
reconstruction problems for a given pair of visibility graph and Hamiltonian cy-
cle of an anchor polygon can be solved in O(n2) time where n is the number
of vertices of the graph, or equivalently, the number of vertices of the anchor
polygon.

In the remainder of this paper, we first introduce the algorithm of solving
reconstruction and recognizing problems for spiral polygons in Section 2. Also, in
this section we present some preliminaries and definitions used in next sections.
In Section 3, we give an overview of our algorithm and extract key features from
the graph to be used in our reconstruction algorithm. In Section 4 we present
the algorithm and analyze its efficiency in Section 5.

A

B C

X

Y

A

B C

(a) (b) (c)

Fig. 1. a) Tower polygon, b) Spiral polygon, c) anchor polygon.

2 Preliminaries and Definitions

In this section, we first briefly describe the recognizing and reconstruction algo-
rithm for spiral polygons. We need these details in some parts of our algorithm.
Then, we introduce some definition and basic facts to be used in next sections.

2.1 Spiral Polygons

Assuming that a pair of visibility graph and Hamiltonian cycle belong to a spiral
polygon, Everret and Corneil proposed an efficient method to solve recognizing
and reconstruction problems in these cases [2]. Here, we briefly describe their
method.

The visibility graph of a spiral polygon is a limited subclass of interval
graphs [2]. This means that any interval graph satisfying another necessary con-
dition corresponds to the visibility graph of a spiral polygon and vice versa (For
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the sake of brevity we skip describing this extra condition). This property helps
to solve the recognizing problem for the visibility graphs of spiral polygons.

In any interval graph, and equivalently in the visibility graph of a spiral poly-
gon, there are at least two vertices which form cliques with all their neighbors.
Moreover, by removing one of these vertices, the remaining graph is still an in-
terval graph. In a spiral polygon two joint vertices that connect its convex and
concave chains have this property (form a clique with their neighbors) and by
removing one of these vertices the residual graph will be another spiral poly-
gon. Performing this elimination scheme from one of the joint vertices toward
the other one will finally give us an ordered sequence of removed vertices and a
subset of vertices which make a clique composed of the other joint vertex and
its neighbors.

Assume that < v1, v2, ..., vk > is the ordered sequence of removing vertices
and {vk+1, ..., vn} is the set of remaining vertices which make a clique. Assume
that vn is a joint vertex and vk+1 is the only concave vertex in this set. We
put {vk+1, ..., vn} on the boundary of an arbitrary convex polygon. Then, the
position of the vertices < v1, v2, ..., vk > are located in reverse order inductively
as follows: Assume that vc is the last located convex vertex before vl and vr is the
last located concave vertex before vl. For the induction base step, we set vr = vn
and vc = vk+2. To locate the position of vl−1 in an inductive step, assume that
vt is the closest convex vertex to vr which sees vl−1. By closest we mean that
vt is the first vertex on the Hamiltonian cycle when we move from vr along the
reconstructed part of the concave chain and then go along the reconstructed
part of the convex chain. If vl is a convex vertex, vl−1 is located somewhere in

the angle ̂v′tvrv′t−1 (see Fig. 2.a) where vrv
′
t (resp. vrv

′
t−1) is the half line from

vl along vrvt (resp. vrvt−1) and in opposite side of vt (resp. vt−1) and in such
a way that the new boundary do not cross itself. Otherwise (if vl is a concave

vertex), vl−1 is located somewhere in angle ̂v′tvlv′t−1 (see Fig. 2.b) where vlvt
and vlvt−1 half lines are defined similarly.

X

vr
vl

vt−1
vt

vl−1

(b)

vc

X

vr
vl

vt−1
vt

vl−1

(a)

vc

Fig. 2. The reconstruction algorithm for spiral polygons
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An important feature of this reconstruction algorithm is that starting from
the initial convex polygon vk+1, ..., vn, the remainder of the spiral polygon can
be reconstructed in an arbitrary close area of the concave vertex of this convex
polygon. We use this feature in our reconstruction algorithm.

2.2 Definitions

In an anchor polygon, there are three specific vertices joining the three chains on
the boundary of such a polygon. As shown in Fig 1.c, the joint vertex between
the concave chains is named A and the other joint vertices are named B and C.
For simplicity, we assume that we have a left concave chain from A to B and a
right concave chain from A to C and an underneath convex chain from B to C.
We may refer to A as top joint vertex and to B and C as the left and right joint
vertices, respectively. These names are consistent in all figures and inside the
text to help readers have better perspective about the target anchor polygon.

We use term PQi for the ith vertex of the boundary of the polygon when we
move from vertex P to vertex Q which both lies on the same chain. For example,
AB0 will be vertex A and AB1 is the first vertex after A on the left concave
chain. We also use UV (P ) as the closest vertex to U on chain UV which is visible
to vertex P . In this notation, U and V can be any of the joint vertices A, B or
C.

2.3 Basic Facts

From the convexity or concavity of the chains we have the following basic obser-
vations.

Observation 1 Adjacent vertices (in the given Hamiltonian cycle) of each ver-
tex a /∈ {A,B,C} of concave chains are not visible from each other.

Observation 2 Two vertices of the convex chain BC see each other if and only
if no vertex of the concave chains blocks their visibility.

Observation 3 If a vertex vi on the convex chain sees another vertex vj on
this chain, all vertices from vi to vj on this chain see each other. Moreover, if a
vertex vi on the convex chain does not see another vertex vj on this chain and
vi is closer to B on chain BC, then none of the vertices from B to vi see any
one of the vertices from vj to C.

Observation 4 The vertices AB1 and AC1 are always visible from each other.

Observation 5 At least one of the pairs of vertices (BC1, BA1) and (CB1, CA1)
are visible from each other.

Proof. The blocking vertices of (BC1, BA1) must lie on chain AC and blocking
vertices of (CB1, CA1) must lie on chain AB. If BC1 and BA1 are not visible
from each other, then none of the vertices of the chain AB can block the visibility
of CB1 and CA1. ut
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3 Recognizing Algorithm: Determining joint vertices

We propose a constructive algorithm to solve both recognizing and reconstruc-
tion problems for anchor polygons. In this algorithm, we first determine the
three chains on the given Hamiltonian cycle. During this process, some neces-
sary conditions of the recognizing algorithm are verified. Then, the area of the
target polygon is decomposed into four sub-polygons: a tower polygon, a convex
polygon and two spiral polygons. The tower polygon is reconstructed first. Then,
the convex polygon is constructed under the base edge of the built tower, and,
finally the spiral polygons are built and attached to the sides of the constructed
tower and convex polygons (See Fig. 5). Again, during this reconstruction pro-
cess, the necessary conditions of the given visibility graph are checked to have a
recognizing algorithm as well as the reconstruction one.

The details of the decomposition and reconstruction phases are described in
Section 4. Here, we give a method for identifying the joint vertices A, B and C
from which the three chains on the boundary of the target polygon are obtained.
To do this, we first assume that we know vertex A and propose an algorithm for
finding vertices B and C. Then, we propose a method for identifying candidate
vertices for A.

3.1 Finding joint vertices B and C

When we move from A on the Hamiltonian cycle in both directions, from Ob-
servation. 1 and 5 we can find at least one of the joint vertices B or C. This is
the first visited vertex in these walks whose adjacent vertices in the Hamiltonian
cycle see each other. Our algorithm for finding the other vertex is exactly the
same: Walk along the Hamiltonian cycle from A in both directions until a vertex
with this property (its adjacent vertices in Hamiltonian cycle see each other) is
found in each direction. This algorithm will successfully find correct vertices as
B and C if both pairs (BA1, BC1) and (CA1, CB1) are visible from each other.
But, in some cases one of these pairs are not visible. Then, it seems that, our
algorithm is failed to find joint vertex B or C.

We assume that both concave chains has at least one vertex other than
the joint vertices. Otherwise, the target polygon will be a spiral one and can be
recognized and reconstructed by algorithm proposed in [2]. Assume that G(V,E)
and H are the given pair of visibility graph and Hamiltonian cycle. The following
theorem shows that the joint vertices B and C obtained by our algorithm along
with A are the joint vertices of an anchor polygon whose visibility graph and
Hamiltonian cycle are equivalent to the given pair of G(V,E) and H if and only
if G(V,E) and H belongs to an anchor polygon.

Theorem 1. Assume that for a given visibility graph G(V,E) and Hamiltonian
cycle H and a vertex A, the vertices B and C are the first visited vertices on
H when we walk from A in both sides whose adjacent vertices see each other.
Then, G and H correspond to an anchor polygon with top vertex A if and only if
there is an anchor polygon with joint vertices A, B and C whose pair of visibility
graph and Hamiltonian cycle are respectively isomorphic to G and H.
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Note that the proof, we proposed for this theorem is too long. Therefore, we
present it in the Appendix section.

3.2 Determining joint vertex A

As a main part of our recognition algorithm, we describe a method for identi-
fying the joint vertex A. If one of the concave chains AB or AC has only one
edge (two vertices), the target polygon will be a spiral one and recognizing and
reconstruction problems can be solved in such cases using the method proposed
in [2]. Therefore, we assume that both chains AB and AC have at least one
non-joint vertex. Then, the following observations are true for the joint vertex
A.

Observation 6 The pairs (A,AB2) and (A,AC2) do not see each other, but,
the pair (AB1, AC1) are visible from each other.

Observation 7 All visible vertices from A see each other and along with A form
a clique in the visibility graph.

From these observations we have necessary conditions to find candidate ver-
tices for A. We use these conditions in the first phase of our algorithm by moving
along the Hamiltonian cycle and finding those vertices whose adjacent vertices
see each other, but do not see vertices of distance 2 in the Hamiltonian cycle. For
any one of the vertices passing this check we also check Observation 7. Then, we
use our algorithm for finding other joint vertices (B and C) corresponding to any
one of the candidate vertices for A. Clearly, for any candidate vertex p for A we
must find corresponding joint vertices Bp and Cp where chain BpCp is convex.
Each pair of visible vertices in convex chain BpCp must satisfy Observation 3.
We show that there are at most three candidate vertices for A which pass the
above conditions.

Assume that the given pair of visibility graph and Hamiltonian cycle belongs
to an anchor polygon P with joint vertices AP , BP and CP . Then, we have the
following theorems.

Theorem 2. If our algorithm find another candidate vertex for the top joint
vertex A other than AP , BP and CP , both chains APBP and APCP in P must
lie completely on the same side of the line through vertices APBP

1 and APCP
1.

Proof. Assume that a vertex v satisfies all conditions we check in our algorithm
for finding candidate vertex A. While v /∈ {AP , BP , CP }, BP and CP are distinct
vertices. This implies that v and its corresponding other joint vertices Bv and
Cv (obtained by our algorithm for finding vertices B and C for a given vertex A)
must lie on the convex chain BPCP of P . Then, both chains APBP and APCP

must lie on the convex chain BvCv of the corresponding top joint vertex v. For
the sake of a contradiction, assume that the chain APBP or APCP does not
completely lie on one side of the line through APBP

1 and APCP
1. Without loss

of generality (W.l.o.g.), assume that APBP
2 lies below this line (See Fig. 3).
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From convexity of the chain BPCP , no vertex will block the visibility of APBP
2

and APCP
1. On the other hand, these vertices lie on the convex chain BvCv of

the top joint vertex v. Therefore, according to Observation 3 AP and APBP
2

must also see each other which is a contradiction. ut

Ap

B

C

AvBv
1

AvCv
1

AvBv
2

AvCv
2

Fig. 3. Both chains APBP and APCP must completely lie on the same side of the line
through APBP

1 and APCP
1.

Theorem 3. Our algorithm finds at most one candidate vertex for the top joint
vertex A out of {AP , BP , CP }. Moreover, if any one of the joint vertices BP and
CP be a candidate vertex for A, there can be no more candidate vertex on the
convex chain BPCP out of BP and CP .

Proof. For the sake of a contradiction, assume that our algorithm finds two
candidate vertices A1 and A2 for the top joint vertex A out of {AP , BP , CP }. As
said in the proof of Theorem 2, both these vertices and their corresponding other
joint vertices must lie on the convex chain BPCP in P . W.l.o.g, assume that A2

lies between BP and A1 on this convex chain (See Fig. 4). From the definition
of joint vertices B and C and conditions for the top joint vertex, A2 and A2BP

2

must be invisible and BPAP
1 and BPCP

1 must be visible pairs. This forces
that there must be at least one vertex between BP and A2 which means that
A2BP

1 can not be equal to BP . While A2 and A2BP
2 are an invisible pair on the

convex chain of P , there must be a blocking vertex b on APBP or APCP chains
preventing their visibility. Clearly, b must be visible to A2. On the other hand,
both of the corresponding joint vertices of the top joint vertex A1 (according to
our algorithm) lies between vertices A2 and CP on the convex chain of P . This
implies that all vertices of chain BPCP from A2 to BP and vertices of the chains
APBP and APCP in P lies on the convex chain of the candidate top joint vertex
A1. From Observation 3, when two vertices A2 and b on this convex chain see
each other, all vertices from A2 to b, including A2BP

2, must also see each other
and form a clique which is a contradiction.

By the same argument we can prove that if the joint vertex CP (or BP ) be a
candidate for the top joint vertex, there cannot be any candidate vertex for the
top joint vertex on the convex chain BPCP out of {BP , CP }. ut
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A

B

C

A1
A2

A2B
1

BA1

Fig. 4. A2 and A2B
2 must be invisible and A2B

1 and A2C
1 must ve visible pairs.

From the above theorems, we conclude that according to our algorithm there
will be at most three candidates for the top joint vertex A. Precisely, if there
was any other candidate other than A, either it is a vertex A′ on BPCP (A′ /∈
{BP , CP }) or we have at most two candidates from B and C. From observations
3 and 6 we can conclude that for the latter case the candidate vertices does not
see any of the vertices of convex chain BPCP except the adjacent one in the
Hamiltonian cycle.

4 Reconstruction Algorithm

In this section, we assume that we are given a pair of visibility graph, G(V,E)
and Hamiltonian cycle, H, and three joint vertices A, B and C and the goal
is to obtain an anchor polygon G(V,E) corresponding to these graph and cycle
with A, B and C as its top, left and right joint vertices, respectively. Moreover,
we assume that the visibility graph and the joint vertices satisfy conditions
described in previous observations and conditions of previous algorithms (the
joint vertices have been obtained by the algorithms described in section 3). From
previous section, we know that there are at most three options for these joint
vertices. Therefore, to solve the recognizing algorithm we may run the following
algorithm at most three times and if one of these runs leads to an anchor polygon
it will be returned as a solution and if none of them produce a polygon it means
that G(V,E) and H do not belong to an anchor polygon.

Our reconstruction algorithm consists of two phases. Initially we decompose
the target polygon into at most four regions and then these regions are recon-
structed to build the final anchor polygon.

4.1 Anchor polygon decomposition

We define a line d as a bi-tangent line for both chains AB and AC if it passes
through vertices M and M ′ on AB and AC, respectively, and both chains lie
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completely on the same side of it (See Fig. 5). From the visibility graph edges
we can find such a bi-tangent line: There is no edge from vertices of AM (resp.
AM ′) to vertices of M ′C (resp. MB) except the edge MM ′. Also, the polygon
with boundary AM , AM ′ and edge MM ′ is a tower polygon.

A

B C

M
M ′

N ′
N

Fig. 5. Decomposition of an anchor polygon

Observation 8 Each anchor polygon has exactly one bi-tangent line.

Observation 9 The bi-tangent line of an anchor polygon passes through its
joint vertices B and C if and only if B and C see each other. In these cases,
the convex chain BC lies completely on the opposite side of the bi-tangent line
compare to A and all of the vertices of this convex chain are visible from each
other, and so, they form a clique in the visibility graph.

Let N and N ′ be vertices BC(M ′) and CB(M), respectively (See Fig. 5).
As we stated before, the polygon with boundary vertices < M, ..., B, ...,M ′ >
is a tower polygon and polygon with boundary vertices < M,N, ..., N ′,M ′ >
is a convex one. Also, both polygons with boundary < M, ..., B, ..., N > and
< M ′, ..., C, ..., N ′ > are spiral polygons and there is no edge between the vertices
of one of them to the other one or the tower sub-polygon, except edges have an
end point in {N,N ′,M,M ′} (See Fig. 5). Otherwise, we report that the pair
G(V,E) and H does not correspond to any anchor polygon with joint vertices
A, B and C. Note that based of the shape of the anchor polygon, some of these
four sub-polygons may not exist (it may be only a point or an edge).

This decomposition of the anchor polygon can be obtained from a given
G(V,E) and H and the three joint vertices A, B and C. After obtaining the
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bi-tangent line and the tower polygon as discussed above, the vertices N and N ′

are obtained from G(V,E) and H according to their definition (N = BC(M ′)
and N ′ = CB(M)). Now (after checking the previous observations), because
some of the vertices of these spiral sub-polygons may see some of the convex
ones, we will extend boundary of them to < M, ..., B, ..., N, ..., N ′,M ′ > and
< M ′, ..., C, ..., N ′, ..., N,M >, respectively (clearly both of them are spiral poly-
gons yet). The visibility graph of any one of these sub-polygons must satisfy the
sub-polygon conditions. Precisely, the induced sub-graph of G on vertices of
the tower polygon (resp. spiral polygons) must have necessary conditions of the
visibility graph of a tower polygon (resp. spiral polygon) with these boundary
vertices, and, the induced sub-graph of G on the convex sub-polygon must be
a complete graph. Otherwise, we report that the pair G(V,E) and H does not
belong to an anchor polygon with the given joint vertices A, B and C.

4.2 Reconstructing sub-polygons

Now, we are ready to propose the final step of our constructive algorithm for
solving both recognizing and reconstruction problems. If we consider the union
of the tower and convex sub-polygons, in the decomposition phase, as a single
polygon, it will be an anchor polygon as well. But, this anchor polygon has
this property that its bi-tangent passes through its non-top joint vertices B and
C. We call such anchor polygons simple anchor polygons. The visibility graph
of a simple anchor polygon with joint vertices A, B and C has the following
properties.

Observation 10 Each concave vertex of an anchor polygon sees one continues
sub-chain of the convex chain.

Observation 11 The joint vertices B and C of a simple anchor polygon see the
whole convex chain.

Observation 12 For each concave vertex p of a simple anchor polygon, the
vertices of the convex chain which are visible to pA1 are a subset of the vertices
visible from p.

Observation 13 If both convex vertices p and pB1 of a simple anchor polygon
lie on the right side of the line through A and AB1, the set of visible concave
vertices from p is a subset of such set for pB1 (See Fig. 6.a). Symmetrically,
this is true for p and pC1 if both lie on the left side of the line through A and
AC1.

Observation 14 Assume that q = AB(p) is the closest vertex of the concave
chain AB to A which is visible to a convex vertex p on the left side of the line
through A to AC1 in a simple anchor polygon. Then, none of the vertices of
the sub-chain from A to s = AC(q)A

1
is visible from p and all vertices of the

sub-chain from C to t = AC(qB1) are visible from p (See Fig. 6.b). It means
that AC(p) must be one of the vertices of the left concave chain from s to t.
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Symmetrically, for a convex vertex p lying on the right side of the line through
A and AB1 and q = AC(p), AC(p) must be one of the vertices of the right

concave chain from AB(q)A
1

to AB(qC1).

B

A

C
B

A

C

(a) (b)

p

pB1

p

q = AB(p)
qB1

AC(p)

AC(q)

AC(q)A1

AC(qB1)

Fig. 6. a) Visible points from p is a subset of the visible points from pB1 b) Visible
and invisible vertices of concave chain AC from p

Trivially all above observations must be hold on the visibility graphs induced
to the vertices of the tower and convex sub-polygons in our decomposition algo-
rithm presented in Section 4.1. If these conditions hold, we reconstruct simple an-
chor polygon which corresponds to the obtained tower and convex sub-polygons.

To reconstruct a simple anchor polygon, we first reconstruct the tower poly-
gon using the method presented in [3] (we use the method as a block-box proce-
dure). Then the vertices of the convex chain are put on a convex curve from B to
C supporting their order on the Hamiltonian cycle and the visibility graph con-
straints. To do this, we divide these vertices into these groups: The first group,
called VA, contains those vertices that see all vertices of both concave chains.
From the above observations, these vertices must lie on the convex curve between
the lines passing through A and AB1, and A and AC1 (See Fig. 7.a). The other
groups are the sets VB and VC as shown in Fig. 7. To locate an arbitrary vertex
v ∈ VB it must satisfy two conditions: assume that p = AB(v) and q = AC(v)
are respectively, the top most vertices on chains AB and AC which are visible
to v. According to the visibility graph constraints, p must lie on the left of the
line through p and pA1 and to the right of the line through p and q. Moreover,
v does not see qA1 and p is a blocking vertex for this invisibility. Therefore, if
qA1 is visible from p then v must lie to the left of the line through p and qA1.
Otherwise, as v lies to the left of the line through p and pA1, the vertex p will
block the visibility of v and qA−1 and there is no need to add more constraint
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to restrict position of v on the convex curve. Therefore, the intersection of the
convex curve and this region must be non-empty. If this happens, we can put
p on an arbitrary point of this part of the convex curve and for all points p
that must be located in this region, we put them according to their order in
Hamiltonian cycle. As the last point of our algorithm, we must show that the
intersection of the convex curve and constructed region of v is not empty. The
region is restricted to lines d1 and d2 or lines d2 and d3 (See Fig. 7). It is sim-
ple to show that in both cases q is visible from p and in the latter one qA1 is
visible from p and lies above q. This implies that in both cases the region, and
consequently, the intersection is not empty. Note that finding the corresponding
regions and intersections for vertices of set VC can be done similarly.

B

A

C

(a)

B

A

C

(b)

v

p
qB1

q

qA1

AC1
AB1

VC
VB

VA

v

p

q

B

A

C

(c)

v

p
qB1

q

qA1

Fig. 7. a) VA, VB and VC b) Invisibility of v and qA1 needs to be cared c) Invisibility
of v and qA1 do not need to be cared

After reconstructing the simple anchor polygon of the tower and the convex
sub-polygons, we must build and attach the spiral sub-polygons to the sides of
this simple anchor polygon. Recall that the boundary of the right and left sub-
polygons are < M, ..., B, ..., N, ..., N ′,M ′ > and < M ′, ..., C, ..., N ′, ..., N,M >,
respectively. Moreover, remember that in these polygons there is no edge be-
tween the vertices of < M, ..., B, ..., N > and < M ′, ..., C, ..., N ′ > except edges
that have an end point in {N,N ′,M,M ′}. This helps to build these parts inde-
pendently. Note that we can apply this independency by locating the remained
vertices of these spiral polygons above the line through M and M ′. We describe
how to build the left spiral polygon and the right one can be built Symmetri-
cally. If we apply the elimination scheme starting from the joint vertex B, we
find a sequence of removed vertices, which includes all vertices of the left spiral
polygon except vertices of the convex sub-polygon. Moreover, the remained ver-
tices of this spiral polygon (which make a convex sub-polygon with respect to the
Hamiltonian cycle) are the vertices of our convex sub-polygon< M,M ′, N ′, N >,
which is already reconstructed. The spiral polygon reconstruction algorithm de-
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scribed in Section 2 says that we can start from an arbitrary convex polygon
for the remained vertices and the sequence of the removed vertices can be put
in an arbitrary small neighborhood of the only concave vertex (here it is M).
This means that, by considering the convex sub-polygon as the starting convex
polygon, we can reconstruct the left spiral polygon arbitrary close to M without
intersecting the constructed tower polygon. Note that by using this method all
vertices of the removed sequence are forced to be located above the line through
M and M ′.

5 Complexity Analysis

In this section we analyse the time complexity of our algorithm for recognizing
and reconstruction of an anchor polygon from its visibility graph and Hamilto-
nian cycle.

Before beginning the analysis we assume that for each vertex we know its
maximal cliques with its previous and successor vertices according to their order
in Hamiltonian cycle separately. It means that for each vertex p we know how
many vertices consecutively after (resp. before) p will make a clique with it as
a number denoted by C+(p) (resp. C−(p)). We can calculate these numbers in
O(n2) for all the vertices using Dynamic Programming [4] where n is number of
vertices in the visibility graph. In addition, we denote by D+(p) (resp. D−(p))
the distance between p and the first visible vertex after (resp. before) its maximal
clique, visible to p.

The first part of our algorithm finds candidate vertices. For this purpose our
algorithm iterate on each vertex of the visibility graph for checking necessary
conditions to be a candidate vertex. For each vertex p checking for visibility of
the vertices adjacent to it in Hamiltonian cycle and and checking for invisibility
of (pB1, pB2) and (pC1, pC2) (B and C used here to illustrate vertices after and
before vertex p) needs O(1) for each vertex and O(n) overally. Then, Finding
vertex Bp and Cp will take O(n) time for each vertex p and O(n2) overally. Af-
ter finding these vertices, we should check for necessary sight condition between
convex vertices which could be done in O(n) for each vertex, using functions
C−, C+, D− and D+, and O(n2) for all vertices. So, we can check necessary
conditions for candidate vertices and finding them in O(n2) and will begin the
reconstruction for each of them independently. As the number of candidate ver-
tices are in O(1), the time complexity of the reconstruction algorithm is the time
required for one candidate set of A, B and C.

The reconstruction algorithm, take at most O(n2) for finding the bi-tangent
line and then decomposing polygon into a simple anchor polygon and two spiral
polygons. After reconstructing the tower polygon of that simple anchor polygon
in O(|E|) [3], it will take O(n2) for checking necessary and sufficient conditions
for recognizing simple polygon and reconstructing it. Finally, recognizing each
spiral polygon will take O(n2) using the algorithm of [2]. Summing all, our
algorithm will recognize and reconstruct an anchor polygon in O(n2) time, where
n is the number of vertices of the input visibility graph.
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6 Appendix

6.1 Proof of Theorem 1

Proof. Trivially, the theorem is true when B and C are the joint vertices of the
target polygon of G and H. Moreover, the theorem is trivially true when there is
no anchor polygon with visibility graph G and Hamiltonian cycle H. therefore,
it is enough to prove the theorem for the cases where G and H belong to an
anchor polygon P with joint vertex A and at least one of the other joint vertices
of P is not in {B,C}. According to Observation. 5, assume that C is a joint
vertex of P and the other joint vertex is another vertex B′ 6= B. This means
that B′ lies on the convex chain of P , and equal to a vertex BCi where i > 0,
while B′ = BC0 in anchor polygon P . We prove the theorem by induction on
i. For i = 1, it means that when BA1 and BC1 do not see each other in P , we
can consider the joint vertex B as a vertex of the left concave chain of P and
considering BC1 as the left joint vertex, and the visibility graph of this anchor
polygon is still equivalent to G. This has been shown in Fig. 9 where (a) is the
original polygon and (b) is the new one with BC1 as a joint vertex.

B
BC1

BA1

C

AC(B)

AC(BC1)

CA(B)

CA(BC1)

A

B

BC1

BA1

C

AC(B)

AC(BC1)

CA(B)

CA(BC1)

A

(a) (b)

Fig. 8. Considering BC1 as a joint vertex in (b) while BC1 and BA1 are invisible in
(a).

To complete the proof we must show that it is always possible to locate BC1

on the left concave chain of some anchor polygon without disturbing the visibility
graph constraints. This is done by first proving that the induced visibility graph
on vertices U =< A,AB1, ..., B,BC1 > and W =< A,AC1, ..., CA(BC1) >
have strong ordering with partitions U and W (Then, we can build a tower
polygon on these vertices in which B is a concave vertex on the left chain and
BC1 is the vertex on this concave chain) and second, proving that it is possible
to place other vertices < BC2, ..., C > and < CA(BC1), ..., C > supplying the
visibility graph edges.
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For the first one, we know from P that the induced visibility graph on U ′ =<
A,AB1, ..., B > and W ′ =< A,AC1, ..., CA(B) > have strong ordering. Then
it is enough to consider the pairs (BC1, w) and (u,w′), where w,w′ ∈ W and
w <W w′, w is visible from BC1, and u ∈ U is visible from w′. As shown in Fig.
8 if BC1 sees w and w′ is further than w from A, then u′ must also be visible
from BC1, which means that (BC1, w′) exists in the graph. On the other hand,
while BC1 and BA1 are invisible from each other, u can only be the vertex B.
Then, if u = B sees w′ it will also see all closer vertices to A than w′ which are
visible from BC1. This complete the existence of the strong ordering on U and
W .

For the second one, we show that after building the tower polygon on U
and W , we can add remained vertices to find an anchor polygon with A, BC1

and C as its joint vertices with the same visibility graph as P . These remaining
vertices are the vertices of the right concave chain of P from C to CA(BA1)
and the vertices of convex chain from C to BC1. Later we will add the first set
as a concave chain of a spiral polygon starts from CABC1 and above the line
passing from vertices BC1 and CA(BC1). This is consistent with the visibility
graph because none of these vertices see anyone of the vertices of the tower (See
Fig. 8.b). The convex vertices from C to BC1 = B′ are divided into three parts:

(V1) The visible vertices from B

(V2) The visible vertices from B′ but not visible to B

(V3) The invisible vertices from B′

It is simple to check that none of these vertices are visible from BA1 and
all of them visible from B are also visible from B′. According to Fig. 9, assume
that d1 is the line from BA1 and CA(BA1), d2 is the line from B to CA(B)
and d3 is the line from B′ to CA(B′). The vertices of V 1 ∪ V 2 ∪ V 3 are put
on a convex chain from B′ to C in such a way that vertices of V 1 lie inside
α, vertices of V 2 lie inside β and vertices of V 3 lie above d3. As the slope of
d3 is more than d2 and slope of d2 is more than d1 so both α and β are non-
empty. Therefore, by considering these constraints, our placement supply edges
between vertices of left chain and convex vertices in visibility graph. So we have
to consider some constraints to supply edges between right chain and convex
vertices. We know that all vertices of the right chain between A and AC(BA1),
are invisible to convex chain (Because AC(BA1) blocks visibility of B′ and BA1).
So, by placing convex vertices above d1 (includes both regions α and β) these
invisibilities can be supplied and we do not need to add more constraints for
it. Moreover, Any convex vertex which are visible to B′ (equivalently V 1 ∪ V 2)
sees CA(B′) (because all vertices of the right concave chain are above the line
through B′ and CA(B′) and can not block the visibility of them). Therefore, for
any convex vertex p ∈ V 1 ∪ V 2, p sees all vertices of vertices of the right chain
between CA(B′) and CA(p). Moreover, CA(p) blocks the visibility of p and any
vertex of vertices of the right chain between A and CA(p). Hence, p must be

placed somewhere above the line, dp, through CA(p)A
1

and CA(p) (See Fig.
9). For any p′ ∈ V 1 (resp. p′ ∈ V 2), which is closer to C than p, slope of the
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line through CA(p′)A1
and CA(p′) is more than dp and d1 (resp. d2) and less

than d2 (resp. d3). Moreover all these lines will intersect each other above d3.
Consider and arbitrary convex curve from B′, that lies completely below d3 and
intersect d1, d2 and dCB(B′) strictly below d3. So, By considering all constraints
above, we can place all vertices of the set V 1 ∪ V 2 on this curve, so that, they
supply edges of the induced visibility graph on vertices of the sub-chain from A
to CA(B′) and vertices of V 1 ∪ V 2, and form a convex chain with respect to
their order in the Hamiltonian cycle.

The convex vertices from B′ to C and the concave vertices from CA(B′) to
C build a spiral polygon and we have already build a convex sub-polygon from
it with boundary vertices {B′, CA(B′)} ∪ V 1 ∪ V 2 (with B′ as one of its joint
vertices, and other vertices as all neighbors of B′). So the remaining vertices of
this spiral polygon (equivalently, the remaining vertices of the anchor polygon)
can be reconstructed according to the method described in Section 2 in a close
neighborhood of CA(B′), so that its boundary do not intersect the rest of the
anchor polygon. Note that this reconstruction forces the vertices of V 3 to be
located above d3. This completes our induction proof for i = 1.

Now we can prove the induction step of our proof. From the proof of the
base step of the induction, we conclude that for any anchor polygon P , with
pair of G(V,E) as its visibility graph, H as its Hamiltonian cycle and A, B
and C as its top, left and right joint vertices, respectively, and BCi as the left
joint vertex found by our algorithm, we have another anchor polygon P ′ such
that, its visibility graph and Hamiltonian cycle are isomorphic to G(V,E) and
H, respectively, and A, B′ = BC1 and C as its top, left and right joint vertices,
respectively. So in P ′ our algorithm will find B′Ci−1

as its left joint vertex.
So, by repeating this step, there will be a polygon P

′′
with visibility graph and

Hamiltonian cycle isomorphic to G(V,E) and H, respectively and A, BCi and
C as its top, left and right joint vertices, respectively. So the theorem is true. ut
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BA1
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d3
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β

A

CA(BA1)

CA(B)
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dp

Fig. 9. Lines d1 and d2, parts α and β and other constraints


