
Theory Comput Syst (2018) 62:349–365
DOI 10.1007/s00224-016-9703-3

Tight Bounds for Double Coverage Against Weak
Adversaries

Nikhil Bansal1 · Marek Eliáš1 · Łukasz Jeż1,2 ·
Grigorios Koumoutsos1 · Kirk Pruhs3

Published online: 2 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We study the Double Coverage (DC) algorithm for the k-server problem in
tree metrics in the (h, k)-setting, i.e., when DC with k servers is compared against an
offline optimum algorithm with h ≤ k servers. It is well-known that in such metric
spaces DC is k-competitive (and thus optimal) for h = k. We prove that even if k > h

the competitive ratio of DC does not improve; in fact, it increases slightly as k grows,
tending to h + 1. Specifically, we give matching upper and lower bounds of k(h+1)

k+1
on the competitive ratio of DC on any tree metric.

A preliminary version of this article appeared in the Proceedings of the 13th Workshop on
Approximation and Online Algorithms (WAOA 2015). This work was supported by NWO grant
639.022.211, ERC consolidator grant 617951, NCN grant DEC-2013/09/B/ST6/01538, NSF grants
CCF-1115575, CNS-1253218, CCF-1421508, and an IBM Faculty Award.

� Łukasz Jeż
l.jez@tue.nl; lje@cs.uni.wroc.pl

Nikhil Bansal
n.bansal@tue.nl

Marek Eliáš
m.elias@tue.nl

Grigorios Koumoutsos
g.koumoutsos@tue.nl

Kirk Pruhs
kirk@cs.pitt.edu

1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, 50-383
Wrocław, Poland

3 University of Pittsburgh, Pittsburgh, PA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-016-9703-3&domain=pdf
mailto:
mailto:n.bansal@tue.nl
mailto:m.elias@tue.nl
mailto:g.koumoutsos@tue.nl
mailto:kirk@cs.pitt.edu

350 Theory Comput Syst (2018) 62:349–365

Keywords k-server · Weak adversaries · Resource augmentation · Double coverage

1 Introduction

We consider the k-server problem defined as follows. There are k servers in a given
metric space. In each step, a request arrives at some point of the metric space and
must be served by moving some server to that point. The goal is to minimize the total
distance traveled by the servers.

The k-server problem was introduced by Manasse et al. [8] as a far reaching
generalization of various online problems. The most well-studied of those is the pag-
ing (caching) problem, which corresponds to k-server problem on a uniform metric
space. Sleator and Tarjan [9] gave several k-competitive algorithms for paging and
showed that this is the best possible ratio for any deterministic algorithm.

Interestingly, the k-server problem does not seem to get harder on more general
metrics. The celebrated k-server conjecture states that a k-competitive determinis-
tic algorithm exists for every metric space. In a breakthrough result, Koutsoupias
and Papadimitriou [7] showed that the work function algorithm (WFA) is (2k − 1)-
competitive for every metric space, almost resolving the conjecture. The conjecture
has been settled for several special metrics (an excellent reference is [2]). In partic-
ular for the line metric, Chrobak et al. [3] gave an elegant k-competitive algorithm
called Double Coverage (DC). This algorithm was later extended and shown to be
k-competitive for all tree metrics [4]. Additionally, in [1] it was shown that WFA is
k-competitive for some special metrics, including the line.

The (h, k)-Server Problem In this paper, we consider the (h, k)-setting, where the
online algorithm has k servers, but its performance is compared to an offline optimal
algorithm with h ≤ k servers. This is also known as the weak adversaries model
[6], or the resource augmentation version of k-server. It is a salient point whether the
algorithm knows the value of h. We assume that it does not, as the DC algorithm that
we analyze does not utilize this value (and the same is true of WFA). Moreover, this
assumption is more in the spirit of resource augmentation. Note that in general this
distinction matters, as knowing h, an algorithm might decide to limit the number of
servers it will use to serve the requests. The (h, k)-server setting turns out to be much
more intriguing and is much less understood.

For the uniform metric (the (h, k)-paging problem), k/(k − h + 1)-competitive
algorithms are known [9] and no deterministic algorithm can achieve a better ratio.
Note that this guarantee equals k for h = k, and tends to 1 as the ratio of the number
of online to offline servers k/h becomes arbitrarily large. This shows that the weak
adversaries model could give more accurate interpretation on the performance of
online algorithms: The competitive ratio of k obtained in the classical setting grows
with the number of servers, which could possibly mean that more servers worsen the
performance of an algorithm. On the other hand, the ratio obtained in the (h, k) set-
ting shows that the performance improves substantially when the number of servers
grows. The same competitive ratio can also be achieved for the weighted caching

Theory Comput Syst (2018) 62:349–365 351

problem [10] (and even the more general file caching problem [11], which is not a
special case of the (h, k)-server problem).

However, unlike classical k-server, the underlying metric space seems to play an
important role in the (h, k)-setting. Bar-Noy and Schieber (cf. [2, p. 175]) showed
that, for the (2, k)-server problem on a line metric, no deterministic algorithm can
be better than 2-competitive for any k. In particular, the ratio does not tend to 1 as k

increases.
In fact, there is huge gap in our understanding of the problem, even for very special

metrics. For example, for the line no guarantee better than h is known even when
k/h → ∞. On the other hand, the only lower bounds known are the result of Bar-
Noy and Schieber mentioned above and a general lower bound of k/(k − h + 1) for
any metric space with at least k + 1 points (cf. [2] for both results). In particular, no
lower bound better than 2 is known for any metric space and any h > 2, if we let
k/h → ∞. The only general upper bound is due to Koutsoupias [6], who showed
that WFA is 2h-competitive1 for the (h, k)-server problem on any metric. It is worth
stressing that this is an upper bound for WFA that is oblivious of h and uses all of its
k servers, and that ratio 2h − 1 can be attained by running WFA with h servers when
this value is known to the algorithm.

The DC Algorithm This motivates us to consider the (h, k)-server problem on the
line and more generally on trees. In particular, we consider the DC algorithm [3]
originally defined for a line, and its generalization to trees [4]. We refer to both as
DC, since the latter specializes to the former when the underlying tree is in fact a
line. As understanding both the algorithm and its analysis for the line may be simpler
and more insightful, we provide definitions of both variants. In both, we call an algo-
rithm’s server s adjacent to the request r if there are no algorithm’s servers on the
unique path between the locations of r and s, excluding the point where s is located.
Note that there may be multiple servers in one location, satisfying this requirement —
in such case, one of them is chosen arbitrarily as the adjacent server for this location,
and the others are considered non-adjacent.

DC-Line If the current request r lies outside the convex hull of current servers, serve
it with the nearest server. Otherwise, we move the two servers adjacent to r towards
it with equal speed until some server reaches r .

DC-Tree Repeat the following until a server reaches the request r , constantly updat-
ing the set of adjacent servers: move all the servers adjacent to r towards r at equal
speed. Note that the set of servers adjacent to r can change only when one of them
reaches either a vertex of the tree or the request itself, which ends the move. We
call the parts of the move between updates of the set of adjacent servers elementary
moves.

1Actually, [6] gives a stronger bound: WFAk ≤ 2h·OPTh−OPTk+O(1), where the algorithm’s subscripts
specify how many servers they use.

352 Theory Comput Syst (2018) 62:349–365

There are several natural reasons to consider DC for line and trees. For paging (and
weighted paging), all known k-competitive algorithms also attain the optimal ratio
for the (h, k) version. This suggests that a k-competitive algorithm for the k-server
problem might attain the “right” ratio in the (h, k)-setting. The only algorithm that
satisfies this condition for a non-trivial metric is DC for trees, as well as WFA for the
simpler case of a line. Of the two, DC has the advantage that it attains the optimum
k/(k − h + 1)-competitive ratio for the (h, k)-paging problem, when it is modelled
as a star graph where requests appear in leaves, since it is equivalent to Flush-When-
Full algorithm, as pointed out by Chrobak and Larmore [4]; see Appendix A for
an explicit proof. As for WFA, all known upper bounds, including [6], bound the
extended cost instead of the actual cost of the algorithm. Using this approach we can
easily show that WFA is (h + 1)-competitive for the line (cf. Appendix B).

Our Results We show that the exact competitive ratio of DC on lines and trees in
the (h, k)-setting is k(h+1)

(k+1)
.

Theorem 1 The competitive ratio of DC is at least k(h+1)
(k+1)

, even for a line.

Note that for a fixed h, the competitive ratio worsens slightly as the number of
online servers k increases. In particular, it equals h for k = h and it approaches h+ 1
as k → ∞.

Consider the seemingly trivial case of h = 1. If k = 1, clearly DC is 1-competitive.
However, for k = 2 it becomes 4/3 competitive, as we now sketch. Consider the
instance where all servers are at x = 0 initially. A request arrives at x = 2, upon
which both DC and offline move a server there and pay 2. Then a request arrives at
x = 1. DC moves both servers there and pays 2 while offline pays 1. All servers are
now at x = 1, and the instance repeats.

Generalizing this example to (1, k) already becomes quite involved. Our lower
bound in Theorem 1 for general h and k is based on an adversarial strategy obtained
by a careful recursive construction.

We also give a matching upper bound.

Theorem 2 For any tree, the competitive ratio of DC is at most k(h+1)
(k+1)

.

This generalizes the previous results for h = k [3, 4]. Our proof also follows
similar ideas, but our potential function is more involved (it has three terms instead
of two), and the analysis is more subtle. To keep the main ideas clear, we first prove
Theorem 2 for the simpler case of a line in Section 3. The proof for trees is analogous
but more involved, and is described in Section 4.

2 Lower Bound for the Line Metric

We now prove Theorem 1. We will describe an adversarial strategy Sk for the setting
where DC has k servers and the offline optimum (adversary) has h servers, whose
analysis establishes that the competitive ratio of DC is at least k(h + 1)/(k + 1).

Theory Comput Syst (2018) 62:349–365 353

Roughly speaking (and ignoring some details), the strategy Sk works as follows.
Let I = [0, bk] be the working interval associated with Sk . Let L = [0, εbk] and
R = [(1 − ε)bk, bk] denote the (tiny) left front and right front of I . Initially, all
offline and online servers are located in L. The adversary moves all its h servers
to R and starts requesting points in R, until DC eventually moves all its servers
to R. The strategy inside R is defined recursively depending on the number of DC
servers currently in R: if DC has i servers in R, the adversary executes the strategy Si

repeatedly inside R, until another DC server arrives there, at which point it switches
to the strategy Si+1. When all DC servers reach R, the adversary moves all its h

servers back to L and repeats the symmetric version of the above instance until all
servers move from R to L. This defines a phase. To show the desired lower bound,
we recursively bound the online and offline costs during a phase of Sk in terms of
costs incurred by strategies S1, S2, . . . , Sk−1.

A crucial parameter of a strategy will be the pull. Recall that DC moves some
server qL closer to R if and only if qL is the rightmost DC server outside R and a
request is placed to the left of qR , the leftmost DC server in R, as shown in Fig. 1. In
this situation qR moves by δ to the left and qL moves to the right by the same distance,
and we say that the strategy in R exerts a pull of δ on qL. We will be interested in the
amount of pull exerted by a strategy during one phase.

Formal Description We now give a formal definition of the instance. We begin
by introducing the quantities (that we bound later) associated with each strategy Si

during a single phase:

– di , lower bound for the cost of DC inside the working interval.
– Ai , upper bound for the cost of the adversary.
– pi, Pi , lower resp. upper bound for the “pull” exerted on any external DC servers

located to the left of the working interval of Si . Note that, as will be clear later,
by symmetry the same pull is exerted to the right.

For i ≥ h, the ratio ri = di

Ai
is a lower bound for the competitive ratio of DC with i

servers against an adversary with h servers.
We now define the right and left front precisely. Let ε > 0 be a sufficiently small

constant. For i ≥ h, we define the size of working intervals for strategy Si as sh := h

and si+1 := si/ε. Note that sk = h/εk−h. The working interval for strategy Sk is
[0, sk], and inside it we have two working intervals for strategies Sk−1: [0, sk−1] and
[sk − sk−1, sk]. We continue this construction recursively and the nesting of these
intervals creates a tree-like structure as shown in Fig. 2. For i ≥ h, the working

request
RL

qL qR
δδ

Fig. 1 DC server is pulled to the right by δ

354 Theory Comput Syst (2018) 62:349–365

Fig. 2 Representation of
strategies and the areas that they
define using a binary tree

Sk•
L R

••Sk− 1 Sk− 1
...

...• •Sh+ 2 Sh+ 2
L RR L

•Sh+ 1 • • Sh+ 1•

•
L

Sh
R
•• • •

R
Sh•

L
••

intervals for strategy Si are called type-i intervals. Strategies Si , for i ≤ h, are special
and are executed in type-h intervals.

Strategies Si for i ≤ h For i ≤ h, strategies Si are performed in a type-h interval
(recall this has length h). Let Q be h + 1 points in such an interval, with distance 1
between consecutive points.

There are two variants of Si that we call
→
Si and

←
Si . We describe

→
Si in detail, and

the construction of
←
Si will be exactly symmetric. At the beginning of

→
Si , we ensure

that DC servers occupy the rightmost i points of Q and adversary servers occupy
the rightmost h points of Q as shown in Fig. 3. The adversary requests the sequence
qi+1, qi, . . . , q1. It is easily verified that DC incurs cost di = 2i, and its servers

return to the initial position qi, . . . , q1, so we can iterate
→
Si again. Moreover, a pull

of pi = 1 = Pi is exerted in both directions.
As for the cost incurred by the adversary, we have Ai = 0, for i < h, as the offline

servers do not have to move at all. For i = h, the offline can serve the sequence with
cost 2, by using the server in qh to serve request in qh+1 and then moving it back to
qh, therefore Ah = 2.

For strategy
←
Si , we just number the points of Q in the opposite direction (q1 will

be leftmost and qh+1 rightmost). The request sequence, analysis, and assumptions
about initial position are the same.

q1q2q3q4qhqh+1 . . .
points of Q
servers of adversary
servers of DC

Fig. 3 The initial position for Strategy
→
S3 (for h ≥ 3), in which the adversary requests q4, q3, q2, q1.

DC’s servers move for a total of 6, exerting a pull of 1 in the process, only to return to the same position.
The adversary’s cost is 0 if h > 3 and 2 if h = 3: in such case, the adversary serves both q4 and q3 with
the server initially located in q3

Theory Comput Syst (2018) 62:349–365 355

Strategies Si for i > h We define the strategy Si for i > h, assuming that
S1, . . . , Si−1 are already defined. Let I denote the working interval for Si . We assume
that, initially, all offline and DC servers lie in the leftmost (or analogously rightmost)
type-(i − 1) interval of I . Indeed, for Sk this is achieved by the initial configuration,
and for i < k we will ensure this condition before applying strategy Si . In this case
our phase consists of left-to-right step followed by right-to-left step (analogously, if
all servers start in the rightmost interval, we apply first right-to-left step followed by
left-to-right step to complete the phase).

For each h ≤ j < i, let Lj and Rj denote the leftmost and the rightmost type-j
interval contained in I respectively.
Left-to-right step

1. Adversary moves all its servers from Li−1 to Rh, specifically to the points
q1, . . . , qh to prepare for the strategy

−→
S1 . Next, point q1 is requested, which

forces DC to move one server to q1, thus satisfying the initial conditions of−→
S1 . The figure below illustrates the servers’ positions after these moves are
performed.

2. For j = 1 to h: keep applying
→
S j to interval Rh until the (j + 1)-th server

arrives at the point qj+1 of Rh. (Recall that Fig. 3 illustrates Strategy
−→
Sj for

j ≤ h.) Once it arrives there, complete the request sequence
→
Sj , so that DC

servers will reside in points qj+1, . . . , q1, ready for strategy
→

Sj+1. The figure
below illustrates the servers’ positions after all those moves (i.e., the whole outer
loop, for j = 1 . . . , h) are performed.

3. For j = h+1 to i −1: keep applying Sj to interval Rj until the (j +1)-th server

arrives in Rj . To clarify, Sj stands for either
−→
Sj or

←−
Sj , depending on the locations

of servers within Rj . In particular, the first Sj for any j is
←−
Sj . Note that there

is exactly one DC server in the working interval of Si moving toward Rj from
the left: the other servers in that working interval are either still in Li−1 or not
moving, since they are not adjacent to the request, or already in Rj . Since Rj is
the rightmost interval of Rj+1 and Li−1 ∩Rj+1 = ∅, the resulting configuration

is ready for strategy
←−−
Sj+1. The figure below illustrates the very beginning of this

356 Theory Comput Syst (2018) 62:349–365

sequence of moves, for j = h + 1, right after the execution of the first step (of
this three-step description) of

←−−
Sj+1.

Right-to-Left Step Same as Left-to-right, just replace
→
Sj by

←
Sj , Rj intervals by Lj ,

and Lj by Rj .

Bounding Costs We begin with a simple but useful observation that follows directly
from the definition of DC. For any subset X of i ≤ k consecutive DC servers, let
us call center of mass of X the average position of servers in X. We call a request
external with respect to X, when it is outside the convex hull of X and internal
otherwise.

Lemma 1 For any sequence of internal requests with respect to X, the center of
mass of X remains the same.

Proof Follows trivially since for any internal request, DC moves precisely two
servers towards it, by an equal amount in opposite directions.

Let us derive bounds on di, Ai, pi , and Pi in terms of these quantities for j < i.
First, we claim that the cost Ai incurred by the adversary for strategy Si during a
phase can be upper bounded as follows:

Ai ≤ 2

⎛
⎝sih +

i−1∑
j=1

Aj

si

pj

⎞
⎠ = 2si

⎛
⎝h +

i−1∑
j=h

Aj

pj

⎞
⎠ (1)

In the inequality above, we take the cost for left-to-right step multiplied by 2, since
left-to-right and right-to-left step are symmetric. The term sih is the cost incurred
by the adversary in the beginning of the step, when moving all its servers from the
left side of I to the right. The costs Aj

si
pj

are incurred during the phases Sj for
j = 1, . . . , i − 1, because Aj is an upper bound on the cost of the adversary during
a phase of strategy Sj and si

pj
is an upper bound on the number of iterations of Sj

during Si . This follows because Sj (during left to right phase) executes as long as the
(j + 1)-th server moves from left of I to right of I . It travels a distance of at most si
and receives a pull of pj during each iteration of Sj in R. Finally, the equality in (1)
follows, as Aj = 0 for j < h.

Similarly, we bound the cost of DC from below. Let us denote δ := (1 − 2ε). The
length of I \ (Li−1 ∪ Ri−1) is δsi and all DC servers moving from right to left have

Theory Comput Syst (2018) 62:349–365 357

to travel at least this distance. Furthermore, as
δsj
Pj

is a lower bound for the number of
iterations of strategy Sj , we obtain:

di ≥ 2

⎛
⎝δsi i +

i−1∑
j=1

dj

δsi

Pj

⎞
⎠ = 2δsi

⎛
⎝i +

i−1∑
j=1

dj

Pj

⎞
⎠ (2)

It remains to show the upper and lower bounds on the pull Pi and pi exerted
on external servers due to the (right-to-left step of) strategy Si . Suppose Si is being
executed in interval I . Let x denote the closest DC server strictly to the left of I . Let
X denote the set containing x and all DC servers located in I . During the right-to-
left step of Si , all requests are internal with respect to X. So by Lemma 1, the center
of the mass of X remains unchanged. As i servers moved from right to left during
right-to-left step of Si , this implies that q should have been pulled to the left by the
same total amount, which is at least iδsi and at most isi . Hence,

Pi := isi pi := iδsi (3)

Due to a symmetric argument, during the left-to-right step, the same amount of pull
is exerted to the right.

Now we are ready to prove Theorem 1.

Proof of Theorem 1 The proof is by induction. In particular, we will show that the
following holds for each i ∈ [h, k]:

di

Pi

≥ 2iδi−h and
Ai

pi

≤ 2(i + 1)

h + 1
δ−(i−h) (4)

Note that this claim already implies the theorem for i = k, since the competitive ratio
rk of DCk satisfies the following inequality:

rk ≥ dk

Ak

≥ dk/Pk

Ak/pk

≥ 2k

2(k+1)
h+1

δk−h

δ−(k−h)
= k(h + 1)

k + 1
δ2(k−h) .

Therefore, as δ = (1 − 2ε), it is easy to see that rk → k(h+1)
k+1 when ε → 0:

Induction Base (i = h) For the base case we have ah = 2, dh = 2h, and ph =
Ph = 1, so dh

Ph
= 2h and Ah

ph
= 2, i.e., (4) holds.

Induction Step (i > h) Using (2), (3), and induction hypothesis, we obtain

di

Pi

≥ 2δ

i

⎛
⎝i +

i−1∑
j=1

dj

Pj

⎞
⎠≥ 2δ

i

⎛
⎝i +

i−1∑
j=1

2jδj−h

⎞
⎠ ≥ 2δ

i
δi−1−h(i+i(i−1)) = 2iδi−h,

358 Theory Comput Syst (2018) 62:349–365

where the last inequality follows from the fact that
∑i−1

j=1 2j = i(i − 1). Similarly,
we prove the second part of (4). The first inequality follows from (1) and (3), the
second from the induction hypothesis:

Ai

pi

≤ 2

iδ

⎛
⎝h +

i−1∑
j=h

Aj

pj

⎞
⎠ ≤ 2

iδ

⎛
⎝h +

i−1∑
j=h

2(j + 1)

h + 1
δ−(j−h)

⎞
⎠

≤ 2

iδ
δ−(i−1−h)

(
h(h + 1) + 2

∑i−1
j=h(j + 1)

h + 1

)

≤ 2

iδi−h

i(i + 1)

h + 1
= 2(i + 1)

h + 1
δ−(i−h),

The last inequality follows from 2
∑i−1

j=h(j + 1) = i(i + 1) − h(h + 1).

3 Upper Bound

In this section, we give an upper bound on the competitive ratio of DC that matches
the lower bound from the previous section.

We begin by introducing some notation. We denote the optimal offline algorithm
by OPT. For the current request r at time t , we let X and Y denote the configura-
tions (i.e. the multisets of points in which their servers are located) of DC and OPT
respectively before serving request r . Similarly, X′ and Y ′ denote their corresponding
configurations after serving r .

In order to prove our upper bound, we will define a potential function Φ(X, Y)

such that
DC(t) + Φ(X′, Y ′) − Φ(X, Y) ≤ c · OPT (t), (5)

where c = k(h+1)
k+1 is the desired competitive ratio, and DC(t) and OPT (t) denote the

cost incurred by DC and OPT at time t . Coming up with a potential that satisfies (5)
is sufficient, as c-competitiveness follows from summing this inequality over time.

For a set of points A, let DA denote the sum of all
(|A|

2

)
pairwise distances between

points in A. Let M ⊆ X be some fixed set of h servers of DC and M (M, Y) denote
the minimum weight perfect matching between M and Y , where the weights are
determined by distances in the metric space (i.e., tree). Abusing the notation slightly,
we will denote by M (M, Y) both the matching and its cost. With that in mind, we let

ΨM(X, Y) := k(h + 1)

k + 1
· M (M, Y) + k

k + 1
· DM .

Then the potential function is defined as follows:

Φ(X, Y) = min
M

ΨM(X, Y) + 1

k + 1
· DX

= min
M

(
k(h + 1)

k + 1
· M (M, Y) + k

k + 1
· DM

)
+ 1

k + 1
· DX.

Note this generalizes the potential considered in [3, 4] for the case of h = k. In that
setting, all the online servers are matched and hence DM = DX and is independent

Theory Comput Syst (2018) 62:349–365 359

of M , and thus the potential above becomes k times that minimum cost matching
between X and Y plus Dx . On the other hand in our setting, we need to select the
right set M of DC servers to be matched to the offline servers based on minimizing
ΨM(X, Y).

Let us first give a useful property concerning minimizers of Ψ , which will be
crucial later in our analysis. Note that ΨM(X, Y) is not simply the best matching
between X and Y , but also includes the term DM which makes the argument slightly
subtle.

Lemma 2 Let X and Y be the configurations of DC and OPT and consider some
fixed offline server at location y ∈ Y . There exists a minimizer M of Ψ that contains
some DC server x which is adjacent to y. Moreover, there is a minimum cost matching
M between M and Y that matches x to y.

We remark that the adjacency in the lemma statement and the proof is defined as
for the DC algorithm (cf. Section 1); specifically, as if there was a request at y’s posi-
tion. Moreover, we tote that the statement does not necessarily hold simultaneously
for every offline server, but only for a single fixed offline server y.

Proof of Lemma 2 Let M ′ be some minimizer of ΨM(X, Y) and M ′ be some asso-
ciated minimum cost matching between M ′ and Y . Let x′ denote the online server
currently matched to y in M ′ and suppose that x′ is not adjacent to y. Let x denote
the server in X adjacent to y on the path from y to x′.

We will show that we can always modify the matching (and M ′) without increasing
the cost of Φ, so that y is matched to x. We consider two cases depending on whether
x is matched or unmatched.

1. If x ∈ M ′: Let y′ denote the offline server which is matched to x in M ′. To
create new matching M , we swap the edges and match x to y and x′ to y′, see
Fig. 4. The cost of the edge connecting y in the matching reduces by exactly
d(x′, y) − d(x, y) = d(x′, x). On the other hand, the cost of the matching edge
for y′ increases by d(x′, y′) − d(x, y′) ≤ d(x, x′), due to triangle inequality.
Thus, the new matching has no larger cost. Moreover, the set of matched servers
does not change, i.e., M = M ′, and hence DM = DM ′ , which implies that
ΨM(X, Y) ≤ ΨM ′(X, Y).

2. If x /∈ M ′: In this case, we set M = M ′ \ {x′} ∪ {x} and we form M , where y

is matched to x and all other offline servers are matched to the same server as

edges in

edges in

Fig. 4 Swapping of the matching edges in a tree

360 Theory Comput Syst (2018) 62:349–365

in M ′. Now, the cost of the matching reduces by d(x ′, y) − d(x, y) = d(x, x′).
Moreover, DM ≤ DM ′ + (h − 1) · d(x, x′), as the distance of each server in
M ′ \{x′} to x can be greater than the distance to x′ by at most d(x, x′). This gives

ΨM(X, Y) − ΨM ′(X, Y) ≤ − (h + 1)k

k + 1
· d(x, x′) + k(h − 1)

k + 1
· d(x, x′)

= − 2k

k + 1
· d(x, x′) < 0 ,

and hence ΨM(X, Y) is strictly smaller than ΨM ′(X, Y).

We are now ready to prove Theorem 2 for the line.

Proof Recall, that we are at time t and request r is arriving. We divide the analy-
sis into two steps: (i) OPT serves r , and then (ii) DC serves r . As a consequence,
whenever a server of DC serves r , we can assume that a server of OPT is already
there.

In all the steps considered, M is the minimizer of ΨM(X, Y) in the beginning of
the step. It might happen that, after change of X, Y during the step, a better minimizer
can be found. However, an upper bound for ΔΨM(X, Y) is sufficient to bound the
change in the first term of the potential function.

OPT Moves If OPT moves one of its servers by distance d to serve r , the value of
ΨM(X, Y) increases by at most k(h+1)

k+1 d. As OPT (t) = d and X does not change, it
follows that

ΔΦ(X, Y) ≤ k(h + 1)

k + 1
· OPT (t) ,

and hence (5) holds. We now consider the second step when DC moves.

DC Moves We consider two cases depending on whether DC moves a single server
or two servers.

1. Suppose DC moves its rightmost server (the leftmost server case is identical) by
distance d. Let y denote the offline server at r . By Lemma 2 we can assume that
y is matched to the rightmost server of DC. Thus, the cost of the minimum cost
matching between M and Y decreases by d. Moreover, DM increases by exactly
(h − 1)d (as the distance to rightmost server increases by d for all servers of
DC). Thus, ΨM(X, Y) changes by

−k(h + 1)

k + 1
· d + k(h − 1)

k + 1
· d = − 2k

k + 1
· d .

Similarly, DX increases by exactly (k − 1)d . This gives us that

ΔΦ(X, Y) ≤ − 2k

k + 1
· d + k − 1

k + 1
· d = −d .

As DC(t) = d, this implies that (5) holds.

Theory Comput Syst (2018) 62:349–365 361

2. We now consider the case when DC moves 2 servers x and x′, each by distance
d. Let y denote the offline server at the request r . By Lemma 2 applied to y, we
can assume that M contains at least one of x or x′, and that y is matched to one
of them (say x) in some minimum cost matching M of M to Y .

We note that DX decreases by precisely 2d. In particular, the distance between
x and x′ decreases by 2d , and for any other server of X \ {x, x ′} its total distance
to other servers does not change. Moreover, DC(t) = 2d. Hence, to prove (5), it
suffices to show

ΔΨM(X, Y) ≤ − k

k + 1
· 2d . (6)

To this end, we consider two sub-cases.

(a) Both x and x′ are matched: In this case, the cost of the matching M does
not increase as the cost of the matching edge (x, y) decreases by d and
the move of x′ can increase the cost of the matching by at most d. More-
over, DM decreases by precisely 2d (due to x and x′ moving closer). Thus,
ΔΨM(X, Y) ≤ − k

k+1 · 2d, and hence (6) holds.
(b) Only x is matched (to y) and x ′ is unmatched: In this case, the cost of

the matching M decreases by d. Moreover, DM can increase by at most
(h − 1)d , as x can move away from each server in M \ {x} by distance at
most d. So

ΔΨM(X, Y) ≤ − (h + 1)k

k + 1
· d + k(h − 1)

k + 1
· d = − 2k

k + 1
· d ,

i.e., (6) holds.

4 Extension to Trees

The proof for trees is similar to the one in the previous section. The main difference
is that the set of servers adjacent to the request can now be arbitrary (i.e., it no longer
contains at most two servers) and that it can change as the move is executed, see
Fig. 5. To cope with this, we analyze elementary moves, as did Chrobak and Larmore
[4]. Recall that an elementary move is a part of the move between successive updates

Fig. 5 Beginning of elementary move: server a1 just covered server s removing him from the set of servers
adjacent to request r . Servers a1, a2, and a3 will move towards r , until a3 reaches subroot v removing a2
from the list of adjacent servers and completing thereby this elementary move

362 Theory Comput Syst (2018) 62:349–365

of the set of servers adjacent to the request; consequently, this set remains fixed
during such move.

Proof of Theorem 2 We use the same potential as before, i.e, we let

ΨM(X, Y) := k(h + 1)

k + 1
· M (M, Y) + k

k + 1
· DM ,

and define

Φ(X, Y) = min
M

ΨM(X, Y) + 1

k + 1
· DX .

To prove the theorem, we show that for any time t the following holds:

DC(t) + Φ(X′, Y ′) − Φ(X, Y) ≤ c · OPT (t), (7)

where c = k(h+1)
k+1 .

As in the analysis for the line, we split the analysis in two parts: (i) OPT serves r ,
and then (ii) DC serves r . As a consequence, whenever a server of DC serves r , we
can assume that a server of OPT is already there.

OPT Moves If OPT moves a server by distance d, only the matching cost is affected
in the potential function, and it can increase by at most d ·k(h+1)/(k+1). Therefore

ΔΦ(X, Y) ≤ k(h + 1)

k + 1
· OPT (t) ,

and hence (7) holds.

DC Moves Instead of focusing on the whole move done by DC to serve request r ,
we prove that (7) holds for each elementary move.

Consider an elementary move where q servers are moving by distance d. Let A

denote the set of servers adjacent to r . Imagine that the tree is rooted at r , and let,
for all a ∈ A, Qa denote the subset of X (i.e., DC servers) that are located in the
subtree rooted at a’s location, including that point a, see Fig. 5. We set qa := |Qa|
and ha := |Qa ∩ M|. Finally, let AM := A ∩ M . By Lemma 2, we can assume that
one of the servers in A is matched to the OPT’s server in r , which implies

ΔM (M, Y) ≤ (|AM | − 2) · d .

In order to calculate the change in DX and DM , it is convenient to consider the
moves of active servers sequentially rather than simultaneously.

We start with DX. Clearly, each a ∈ A moves further away from qa − 1 servers in
X by distance d and gets closer to the remaining k − qa ones by the same distance.
Thus, the change of DX associated with a is (qa − 1 − (k − qa))d = (2qa − k − 1)d .
Therefore we have

ΔDX =
∑
a∈A

(2qa − k − 1)d = (2k − q(k + 1)) d ,

as
∑

a∈A qa = k.
Similarly, for DM , we first note that it can change only due to moves of servers in

AM . Specifically, each a ∈ AM moves further away from ha − 1 servers in M and

Theory Comput Syst (2018) 62:349–365 363

gets closer to the remaining h−ha of them. Thus, the change of DM associated with
a is (2ha − h − 1)d . Therefore we have

ΔDM =
∑

a∈AM

(2ha − h − 1)d ≤ (2h − |AM |(h + 1)) d ,

since
∑

a∈AM
ha ≤ ∑

a∈A ha = h.
Using above inequalities, we see that the change of potential is at most

ΔΦ(X, Y) ≤ k(h + 1)d

k + 1
(|AM | − 2) + k · d

k + 1
(2h − |AM |(h + 1))

+ d

k + 1
(2k − q(k + 1))

≤ d

k + 1
(k(h + 1)(|AM | − 2) + k (2h−|AM |(h+1)) + 2k−q(k + 1))

= d

k + 1
(−q(k + 1)) = −q · d ,

since

k(h + 1)(|AM | − 2) + k(2h − |AM |(h + 1)) + 2k

= −2k(h + 1) + k(h + 1)|AM | − |AM |k(h + 1) + 2kh + 2k

= −2k(h + 1) + 2k(h + 1) = 0

Thus, (7) holds, as DC(t) = q · d.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Analysis of DC for Paging

The paging problem is the special case of k-server on a uniform metric. It is also
equivalent (up to a constant additive term) to the k-server problem on a star graph,
where all edges have weight 1

2 and requests appear at the leaves. This connection
was pointed out by Chrobak and Larmore [4], who also noticed that DC-Tree can be
interpreted as Flush-When-Full (FWF). It thus follows that it is k

k−h+1 -competitive
in the (h, k)-setting. As we are not aware an explicit proof of this fact, we give one
that uses a potential function.

Let X and Y denote the configurations of DC and OPT respectively. Note that any
server of DC can only be at the root or at a leaf, and servers of OPT can only be at
leaves. Let � denote the number of DC servers at the root.

We define the potential function as follows:

Φ(t) = −k − h + 1

2(k − h + 1)
� + k

k − h + 1
|Y \ X|

http://creativecommons.org/licenses/by/4.0/

364 Theory Comput Syst (2018) 62:349–365

Analysis We consider the moves of OPT and DC separately. We assume that, when-
ever a point is requested, first OPT moves a server there and then DC moves its
servers.

Offline Moves When OPT moves any single server from one leaf to another, it pays
1. Clearly, � does not change, and |Y \ X| can increase by at most one. Thus, ΔΦ ≤

k
k−h+1 = k

k−h+1 · OPT .

DC Moves Let us now consider moves of DC. We distinguish between two cases
depending on the value of �:

– � > 0: In this case, DC moves one server from the root to the requested leaf,
paying 1/2. Clearly, both � and |Y \ X| decrease by 1. Thus,

ΔΦ = k + h − 1

2(k − h + 1)
− k

k − h + 1
= −k + h − 1

2(k − h + 1)
= −1

2
,

and hence DC + ΔΦ = 0.
– � = 0: In this case, DC moves all the servers from the leaves toward the root

(and then we go to the case above). In that case DC occurs a cost of k/2. Let us
call a the number of online servers that coincide with servers of OPT before the
move of DC. Then � is increasing by k while |Y \ X| increases by a. We get that

ΔΦ = −k − h + 1

2(k − h + 1)
k + k

k − h + 1
a .

Observe that a ≤ h − 1, as OPT already has a server covering the current
request (and DC does not). Thus we can upper bound ΔΦ as follows:

ΔΦ ≤ −k − h + 1 + 2(h − 1)

2(k − h + 1)
k= −k + h − 1

2(k − h + 1)
k=− k − h + 1

2(k − h + 1)
k=−k

2
.

Overall we get that DC + ΔΦ ≤ k
2 − k

2 = 0.

Appendix B: Proof of (h + 1)-Competitiveness of WFA

We consider the WFA on the line in the (h, k) setting. Specifically we show that
WFA with k servers is (h + 1)-competitive against an adversary with h servers, as an
immediate consequence of results shown in [1, 6].

Most known upper bounds for the WFA do not bound the algorithm’s actual cost
directly. Instead, they bound its extended cost, defined as the maximum increase the
value of the work function for any single configuration. To define it formally, we use
the following notation: wt(X) is the value of the work function of configuration X

at time t , WFAi and OPTi the overall cost incurred by WFA and OPT of i servers
respectively. Then, if M denotes the metric space, the extended cost at time t is
defined as follows:

ExtCost(t) = max
X∈Mk

{wt(X) − wt−1(X)} ,

Theory Comput Syst (2018) 62:349–365 365

and the total extended cost of a sequence of requests is

ExtCost =
∑

t

ExtCost(t) .

As with WFA and OPT, we let ExtCosti denote the total extended cost over configu-
rations of i servers. The extended cost satisfies the following inequality, as shown by
Chrobak and Larmore [5]:

WFAi + OPTi ≤ ExtCosti . (8)

In [1] it was shown that WFA with h servers is h-competitive in the line by proving
the following inequality:

ExtCosth ≤ (h + 1)OPTh + O(1) (9)

Moreover, it is known that the extended cost is a non-increasing function of the
number of servers [6], which implies

ExtCostk ≤ ExtCosth (10)

for all request sequences.
Putting (8), (9) and (10) together, we get

WFAk + OPTk ≤ ExtCostk ≤ ExtCosth ≤ (h + 1)OPTh + O(1) ,

which implies that WFAk is (h+1)-competitive. In fact, a slightly stronger inequality
holds:

WFAk ≤ (h + 1)OPTh − OPTk + O(1) .

References

1. Bartal, Y., Koutsoupias, E.: On the competitive ratio of the work function algorithm for the k-server
problem. Theor. Comput. Sci 324(2–3), 337–345 (2004)

2. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press
(1998)

3. Chrobak, M., Karloff, H.J., Payne, T.H., Vishwanathan, S.: New results on server problems. SIAM J.
Discrete Math. 4(2), 172–181 (1991)

4. Chrobak, M., Larmore, L.L.: An optimal on-line algorithm for k-servers on trees. SIAM J. Comput.
20(1), 144–148 (1991). doi:10.1137/0220008

5. Chrobak, M., Larmore, L.L.: The server problem and on-line games. In: On-line Algorithms, vol-
ume 7 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 11–64.
AMS/ACM (1992)

6. Koutsoupias, E.: Weak adversaries for the k-server problem. In: Proc. of the 40th Symp. on
Foundations of Computer Science (FOCS), pp. 444–449 (1999)

7. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. J. ACM 42(5), 971–983 (1995)
8. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server problems. J. ACM

11(2), 208–230 (1990)
9. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM

28(2), 202–208 (1985). doi:10.1145/2786.2793
10. Young, N.E.: The k-server dual and loose competitiveness for paging. Algorithmica 11(6), 525–541

(1994). doi:10.1007/BF01189992
11. Young, N.E.: On-line file caching. Algorithmica 33(3), 371–383 (2002). Journal version of [1998].

doi:10.1007/s00453-001-0124-5

https://doi.org/10.1137/0220008
https://doi.org/10.1145/2786.2793
https://doi.org/10.1007/BF01189992
https://doi.org/10.1007/s00453-001-0124-5

	Tight Bounds for Double Coverage Against Weak Adversaries
	Abstract
	Introduction
	The (h,k)-Server Problem
	The DC Algorithm
	DC-Line
	DC-Tree
	Our Results

	Lower Bound for the Line Metric
	Formal Description
	Strategies Si for ih
	Strategies Si for i>h
	Bounding Costs
	Induction Base (i=h)
	Induction Step (i > h)

	Upper Bound
	OPT Moves
	DC Moves

	Extension to Trees
	OPT Moves
	DC Moves

	Open Access
	Appendix A A: Analysis of DC for Paging
	Analysis
	Offline Moves
	DC Moves

	 B: Proof of (h+1)-Competitiveness of WFA
	Appendix B B: Proof of (h+1)-Competitiveness of WFA
	References

