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THE PRICE OF FAIRNESS FOR A SMALL NUMBER OF

INDIVISIBLE ITEMS

SASCHA KURZ

Abstract. Incorporating fairness criteria in optimization problems comes at
a certain cost, which is measured by the so-called price of fairness. Here we
consider the allocation of indivisible goods. For envy-freeness as fairness crite-
rion it is known from literature that the price of fairness can increase linearly
in terms of the number of agents. For the constructive lower bound a qua-
dratic number of items was used. In practice this might be inadequately large.
So we introduce the price of fairness in terms of both the number of agents
and items, i.e., key parameters which generally may be considered as common
and available knowledge. It turned out that the price of fairness increases
sublinear if the number of items is not too much larger than the number of
agents. For the special case of coincide of both counts exact asymptotics could
be determined. Additionally an efficient integer programming formulation is
given.

1. Introduction

Fair division, i.e., the the problem of dividing a set of goods between several
agents, is studied since ancient times, see e.g. [2]. As argued by Bertsimas et al.
[1], harming a certain fairness criterion can cause the situation that a globally
optimal solution is not implementable by self-interested agents. So, several authors
have studied the price of fairness as a measurement of the costs of ensuring a certain
kind of fairness among the agents.

Here we consider the allocation of m indivisible items among n agents with
respect to the fairness criterion of envy-freeness. Additionally we assume additive
utility functions summing up to one for all agents. This setting and other fairness
criteria and types of items have been studied, see e.g. [3].

While our theoretical setting is rather narrow, our contribution lies in highlight-
ing that the number of items has a significant impact on the price of fairness. In
our setting the price of fairness can be as large as Θ(n) if we allow a large number
of items. If the number of items is restrict to a small number, compared to the
number of agents, then it turns out that the price of fairness is Θ(

√
n). Even the

smallest possible case, admitting envy-free allocations, m = n is far from being
innocent. Nevertheless we determine its exact value for all n up to a constant and
give a fast-to-solve ILP formulation.

2. Basic notation and definitions

Let J = {1, . . . , n} be a set of agents and I = {1, . . . ,m} be a set of indivisible
items. Each agent j ∈ J has a non-negative and additive utility function uj over
the subsets of I with uj(∅) = 0 and uj(I) = 1. An allocation A = (A1, . . . , An) is
a partition of I meaning that the elements of Aj are allocated to agent j. We call
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an allocation envy-free, if we have uj(Aj) ≥ uj(Aj′ ) for all j, j
′ ∈ J , i.e., no agent

evaluates a share of one of the other agents higher than his own share. Depending
on the utility functions there may be no envy-free allocation at all, consider e.g.
uj({1}) = 1 and uj({i}) = 0 for all i 6= 1. As a global evaluation of an allocation we
use the sum of the agents utilities, i.e., u(A) =

∑n

j=1 uj(Aj). By A⋆ we denote an
allocation maximizing the global utility u and similarly by A⋆

f we denote an envy-
free allocation, if exists, maximizing u. With this the price of envy-freeness for n
agents penvy(n) is defined as the supremum of u(A⋆)/u(A⋆

f ). Obviously we have

penvy(1) = 1. For n > 1 the authors of [3] have shown 3n+7
9 ≤ penvy(n) ≤ n − 1

2 .

Besides penvy(2) =
3
2 no exact value is known.

The construction for the lower bound of penvy(n) uses Ω(n2) items so that one
can ask if the price of fairness decreases if the number of items is restricted to a
sub-quadratic number of items, which seems to be more reasonable in practice. So
we define penvy(n,m) as the supremum of u(A⋆)/u(A⋆

f ), where to number of items

equals m. In any envy-free allocation we have uj(Aj) ≥ 1
n
since otherwise uj(I) <

1. Thus |Aj | ≥ 1 so that we can assume m ≥ n. The first case m = n is studied in
the next section. Obviously we have penvy(n,m) ≤ penvy(n,m+ 1) ≤ penvy(n) for
all m ≥ n ≥ 1.

3. The smallest case: One item per agent

As an abbreviation we use xij = uj({i}) for all 1 ≤ i, j ≤ n. The maximum
utility u(A⋆) can be easily determined as

∑n

i=1 maxj xij in linear time. As argued
before in any envy-free allocation each agent is assigned exactly one item. W.l.o.g.
we assume that item j as assigned to agent j for all 1 ≤ i ≤ n, i.e., we have
xjj ≥ xij for all 1 ≤ i, j ≤ n. Using a matching algorithm the existence of an
envy-free allocation for m = n can be checked in polynomial time. For this special
case all envy-free allocations have the same utility.

The problem of determining worst case examples, i.e., penvy(n, n) can be formu-
lated as an integer linear programming problem:

max

n
∑

i=1

n
∑

j=1

zij − α

n
∑

i=1

xii(1)

xij ∈ R≥0 ∀ 1 ≤ i, j ≤ n
n
∑

i=1

xij = 1 ∀ 1 ≤ j ≤ n(2)

xjj ≥ xij ∀ 1 ≤ i, j ≤ n(3)

yij ∈ {0, 1} ∀ 1 ≤ i, j ≤ n
n
∑

j=1

yij = 1 ∀ 1 ≤ i ≤ m(4)

zij ∈ R≥0 ∀ 1 ≤ i, j ≤ n zij ≤ min(yij , xij) ∀ 1 ≤ i, j ≤ n(5)

Here inequalities (2) specify the non-negative utilities of agent j for item i, which
sum up to one. The envy-freeness of the allocation given by Aj = {j} is guaranteed
by Inequality (3). In an optimal assignment item i is assigned to agent j iff yij = 1,
see inequalities (4). The auxiliary variables zij measure the contribution to the
global welfare, see inequalities (5). If the target function (1) admits a non-negative
value, then we have penvy(n, n) ≥ α and penvy(n, n) < α otherwise. We can already
conclude that the suppremum is attained in the definition for the price of fairness.
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Using a bisection approach we were able to exactly determine penvy(n, n) for all
n ≤ 9, i.e., penvy(n, n) = 1, 1, 87 ,

4
3 ,

60
43 ,

3
2 ,

63
40 ,

72
43 ,

9
5 . It turned out that the optimal

solution for n ≥ 2 have a rather special structure. The xij all were either equal to
zero or to 1

kj
, where 2 ≤ kj ≤ n is an integer. Even more, at most three different

kj-values are attained for a fixed number n, where one case is always kj = n. In
the next subsection we theoretically prove this empirical observation.

3.1. Special structure of the optimal solutions for m = n. For the ease of
notation we use τ : {1, . . . , n} → {1, . . . , n}, mapping an item i to an agent j,
representing an optimal assignment, i.e., yiτ(i) = 1 for all 1 ≤ i ≤ n. By u⋆(x) =
∑n

i=1 xiτ(i) we denote the welfare of an optimal assignment and by u⋆
f (x) =

∑n

i=1 xii

the welfare of an optimal envy-free assignment. In the following we always assume
that x represents utilities from an example attaining penvy(n, n). We call an agent
j big if j ∈ im(τ) and small otherwise.

Lemma 3.1. If agent j is small, then we have xij =
1
n
for all 1 ≤ i ≤ n.

Proof. If xjj ≤ 1
n
then we have xij =

1
n
for all 1 ≤ i ≤ n so that we assume xjj > 1

n
.

Consider x′ arising from x by setting x′
ij = 1

n
for all 1 ≤ i ≤ n. With this we have

u⋆
f(x

′) < u⋆
f (x) and u⋆(x′) ≥ u⋆(x). �

Lemma 3.2. If agent j is big, then we have xij = xjj for all i with τ(i) = j.

Proof. We set w =
∑

i:τ(i)=j xij and k = |{i | τ(i) = j}|. W.l.o.g. assume xjj >
w
k
.

Consider x′ arising from x by setting x′
ij =

w
k
for all 1 ≤ i ≤ n with τ(i) = j. With

this we have u⋆
f (x

′) < u⋆
f(x) and u⋆(x′) ≥ u⋆(x). �

Lemma 3.3. If agent j is big, then we can assume xij = 0 or xij = 1
n

for all i
with τ(i) 6= j w.l.o.g.

Proof. Again we set w =
∑

i:τ(i)=j xij and k = |{i | τ(i) = j}|, where we can assume

k < n. As an abbreviation we use a = u⋆(x)−w and b = u⋆
f(x)− w

k
. With this we

define f(t) =
a+k·( 1

k
−t)

b+ 1

k
−t

for 0 ≤ t ≤ 1
k
− 1

n
. At t = 1−w

k
the function f gives the price

of fairness for x. In general we consider x′(t) arising from x by setting x′
ij(t) =

1
k
−t

for all i with τ(i) = j and x′
ij(t) =

kt
n−k

otherwise. We have u⋆
f(x

′(t)) = b + 1
k
− t

and u⋆(x′(t)) ≥ a+ k ·
(

1
k
− t
)

so that the price of fairness for x′(t) is at least f(t).

The construction is feasible for 0 ≤ t ≤ 1
k
− 1

n
only, since otherwise x′

jj ≥ x′
ij is

violated. Thus f(t) is well defined and we have f ′(t) = (−bk + a)/(b + 1/k − t)2.
So either f(t) is strictly monotonic or constant and attains its maximum at the
boundary. �

Thus we can assume w.l.o.g. that x⋆j consists of zeros and kj times the entry
1/kj, where kj is a positive integer. If kj < n, then all kj items with utility 1/kj
are assigned to agent j in an optimal solution. If τ(i) 6= j, then xij ∈ {0, 1/n}. We
can further assume that there is at most one big agent j with kj = n.

3.2. An improved ILP formulation and an almost tight bound for penvy(n,n).
Given the structural result from the previous subsection we can reformulate the ILP



4 SASCHA KURZ

to:

max
n
∑

i=1

ri
i
− α

n
∑

i=1

si
i

si ∈ Z≥0 ∀ 1 ≤ i ≤ n

n
∑

i=1

si = n

ri ∈ Z≥0 ∀ 1 ≤ i ≤ n

n
∑

i=1

ri = n ri ≤ i · si ∀ 1 ≤ i ≤ n

Here si counts how often we have kj =
1
i
and rj counts how often we have xiτ(i) =

1
j
. Having this ILP formulation at hand the exact values of penvy(n, n) can be

computed easily for all n ≤ 100. We observe that in each case at most three values
of the vector s are non-zero – going in line with our previous empirical findings.

Lemma 3.4. If xjj = 1
k
and xj′j′ = 1

k+g
, where k, g ∈ N and k + g < n, then

g ≤ 1.

Proof. First note that j and j′ are big agents. To the contrary assume g ≥ 2 and
consider x′ arising from x by replacing xij by elements of the form 1

k+1 , 0 and xij′

by elements of the form 1
k+g−1 , 0 in a suitable way. Since

1

k
· k +

1

k + g
· (k + g) = 2 =

1

k + 1
· (k + 1) +

1

k + g − 1
· (k + g − 1)

we have u⋆(x′) ≥ u⋆(x). Since

1

k
+

1

k + g
=

2k + g

k2 + kg
>

2k + g

k2 + kg + g − 1
=

1

k + 1
+

1

k + g − 1

we have u⋆
f (x

′) < u⋆
f(x). �

Theorem 3.5. penvy(n, n) ≤ 1
2

√
n+O(1).

Proof. Choose k such that kj ∈ {k−1, k, n} for all j ∈ J and set a = |{j | kj = k}|,
b = |{j | kj = k − 1}|. With this we have u⋆(x) = a+ b+ c/n, where c = n− ak −
b(k − 1) and u⋆

f (x) = a/k + b/(k − 1) + (n− a − b)/n. Next we set d = a+ b and

k̃ = (ak+ b(k− 1))/d. Since c/n ≤ 1, d/k̃ ≤ a/k+ b/(k− 1), and k̃ ≤ n/d we have

u⋆(x)

u⋆
f(x)

≤ d+ 1
d

k̃
+ n−d

n

≤ n(d+ 1)

d2 + n− d
≤ n(d+ 1)

d2 + n
=: g(d).

For d ∈ {0, n}we have g(d) = 1. The unique local maximum of g(d) in (0, n) is at at-

tained at d = −1+
√
1 + n. Thus penvy(n, n) =

u⋆(x)
u⋆
f
(x) ≤ g(d) ≤ max

(

1, 12
√
n+ 1

n
+ 1
)

.

�

Lemma 3.6. penvy(n, n) ≥ 1
2

√
n− 1

2 .

Proof. Set a = k = ⌊√n⌋ and x′ with a rows of the form ( 1
k
, . . . , 1

k
, 0, . . . , 0) and

n− a rows of the form ( 1
n
, . . . , 1

n
). With this we have

penvy(n, n) ≥
u⋆(x′)

u⋆
f(x

′)
≥ a+ n−ak

n
a
k
+ n−a

n

≥ a

2
≥

√
n

2
− 1

2
.

�

Thus we can state penvy(n, n) =
1
2

√
n+Θ(1).
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4. Bounds for penvy(n,m) for a small number of items

If the number of items is not too large, i.e., m ≤ n+ c
√
n for a constant c, then

we can utilize our results for the case m = n in order to deduce an Θ(
√
n)-bound

for the price of fairness.

Theorem 4.1. If m ∈ n+Θ(
√
n) with m ≥ n then penvy(n,m) ∈ Θ(

√
n).

Proof. Consider a utility matrix x with penvy(n,m) ≤ u⋆(x)/u⋆
f (x) + ǫ for a small

constant ǫ ≥ 0. Choose a constant c ∈ R≥0 with m = c +
√
n. By S ⊆ J we

denote the set of agents to which a single item is assigned in the optimal envy-
free allocation and set s = |S|. All other agents get at least two items so that
n − s ≤ 2c

√
n and s ≥ n − c

√
n. Now consider another utility matrix x′ arising

from x as follows. For each agent in S copy the utility row from x. Replace the
remaining agents from J \S by m − s ≥ n − s new agents having utility 1/m for
each item. With this we have u⋆

f(x) ≥ u⋆
f (x

′) − (m − s) · 1
m

≥ u⋆
f (x

′) − 3c√
n

and

u⋆(x) ≤ u⋆(x′) + 2c
√
n since each agent j /∈ S could contribute at most 1 to u⋆(x).

Thus we have

u⋆(x)

u⋆
f(x)

≤ u⋆(x′) + 2c
√
n

u⋆
f (x

′)− 3c√
n

≤ 1

1− 3c√
n

·
(

u⋆(x′)

u⋆
f(x

′)
+ 2c

√
n

)

due to u⋆
f (x

′) ≥ 1. Since the number of agents coincides with the number of items

in x′, the right hand side of the last inequality is in O(
√
n). The lower bound

follows from the case m = n. �

5. Conclusion

We have introduced the price of fairness in terms of the number of agents and the
number of items. As a special case we have considered the allocation of indivisible
goods with respect to envy-freeness as a fairness criterion and normalized additive
utility functions. It turned out that the price of fairness is significantly lower if
only a small number of items has to be allocated compared to the case of a large
number of items. Up to a constant we have determined the exact value of the price
of fairness for the special case when the number of items coincides with the number
of agents. In order to determine the exact value we have given an efficient ILP
formulation.

We close with some open questions: Can further values of penvy(n,m), where
m > n, be computed exactly? Can the ILP approach be extended to m > n?
What is the price of fairness in our setting for m ∈ Θ(n) (or more generally, for
m ∈ Θ(nα) with α < 2)? What happens for other fairness criteria?
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