
Near-Optimal Scheduling for LTL with Future
Discounting
Shota Nakagawa and Ichiro Hasuo

Department of Computer Science, The University of Tokyo

Abstract
We study the search problem for optimal schedulers for the linear temporal logic (LTL) with future
discounting. The logic, introduced by Almagor, Boker and Kupferman, is a quantitative variant
of LTL in which an event in the far future has only discounted contribution to a truth value (that
is a real number in the unit interval [0, 1]). The precise problem we study—it naturally arises
e.g. in search for a scheduler that recovers from an internal error state as soon as possible—is the
following: given a Kripke frame, a formula and a number in [0, 1] called a margin, find a path
of the Kripke frame that is optimal with respect to the formula up to the prescribed margin (a
truly optimal path may not exist). We present an algorithm for the problem; it works even in the
extended setting with propositional quality operators, a setting where (threshold) model-checking
is known to be undecidable.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases quantitative verification, optimization, temporal logic

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In the field of formal methods where a mathematical approach is taken to modeling and veri-
fying systems, the conventional theory is built around the Boolean notion of truth: if a given
system satisfies a given specification, or not. This qualitative theory has produced an end-
less list of notable achievements from hardware design to communication protocols. Among
many techniques, automata-based ones for verification and synthesis have been particularly
successful in serving engineering needs, by offering a specification method by temporal logic
and push button-style algorithms. See e.g. [19, 22].

However, trends today in the use of computers—computers as part of more and more
heterogeneous systems—have pushed researchers to turn to quantitative consideration of
systems, too. For example, in an embedded system where a microcomputer controls a bigger
system with mechanical/electronic components, concerns include real-time properties—if an
expected task is finished within the prescribed deadline—and resource consumption e.g. with
respect to electricity, memory, etc.

Quantities in formal methods can thus arise from a specification (or an objective) that
is quantitative in nature. Another source of quantities are systems that are themselves
quantitative, such as one with probabilistic behaviors.

Besides, quantities can arise simply via refinement of the Boolean notion of satisfaction.
For example, consider the usual interpretation of the linear temporal logic (LTL) formula
Fϕ—it is satisfied by a sequence s0s1 . . . if there exists i such that si |= ϕ. It has the following
natural quantitative refinement, where the modality F is replaced with a discounted modality
Fexp 1

2
:

Js0s1 . . . , Fexp 1
2
ϕK = (1

2)i , where i is the least index such that si |= ϕ. (1)
© Shota Nakagawa and Ichiro Hasuo;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

41
0.

49
50

v4
 [

cs
.L

O
]

 8
 N

ov
 2

01
5

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Near-Optimal Scheduling for LTL with Future Discounting

This value Js0s1 . . . , Fexp 1
2
ϕK ∈ [0, 1] is a quantitative truth value and is like utility in the

game-theoretic terminology. Such refinements allow quantitative reasoning about so-called
quality of service (QoS), specifically “how soon ϕ becomes true” in this example. Another
example is a quantitative variation Gexp 1

2
ϕ of Gϕ, where Js0s1 . . . , Gexp 1

2
ϕK = 1 − (1

2)i—
where i is the least index such that si 6|= ϕ—meaning that violation of ϕ in the far future
only has a small negative impact.
LTLdisc[D,F]: LTL with Future Discounting The last examples are about quantitative
refinement of temporal specifications. An important step in this direction is taken in the
recent work [3]. There various useful quantitative refinements in LTL—including the last
examples—are unified under the notion of future discounting, an idea first presented in [12] in
the field of formal methods. They introduce a clean syntax of the logic LTLdisc[D,F]—called
LTL with discounting—that combines: 1) a “discounting until” operator Uη; 2) the usual
features of LTL such as the non-discounting one U; and 3) so-called propositional quality
operators such as the (binary) average operator ⊕, in addition to ∧ and ∨. In [3] they
define its semantics; and importantly, they show that usual automata-theoretic techniques
for verification and synthesis (e.g. from [19,22]) mostly remain applicable.

Probably the most important algorithm in [3] is for the threshold model-checking problem:
given a Kripke structure K, a formula ϕ and a threshold v ∈ [0, 1], it asks if JK, ϕK > v, i.e.
the worst case truth value of a path of K is above v or not. The core idea of the algorithm
is what we call an event horizon: assuming that a discounting function η in Uη tends to
0 as time goes by, and that v > 0, there exists a time beyond which nothing is significant
enough to change the answer to the threshold model-checking problem. In this case we can
approximate an infinite path by its finite prefix.
Our Contribution: Near-Optimal Scheduling for LTLdisc[D,F] Now that a tempo-
ral formula ϕ assigns quantitative truth or utility Jξ, ϕK to each path ξ, a natural task is
to find a path ξ0 in a given Kripke structure K that achieves the optimal. On the ground
that the logic LTLdisc[D,F] from [3] is capable of expressing many common specifications
encountered in real-world problems, finding an optimal path—i.e. resolving nondeterminism
in the best possible way—must have numerous applications. The situation is similar to one
with timed automata, for which optimal scheduling problems are studied e.g. in [1].

It turns out, however, that a (truly) optimal path need not exist (Example 4.1): v0 =
supξ∈path(K)Jξ, ϕK is obviously a limit point but no ξ0 achieves Jξ0, ϕK = v0. This leads us
to the following near-optimal scheduling problem:

Near-optimal scheduling. Given a Kripke structure K, an LTLdisc[D,F] formula
ϕ and a margin ε ∈ (0, 1), find a path ξ0 ∈ path(K) that is ε-optimal, that is,
supξ∈path(K)Jξ, ϕK− ε ≤ Jξ0, ϕK .

We study automata-theoretic algorithms for this problem. In the basic setting where there
are no propositional quality operators, we can find a straightforward algorithm that conducts
binary search using the model-checking algorithm from [3]. Our main contribution, however,
is an alternative algorithm that takes the usual workflow: it constructs, from a formula ϕ
and a margin ε, an automaton Aϕ,ε with which we combine a system model K; running a
nonemptiness check-like algorithm to the resulting automaton then yields an answer.

On the one hand, our (alternative) algorithm resembles the one in [3]. In particular it
relies on the idea of event horizon: a margin ε in our setting plays the role of a threshold v
in [3] and enables us to ignore events in the far future.

On the other hand, a major difference from [3] is that we translate a specification (ϕ, ε)
into an automaton that is itself quantitative (what we call a [0, 1]-acceptance automaton,

S. Nakagawa and I. Hasuo 3

with Boolean branching and [0, 1]-acceptance values). This is unlike [3] where the target
automaton is totally Boolean. An advantage of [0, 1]-acceptance automata is that they
allow optimal path search much like emptiness of Büchi automata is checked (via lasso
computations). Applied to our current problem, this enables us to directly find a near-
optimal path for LTLdisc[D,F] without knowing the optimal value supξ∈path(K)Jξ, ϕK.
Presence of ⊕ and Other Propositional Quality Operators Notably, our (alterna-
tive) algorithm is shown to work even in the presence of any propositional quality operators
that are monotone and continuous (in the sense we will define later; an example is the aver-
age operator ⊕). Those operators makes the logic more complex: indeed [3] shows that, in
presence of the average operator ⊕, the model-checking problem for the logic LTLdisc[D,F]
becomes undecidable. The binary-search algorithm mentioned earlier (that repeats model
checking) ceases to work for this reason; our alternative algorithm works, nevertheless.

We analyze the complexity of the proposed algorithm, focusing on a certain subclass
of the logic LTLdisc[D,F] (§4.3). Furthermore we present our prototype implementation
and some experimental results (§5). They all seem to suggest the following: addition of
propositional quality operators (like the average operator ⊕) does incur substantial compu-
tational costs—as is expected from the fact that ⊕ makes model checking undecidable; still
our automata-theoretic approach is a viable approach, potentially applicable to optimization
problems in the field of model-based system design.

The significance of the average operator ⊕ in envisaged applications is that it allows
one to superpose multiple objectives. For example, one would want an event ϕ as soon as
possible, but at the same time avoiding a different event ψ as long as possible. This is a
trade-off situation and the formula Fηϕ⊕Gη′ ¬ψ—with suitable discounting functions η, η′—
represents a 50-50 trade-off. Other trade-off ratios can be represented as (monotone and
continuous) proportional quality operators, too, and our algorithm accommodates them.
Related Work Quantitative temporal logics and their decision procedures have been a
very active research topic [2,3,7,12,14]. We shall lay them out along a basic taxonomy. We
denote by K (the model of) the system against which a specification formula ϕ is verified
(or tested, synthesized, etc.).

Quantitative vs. Boolean system models. Sometimes we need quantitative considerations
just because the system K itself is quantitative. This is the case e.g. when K is a Markov
chain, a Markov decision process, a timed or hybrid automaton, etc. In the current work
K is a Kripke structure and is Boolean.
Quantitative vs. Boolean truth values. The previous distinction is quite orthogonal to
whether a formula ϕ has truth values from [0, 1] (or another continuous domain), or
from {tt, ff}. For example, the temporal logic PCTL [15] for reasoning about proba-
bilistic systems has modalities like P>vψ (“ψ with a probability > v”) and has Boolean
interpretation. In LTLdisc[D,F] studied here, truth values are from [0, 1].
Linear time vs. branching time. This distinction is already there in the qualitative/-
Boolean setting [21]—its probabilistic variant is studied in [11]—and gives rise to tempo-
ral logics with the corresponding flavors (LTL vs. CTL, CTL∗). In fact the idea of future
discounting is first introduced to a branching-time logic in [12], where an approximation
algorithm for truth values is presented.
Future discounting vs. future averaging. The temporal quantitative operators in LTLdisc[D,F]
are discounting—an event’s significance tends to 0 as time proceeds—a fact that benefits
model checking via event horizons. Different temporal quantitative operators are studied
in [7], including the long-run average operator G̃ψ. Presence of G̃, however, makes most
common decision problems undecidable [7].

4 Near-Optimal Scheduling for LTL with Future Discounting

In [14] LTL (without additional quantitative operators) is interpreted over the unit in-
terval [0, 1], and its model-checking problem against quantitative systems K is shown to be
decidable. In this setting—where the LTL connectives are interpreted by idempotent oper-
ators min and max—the variety of truth values arises only from a finite-state quantitative
system K, hence is finite.

In [3, Thm. 4] it is proved that the threshold synthesis problem for the logic LTLdisc[D, ∅]
(see Def. 2.4) is feasible. This problem asks: given a partition of atomic propositions into
the input and output signals, an LTLdisc[D, ∅] formula ϕ and v ∈ [0, 1], to come up with
a transducer (i.e. a finite-state strategy) that makes the truth value of ϕ at least v. We
remark that this is different from the near-optimal scheduling problem that we solve in this
paper. The synthesis problem in [2, §2.2], without a threshold, is closer to ours.

Automata- (or game-) theoretic approaches are taken in [6, 8] to the synthesis of con-
trollers or programs with better quantitative performance, too. In these papers, a specifi-
cation is given itself as an automaton, instead of a temporal formula in the current work.
Another difference is that, in [6,8], utility is computed along a path by limit-averaging, not
future discounting. The algorithms in [6, 8] therefore rely on those which are known for
mean-payoff games, including the ones in [10].

More and more diverse quantitative measures of systems’ QoS are studied recently: from
best/worst case probabilities and costs, to quantiles, conditional probabilities and ratios.
See [5] and the references therein. Study of such in LTLdisc[D,F] is future work.

In [9] so-called cut-point languages of weighted automata are studied. Let L : Σω → R
be the quantitative language of a weighted automata A. For a threshold η, the cut-point
language of A is the set consisting of all words w such that L(w) ≥ η. In [9] it is proved that
the cut-point languages of deterministic limit-average automata and those of discounted-
sum automata are ω-regular if the threshold η is isolated, that is, there is no word w such
that L(w) is close to η. We expect that similar properties for the logic LTLdisc[D,F] are
not hard to establish, although details are yet to be worked out.
Organization of the Paper In §2 we review the logic LTLdisc[D,F] and known results on
threshold model checking and satisfiability, all from [3]. We introduce quantitative variants
of (alternating) Büchi automata, called (alternating) [0, 1]-acceptance automata, in §3, with
auxiliary observations on their relation to fuzzy automata [20]. These automata play a
central role in §4 where we formalize and solve the near-optimal scheduling problem for the
logic LTLdisc[D,F] (under certain assumptions on D and F). We also study complexities,
focusing on the average operator ⊕ as the only propositional quality operator. In §5 we
present our implementation and some experimental results; in §6 we conclude, citing some
future work. Omitted proofs are found in Appendix B.
Notations and Terminologies We shall fix some notations and terminologies, mostly
following [3]. They are all standard.

The powerset of a set X is denoted by PX. We fix the set AP of atomic propositions. A
computation (over AP) is an infinite sequence π = π0π1 . . . ∈ (P(AP))ω over the alphabet
P(AP). For i ∈ N, πi = πiπi+1 . . . denotes the suffix of π starting from its i-th element.

A Kripke structure over AP is a tuple K = (W,R, λ) of: a finite set W of states; a
transition relation R ⊆ W 2 that is left-total (meaning that ∀s ∈ W. ∃s′ ∈ W. (s, s′) ∈ R),
and a labeling function λ : W → P(AP). We follow [17] and call an infinite sequence
ξ = s0s1 . . . of states si ∈ W , such that (si, si+1) ∈ R for each i ∈ N, a path of a Kripke
structure K. The set of paths of K is denoted by path(K). A path ξ = s0s1 . . . ∈ Wω gives
rise to a computation λ(s0)λ(s1) . . . ∈ (P(AP))ω; the latter is denoted by λ(ξ).

Given a set X, B+(X) denotes, as usual, the set of positive propositional formulas (using

S. Nakagawa and I. Hasuo 5

∧,∨,>,⊥) over x ∈ X as atomic propositions.

2 The Logic LTLdisc[D,F], and Its Threshold Problems

Here we recall from [2,3] our target logic, and some existing (un)decidability results.
The logic LTLdisc[D,F] extends LTL with: 1) propositional quality operators [2] like

the average operator ⊕; and 2) discounting in temporal operators [3]. In [3] the two exten-
sions have been studied separately because their coexistence leads to undecidability of the
(threshold) model-checking problem; here we put them altogether.

The logic LTLdisc[D,F] has two parameters: a set D of discounting functions; and a set
F of propositional connectives, called propositional quality operators.

I Definition 2.1 (discounting function [3]). A discounting function is a strictly decreas-
ing function η : N → [0, 1] such that limi→∞ η(i) = 0. A special case is an exponential
discounting function expλ, where λ ∈ (0, 1), that is defined by expλ(i) = λi.

The set Dexp = {expλ | λ ∈ (0, 1) ∩Q} is that of exponential discounting functions.

I Definition 2.2 ((monotone and continuous) propositional quality operator [2]). Let k ∈ N
be a natural number. A k-ary propositional quality operator is a function f : [0, 1]k → [0, 1].

We will eventually restrict to propositional quality operators that are monotone (wrt.
the usual order between real numbers) and continuous (wrt. the usual Euclidean topology).
The set of monotone and continuous propositional quality operators is denoted by Fmc.

I Example 2.3. A prototypical example of a propositional quality operator is the average
operator ⊕ : [0, 1]2 → [0, 1], defined by v1⊕v2 = (v1+v2)/2. (Note that ⊕ is a “propositional”
average operator and is different from the “temporal” average operator Ũ in [7]). The
operator ⊕ is monotone and continuous. Other (unary) examples from [4] include: Oλ(v) =
λ ·v and Hλ(v) = λ ·v+(1−λ) (they are explained in [4] to express competence and necessity,
respectively). The conjunction and disjunction connectives ∧,∨, interpreted by infimums
and supremums in [0, 1], can also be regarded as binary propositional quality operators.
They are monotone and continuous, too.

Recall that the set AP is that of atomic propositions.

I Definition 2.4 (LTLdisc[D,F]). Given a set D of discounting functions and a set F of
propositional quality operators, the formulas of LTLdisc[D,F] are defined by the grammar:

ϕ ::= True | p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | ϕ Uη ϕ | f(ϕ, . . . , ϕ) ,

where p ∈ AP, η ∈ D is a discounting function and f ∈ F is a propositional quality operator
(of a suitable arity). We adopt the usual notation conventions: Fϕ = True U ϕ and Gϕ =
¬F¬ϕ. The same goes for discounting operators: Fηϕ = True Uη ϕ and Gηϕ = ¬Fη¬ϕ.

As we have already discussed, the logic LTLdisc[D,F] extends the usual LTL with: 1)
discounted temporal operators like Uη (cf. (1)); and 2) propositional quality operators like
⊕ that operate, on truth values from [0, 1] that arise from the discounted modalities, in the
ways other than ∧ and ∨ do. The precise definition below closely follows [2, 3].

I Definition 2.5 (semantics of LTLdisc[D,F] [2, 3]). Let π = π0π1 . . . ∈ (P(AP))ω be a
computation (see §1), and ϕ be an LTLdisc[D,F] formula. The truth value Jπ, ϕK of ϕ in π

6 Near-Optimal Scheduling for LTL with Future Discounting

is a real number in [0, 1] defined as follows. Recall that πi = πiπi+1 . . . is a suffix of π.

Jπ, TrueK = 1 Jπ, pK = 1 (if p ∈ π0); 0 (if p 6∈ π0)
Jπ,¬ϕK = 1− Jπ, ϕK Jπ, ϕ1 ∧ ϕ2K = min

{
Jπ, ϕ1K, Jπ, ϕ2K

}
Jπ,XϕK = Jπ1, ϕK
Jπ, ϕ1 U ϕ2K = supi∈N

{
min
{
Jπi, ϕ2K,min0≤j<iJπj , ϕ1K

}}
Jπ, ϕ1 Uη ϕ2K = supi∈N

{
min
{
η(i)Jπi, ϕ2K, min0≤j<i η(j)Jπj , ϕ1K

}}
Jπ, f(ϕ1, . . . , ϕk)K = f

(
Jπ, ϕ1K, . . . , Jπ, ϕkK

)
Compare the semantics of ϕ1 U ϕ2 and that of ϕ1 Uη ϕ2. The former is a straightforward
quantitative analogue of the usual Boolean semantics; the latter additionally includes “dis-
counting” by η(i), η(j) ∈ [0, 1]. Recall that a discounting function η is deemed to be strictly
decreasing; this allows us to express intuitions like in (1).

I Proposition 2.6. The truth value Jπ, ϕ1 Uη ϕ2K lies between 0 and η(0). J

We extend the semantics to Kripke structures (see §1).

I Definition 2.7. Let K be a Kripke structure and ξ be a path of K. The truth value
Jξ, ϕK of ϕ in the path ξ is defined by Jξ, ϕK = Jλ(ξ), ϕK, where λ(ξ) ∈ (P(AP))ω is the
computation induced by ξ (see §1). The truth value JK, ϕK of ϕ in K is defined by JK, ϕK =
infξ∈path(K)Jξ, ϕK.

I Remark 2.8. Later in this paper we will restrict to propositional quality operators that are
monotone and continuous, i.e. LTLdisc[D,F] with F ⊆ Fmc. Such a logic can nevertheless
express some non-monotonic operators with the help of negation. For example, the function
f0 : [0, 1] → [0, 1], f0(v) = |v − 1

2 | can be expressed as a combination f0(v) = max{1 −
f1(v), f2(v)}, using f1(v) = min{v + 1

2 , 1} and f2(v) = max{v − 1
2 , 0} (note that f1, f2 ∈

Fmc)—i.e. as the semantics of the formula (¬f1ϕ) ∨ (f2ϕ). A nonexample is the function
f3(v) = v · sin 1

v that oscillates infinitely often in [0, 1].
The following “threshold” problems are studied in [3, 4]. It is shown that the logic

LTLdisc[D, ∅]—i.e. without propositional quality operators other than ∧,∨—has those prob-
lems decidable. Adding the average operator ⊕ makes them undecidable [3], while adding
Oλ (Example 2.3) maintains decidability [4]. Here the complexities are in terms of a suitable
notion |〈ϕ〉| of the size of ϕ (see [3]).

I Theorem 2.9 ([3]). The threshold model-checking problem for LTLdisc[D, ∅] is: given a
Kripke structure K, an LTLdisc[D, ∅] formula ϕ and a threshold v ∈ [0, 1], decide whether
JK, ϕK ≥ v. It is decidable; when restricted to LTLdisc[Dexp, ∅] and v ∈ Q, the problem is in
PSPACE in |〈ϕ〉| and in the description of v, and in NLOGSPACE in the size of K.

The threshold satisfiability problem for LTLdisc[D, ∅] is: given an LTLdisc[D, ∅] formula
ϕ, a threshold v ∈ [0, 1] and ∼ ∈ {<,>}, decide whether there exists a computation π ∈
(P(AP))ω such that Jπ, ϕK ∼ v. This is decidable; when restricted to LTLdisc[Dexp, ∅] and
v ∈ Q, the problem is in PSPACE in |〈ϕ〉| and in the description of v. J

I Theorem 2.10 ([3]). For LTLdisc[D, {⊕}] where D 6= ∅, both the threshold model-checking
problem and the threshold satisfiability problem are undecidable. J

3 [0, 1]-Acceptance Büchi Automata

Our algorithm for near-optimal scheduling relies on a certain notion of quantitative automaton—
called [0, 1]-acceptance Büchi automaton, see Def. 3.1—and an algorithm for its optimal value

S. Nakagawa and I. Hasuo 7

problem (Lem. 3.2). The notion is not extensively studied in the literature, to the best of
our knowledge.

In a [0, 1]-acceptance Büchi automaton each state has a real value v ∈ [0, 1], instead
of a Boolean value b ∈ {tt, ff}, of acceptance. Note that branching is Boolean (i.e. non-
deterministic) and not [0, 1]-weighted. In Appendix C we study a relationship to so-called
fuzzy automata (see e.g. [20]) and show that adding weights to branching does not increase
expressivity when it comes to (weighted) languages.

I Definition 3.1 ([0, 1]-acceptance automaton). A [0, 1]-acceptance Büchi automaton—or
simply a [0, 1]-acceptance automaton henceforth—is A = (Σ, Q, I, δ, F), where Σ is a finite
alphabet, Q is a finite set of states, I ⊆ Q is a set of initial states, δ : Q×Σ→ (P(Q) \ {∅})
is a transition function and F : Q→ [0, 1] is a function that assigns an acceptance value to
each state. We define the (weighted) language L(A) : Σω → [0, 1] of A by

L(A)(w) = max{F (q) | ∃ρ ∈ run(w). q ∈ Inf(ρ)} for each w ∈ Σω , (2)

where the sets run(w) and Inf(ρ) are defined as usual. Precisely:
For an infinite word w ∈ Σω, a run over w of A is an infinite alternating sequence
ρ = q0a0q1a1 . . . such that: 1) qi ∈ Q is a state and ai ∈ Σ is a letter, for all i ∈ N; 2)
q0 ∈ I; and 3) qi+1 ∈ δ(qi, ai) for all i ∈ N. The set of runs over w is denoted by run(w).
Given a run ρ, the set Inf(ρ) is defined by Inf(ρ) = {q ∈ Q | q occurs infinitely often in ρ}.

Note that, when we restrict to Boolean acceptance values (i.e. F (q) ∈ {0, 1}), the acceptance
value in (2) precisely coincides with the one in the usual notion of Büchi automaton. Note
also that, in (2), we take the maximum of finitely many values (the state space Q is finite).

The following observation, though not hard, is a key fact for our search algorithm. It is
a quantitative analogue of emptiness check in usual (Boolean) automata.

I Lemma 3.2 (the optimal value problem for [0, 1]-acceptance automata). Let A = (Σ, Q, I, δ, F)
be a [0, 1]-acceptance Büchi automaton. There exists the maximum maxw∈Σω L(A)(w) of
L(A). Moreover, there is an algorithm that computes the value maxw∈Σω L(A)(w) as well
as a run ρmax = q0a0q1a1 . . . ∈ (Σ×Q)ω that realizes the maximum.

Proof. The algorithm is much like the one for emptiness check of (ordinary) Büchi automata,
searching for a suitable lasso computation. More concretely: consider those states q which
are both reachable from some initial state and reachable from q itself. Let s be one, among
those states, with the greatest acceptance value F (s). It is easy to show that a lasso
computation with the state s as a “knot” gives the run ρmax that we seek for. J

Our algorithm first translates a formula into an alternating [0, 1]-acceptance automata.

I Definition 3.3 (alternating [0, 1]-acceptance automaton). An alternating [0, 1]-acceptance
(Büchi) automaton is a tuple A = (Σ, Q, I, δ, F), where Σ is a finite alphabet, Q is a finite
set of states, I ⊆ Q is a set of initial states, δ : Q × Σ → B+(Q ∪ [0, 1]) is a transition
function and F : Q → [0, 1] gives acceptance values. Recall (§1) that B+(Q ∪ [0, 1]) is the
set of positive propositional combinations of q ∈ Q and v ∈ [0, 1].

We define the (weighted) language L(A) : Σω → [0, 1] of A by

L(A)(w) = maxτ∈runA(w) minρ∈pathA,w(τ) F
∞(ρ) , (3)

where runs, paths and the function F∞ are formally defined much like with the usual alter-
nating automata. Precisely:

8 Near-Optimal Scheduling for LTL with Future Discounting

A run is much like with the usual alternating automata. Precisely, let A = (Σ, Q, I, δ, F)
be an alternating [0, 1]-acceptance automaton and w = a0a1 . . . ∈ Σω be an infinite word.
A run τ of A over w is a (possibly infinite-depth) tree subject to the following.

Each node t of the tree τ is labeled from Q ∪ [0, 1].
The root of τ is labeled with an initial state q0 ∈ I.
Any node t labeled with a number v ∈ [0, 1] is a leaf.
Consider an arbitrary node t that is labeled with a state q ∈ Q. Assume that t is of
depth i ∈ N; and let the labels of t’s children be l1, . . . , lk ∈ Q ∪ [0, 1]. We require
l1, . . . , lk |= δ(q, ai), where: δ(q, ai) ∈ B+(Q ∪ [0, 1]) is the ai-successor of q in A; and
|= designates the obvious Boolean notion of satisfaction (where we think of elements
of Q ∪ [0, 1] as atomic variables).

The set runA(w) is that of all runs of A over the word w.
A path ρ of a run τ ∈ runA(w) is simply a (finite or infinite) path in the tree τ , from the
root of τ . A path ρ is finite only when its last state is a leaf of τ . The set of paths of
τ ∈ runA(w) is denoted by pathA,w(τ).
The function F∞ : pathA,w(τ) → [0, 1] in (3) is defined as follows. If ρ ∈ pathA,w(τ) is
an infinite path, each node t in ρ is labeled with a state q of A. We define

F∞(ρ) = max{F (q) | q ∈ Q occurs infinitely often, as labels, in ρ } . (4)

Assume now that ρ ∈ pathA,w(τ) is finite, say ρ = t0t1 . . . ti. Then the last node ti is
labeled either by v ∈ [0, 1] or q ∈ [0, 1]. In the former case we define F∞(ρ) = v (i.e.
F∞ returns the label of ti). In the latter case, we have that δ(ti, ai) is propositionally
equivalent to > (“truth”) by the definition of run. We define F∞(ρ) = 1.

In the above we used max and min (not sup or inf) since {F (q) | q ∈ Q} is a finite set.

I Proposition 3.4. Let A = (Σ, Q, I, δ, F) be an alternating [0, 1]-acceptance automaton.
There exists a [0, 1]-acceptance automaton A′ such that L(A) = L(A′). J

The construction of A′ is a quantitative adaptation of the one in [18] that turns an al-
ternating ω-automaton into a nondeterministic one. In our adaptation we use what we
call exposition flags, an idea that is potentially useful in other settings with Büchi-type ac-
ceptance conditions, too. See Appendix B.1 for details of the proof and the construction
therein.

Later we will also use the fact that [0, 1]-acceptance automata are closed under monotone
propositional quality operators (Def. 2.2).

I Proposition 3.5. Let f : [0, 1]k → [0, 1] be monotone, and A1, . . . ,Ak be [0, 1]-acceptance
automata over a common alphabet Σ. There is a [0, 1]-acceptance automaton f(A1, . . . ,Ak)
such that L

(
f(A1, . . . ,Ak)

)
(w) = f

(
L(A1)(w), . . . ,L(Ak)(w)

)
for each w ∈ Σω. J

I Remark 3.6. Prop. 3.4 and 3.5 are essentially two separate constructions that deal with:
the connectives ∧ and ∨; and the other propositional quality operators, respectively. One can
alternatively think of ∧ and ∨ as special cases of the latter (Example 2.3) and use Prop. 3.5
altogether. This however results in a worse complexity: the powerset-like construction in
Prop. 3.4 exploits the commutativity, idempotency and associativity of ∧ to suppress the
number of states, while such is not done in the product-like construction in Prop. 3.5.

A generalization of [0, 1]-acceptance automaton is naturally obtained by making transi-
tions also [0, 1]-weighted. The result is called fuzzy automaton and studied e.g. in [20]. In
Appendix C we show that this generalization does not add expressivity. In fact we prove a
more general result there, parametrizing [0, 1] into a suitable semiring K.

S. Nakagawa and I. Hasuo 9

4 Near-Optimal Scheduling for LTLdisc[D,Fmc]

In [3,4] the threshold model-checking problem for the logic LTLdisc[D,F] is studied. In this
paper, instead, we are interested in the following problem: what path of a given Kripke
structure K is the best for a given LTLdisc[D,F] formula ϕ.

s0 //
��

¬p
s1 //

p

s2
��

¬p
In general, however, there does not exist an optimal path ξ0 of K, i.e.

one that achieves Jξ0, ϕK = supξ∈path(K)Jξ, ϕK.
I Example 4.1 (optimality not achievable). Take a formula ϕ = Gη Fp and the Kripke structure
K shown in the above. This example illustrates that the existence of an optimal path is not
guaranteed in general: indeed, whereas supξ′∈path(K)Jξ′, ϕK = 1 in this example, there is no
path ξ that achieves Jξ, ϕK = 1.

More specifically: we first note that, in each path ξ of the Kripke structure, p is true at
most once. The later the state s1 occurs in a path ξ, the bigger the truth value Jξ, ϕK is;
moreover the value Jξ, ϕK tends to 1 (since η tends to 0). However there is no path ξ that
achieves exactly Jξ, ϕK = 1: if p is postponed indefinitely, no state in ξ satisfies p, in which
case Fp is everywhere false and hence Jξ, ϕK = 0.

We thus strive for near-optimality, allowing a prescribed margin ε.

I Definition 4.2. The near-optimal scheduling problem for LTLdisc[D,F] is: given a Kripke
structure K = (W,R, λ), an LTLdisc[D,F] formula ϕ and a positive real number ε ∈ (0, 1),
to find a path ξ0 ∈ path(K) such that Jξ0, ϕK ≥ supξ∈path(K)Jξ, ϕK− ε.

Ultimately we will show that the problem in the above is decidable (Thm. 4.14), when all
the propositional quality operators are monotone and continuous (F ⊆ Fmc).

We first note that, in the special case for LTLdisc[D, ∅] (i.e. no propositional quality op-
erators), there is a straightforward binary search algorithm that relies on the (threshold)
model-checking algorithm in [3] (Thm. 2.9). Specifically, the binary search algorithm repeat-
edly conducts threshold model-checking for: the threshold v = 1

2 in the first round; v = 1
4 or

3
4 in the second round, depending on the outcome of the first round; then for v = 1

8 , . . . ,
6
8

or 7
8 , depending on the outcome of the second round; and so on. Given a margin ε ∈ (0, 1),

this way, we need − log ε rounds. This binary search algorithm is rather effective (see §5).
However the binary search algorithm does not work in presence of the average operator

⊕, simply because the threshold model-checking problem is undecidable (Thm. 2.10). Our
main contribution is a novel algorithm for near-optimal scheduling that works even in this
case (and more generally for the logic LTLdisc[D,Fmc]). Our algorithm first translates a
formula ϕ and a margin ε ∈ (0, 1) to an alternating [0, 1]-acceptance automaton Aϕ,ε, which
is further turned into a [0, 1]-acceptance automaton (Prop. 3.4). The resulting automaton—
after taking the product with K—is amenable to optimal value search (Lem. 3.2), yielding
a solution to the original problem.

In the rest of the section we describe our algorithm. We shall however first restrict to the
logic LTLdisc[D, ∅] for the sake of presentation (although this basic fragment allows binary
search). After describing the basic algorithm for LTLdisc[D, ∅] in §4.1, in §4.2 we explain
how it can be modified to accommodate propositional quality operators.

4.1 Our Algorithm, When Restricted to LTLdisc[D, ∅]
Our translation of ϕ and ε ∈ (0, 1) to an automaton Aϕ,ε is an extension of the standard
translation from LTL formulas to alternating Büchi automata (e.g. in [22]), with:

incorporation of quantities—accumulation of discount factors, more specifically—by means
of what we call discount sequences; and

10 Near-Optimal Scheduling for LTL with Future Discounting

cutting off those events which are far in the future—the idea of event horizon from [3].
The extension is not complicated on the conceptual level. Its details need care, however,
especially in handling negations and alternation of greatest and least fixed points.

As preparation, we recall some definitions and notations from [3].

I Definition 4.3 (η+k, xcl(ϕ) [3]). Let η : N → [0, 1] be a discounting function. We define
a discounting function η+k : N→ [0, 1] by η+k(i) = η(i+ k) for each k ∈ N.

For an LTLdisc[D,F] formula ϕ, the extended closure xcl(ϕ) of ϕ [3] is defined by

xcl(ϕ) = Sub(ϕ) ∪ {ϕ1 Uη+k ϕ2 | k ∈ N, ϕ1 Uη ϕ2 ∈ Sub(ϕ)} , (5)

where Sub(ϕ) denotes the set of subformulas of ϕ.

4.1.1 Discounting Sequences
We go on to technical details. In the alternating [0, 1]-acceptance automaton Aϕ,ε that we
shall construct, a state is a pair (ψ, ~d) of a formula ψ and a discount sequence ~d ∈ [0, 1]+.

I Definition 4.4 (discount sequence). A discount sequence is a sequence ~d = d1d2 . . . dn ∈
[0, 1]+ of real numbers with a nonzero length (di ∈ [0, 1] for each i).

The notion of discount sequence is a quantitative extension of that of priority in parity
automata. Specifically, the length n of a discount sequence ~d = d1d2 . . . dn corresponds to a
priority—i.e. the alternation depth of greatest and least fixed points. Each real number di in
the sequence, in turn, stands for the accumulated discount factor in each level of fixed-point
alternation. For example, the formula Fexp 1

2
Gexp 2

3
Fexp 3

4
p will induce a discount sequence

(1
2)n1 , (2

3)n2 , (3
4)n3 of length 3—where n1, n2 and n3 are the numbers of steps for which the

three discounting temporal operators Fη1, Gη2 and Fη3 “have waited,” respectively.
We use three operators �, :,� that act on discount sequences; the intuitions are as

follows. The first two are for accumulating discount factors: we use � in case there is no
alternation of greatest and least fixed points; and we use : in case there is. Examples are:(

(1
2)2, (2

3)3, 3
4
)
� 4

5 =
(

(1
2)2, (2

3)3, 3
4 ·

4
5
)

=
(

(1
2)2, (2

3)3, 3
5
)

and(
(1

2)2, (2
3)3, 3

4
)

: 4
5 =

(
(1

2)2, (2
3)3, 3

4 ,
4
5
)
.

Note that in the former the length is preserved, while in the latter the sequence gets longer
by one.

I Definition 4.5 (~d� d′, ~d : d′). The operator � takes a discount sequence ~d and a discount
factor d′ ∈ [0, 1] as arguments, and multiplies the last element of ~d by d′. That is,

(d1d2 . . . dn)� d′ = d1d2 . . . dn−1(dn · d′) ∈ [0, 1]+ .

The operator : is simply the concatenation operator: given ~d = d1d2 . . . dn and d′ ∈ [0, 1],
the sequence ~d : d′ is d1d2 . . . dnd

′ of length n+ 1.

We use the operator � in ~d�v to let a discount sequence ~d act on a truth value v ∈ [0, 1].

I Definition 4.6 (~d� v). The operator � takes ~d ∈ [0, 1]+ and v ∈ [0, 1] as arguments. The
value ~d� v ∈ [0, 1] is defined inductively by:

d� v = dv , ~dd′ � v = ~d� (1− d′v) . Explicitly: (6)
(d1d2 . . . dn)� v = d1 − d1d2 + d1d2d3 − · · · + (−1)nd1d2 . . . dn−1 + (−1)n+1d1d2 . . . dnv . (7)

S. Nakagawa and I. Hasuo 11

The intuition behind the action ~d � v is most visible in (6), where dv and d′v denote
multiplication of real numbers. Given a discount sequence ~dd′: 1) we apply the final discount
factor d′ to the truth value v, obtaining d′v; 2) the alternation between greatest and least
fixed points is taken into account, by taking the negation 1 − d′v (cf. Def. 2.5); and 3)
we apply the remaining sequence ~d inductively and obtain ~d � (1 − d′v). An example is(3

4 ,
1
3 ,

2
5
)
� 1 =

(3
4 ,

1
3
)
�
(
1− 2

5 · 1
)

=
(3

4 ,
1
3
)
� 3

5 =
(3

4
)
�
(
1− 1

3 ·
3
5
)

=
(3

4
)
� 4

5 = 3
5 .

The following relationship between � and � is easily seen to hold:

(~d� d′)� v = ~d� (d′ · v) . (8)

The three operators �, :,� defined in the above will be used shortly, in the construction
of the automaton Aϕ,ε. Their roles are briefly discussed after Def. 4.7.

4.1.2 Construction of Aϕ,ε

We describe the construction of Aϕ,ε, for a formula ϕ of LTLdisc[D, ∅] and a margin ε. We
subsequently discuss ideas behind it, comparing the definition with other known construc-
tions.

We first define Ap
ϕ,ε that is infinite-state, and obtain Aϕ,ε as the reachable part. The

latter will be shown to be finite-state (Lem. 4.8).

I Definition 4.7 (the automata Ap
ϕ,ε,Aϕ,ε). Let ϕ be an LTLdisc[D, ∅] formula and ε ∈ (0, 1).

We define an alternating [0, 1]-acceptance automaton Ap
ϕ,ε = (P(AP), Q, I, δ, F) as follows.

Its state space Q is xcl(ϕ)× [0, 1]+; hence a state is a pair (ψ, ~d) of a formula and a discount
sequence. The transition function δ : Q× P(AP)→ B+(Q ∪ [0, 1]) is defined as in Table 1,
where we let ~d = d1d2 . . . dn ∈ [0, 1]+ and σ ∈ P(AP).

The set I of the initial states of Ap
ϕ,ε is {(ϕ, 1)}. The acceptance function F is

F (ψ, ~d) =
{

1 if ψ = ψ1 U ψ2 and |~d| is even
0 otherwise.

(12)

The alternating [0, 1]-acceptance automaton Aϕ,ε is defined to be the restriction of Ap
ϕ,ε

to the states that are reachable from the initial state (ϕ, 1).

Examples of Aϕ,ε are in Fig. 1–2, where (ϕ, ε) = (Gexp 1
2

Fexp 2
5
p, 1

3) and (Fexp 1
2

Gp, 1
3). There

a discount sequence d1 . . . dn is denoted by 〈d1, . . . , dn〉 for readability.
Some remarks on Def. 4.7 are in order.

In Absence of Discounting (Sanity Check) If the formula ϕ contains no discounting
operator Uη, then the construction essentially coincides the usual one in [22] that translates
a (usual) LTL formula to an alternating Büchi automaton. To see it, recall that the length
|~d| of a discount sequence plays the role of a priority in parity automata (§4.1.1). Therefore
in the first case of (12), |~d| being even means that we are in fact dealing with a greatest
fixed point. This makes the state accepting (in the Büchi sense), much like in [22].
Aϕ,ε is Quantitative The acceptance values of the states of Aϕ,ε are Boolean (see (12)).
Nevertheless the automaton is quantitative, in that non-Boolean values from [0, 1] appear as
atomic propositions in the range B+(Q ∪ [0, 1]) of the transition δ (they occur at the leaves
in Fig. 1–2). Once we transform Aϕ,ε to a non-alternating automaton (Prop. 3.4), these
non-Boolean propositional values give rise to non-Boolean acceptance values.
Event Horizon A fundamental idea from [3] is the following. A discounting operator, in
presence of a threshold (in [3]) or a nonzero margin (here), allows an exact representation

12 Near-Optimal Scheduling for LTL with Future Discounting

δ
(
(True, ~d), σ

)
= ~d� 1

δ
(
(p, ~d), σ

)
=

{
~d� 1 if p ∈ σ,
~d� 0 otherwise.

δ
(
(¬ψ, ~d), σ

)
= δ
(
(ψ, ~d : 1), σ

)
(9)

δ
(
(ψ1 ∧ ψ2, ~d), σ

)
=

{
δ
(
(ψ1, ~d), σ

)
∧ δ
(
(ψ2, ~d), σ

)
if |~d| is odd,

δ
(
(ψ1, ~d), σ

)
∨ δ
(
(ψ2, ~d), σ

)
otherwise.

δ
(
(Xψ, ~d), σ

)
= (ψ, ~d)

δ
(
(ψ1 U ψ2, ~d), σ

)
=

δ
(
(ψ2, ~d), σ

)
∨
(
δ
(
(ψ1, ~d), σ

)
∧ (ψ1 U ψ2, ~d)

)
if |~d| is odd,

δ
(
(ψ2, ~d), σ

)
∧
(
δ
(
(ψ1, ~d), σ

)
∨ (ψ1 U ψ2, ~d)

)
otherwise.

For δ
(
(ψ1 Uη ψ2, ~d), σ

)
we make cases. Let ~d = d1 . . . dn. If η(0) ·

∏n

i=1 di ≤ ε:

δ
(
(ψ1 Uη ψ2, ~d), σ

)
=

{
~d� 0 if |~d| is odd,
~d� η(0) otherwise;

(10)

otherwise, i.e. if η(0) ·
∏n

i=1 di > ε:

δ
(
(ψ1 Uη ψ2, ~d), σ

)
=

δ
(
(ψ2, ~d� η(0)), σ

)
∨
(
δ
(
(ψ1, ~d� η(0)), σ

)
∧ (ψ1 Uη+1 ψ2, ~d)

)
if |~d| is odd,

δ
(
(ψ2, ~d� η(0)), σ

)
∧
(
δ
(
(ψ1, ~d� η(0)), σ

)
∨ (ψ1 Uη+1 ψ2, ~d)

)
otherwise.

(11)
Table 1 Transition function δ of Ap

ϕ,ε

Gexp 1
2

Fexp 2
5

p, h1i

Fexp
+1
2
5

p, h1, 1, 1i

Fexp
+2
2
5

p, h1, 1, 1i

Fexp
+1
2
5

p, h1, 1
2
, 1i

Fexp
+2
2
5

p, h1, 1
2
, 1ih1, 1

2
, 1i ⇥ 2

5
= 7

10

h1, 1, 1i ⇥ 2
5

= 2
5

Fexp
+1
1
2

¬ Fexp 2
5

p, h1, 1i

Fexp
+2
1
2

¬ Fexp 2
5

p, h1, 1i

Figure 1 The automaton Aϕ,ε for
ϕ = Gexp 1

2
Fexp 2

5
p and ε = 1

3

,

,

Figure 2 The automaton Aϕ,ε for
ϕ = Fexp 1

2
Gp and ε = 1

3 . The double-lined
nodes have the acceptance value 1.

S. Nakagawa and I. Hasuo 13

by a (finitary) formula without a fixed point operator. The latter means, for example:

Jπ,Fexp 1
2
ϕK ≥ 1

4 ⇐⇒ π |= ϕ ∨ Xϕ ∨ XXϕ , and (13)
Jπ,Gexp 1

2
ϕK ≥ 3

4 ⇐⇒ π |= ϕ ∧ Xϕ ∧ XXϕ , (14)

and so on. Note that in (13), whatever happens after two time units has contributions less
than (1

2)2 = 1
4 and therefore never enough to make up the threshold. The example (14)

is similar, with events in the future having only negligible negative contributions. In other
words: fixed point operators with discounting have an event horizon—in the above exam-
ples (13–14) it lies between t = 2 and 3—nothing beyond which matters.

This idea of event horizon is used in the distinction between (10) and (11). The value
η(0) ·

∏n
i=1 di is, as we shall see, the greatest contribution to a truth value that the events

henceforth potentially have. In case it is smaller than the margin ε we can safely ignore the
positive contribution henceforth and take the smallest possible truth value 0—much like the
disjunct X3ϕ∨X4ϕ∨· · · is truncated in (13). This is what is done in the first case in (10). The
second case in (10) is about a greatest fixed point and we truncate the negative contributions
of the events beyond the event horizon—this is much like the obligation X3ϕ ∧ X4ϕ ∧ · · ·
is lifted in (14). In this case we use the greatest truth value possible, namely η(0). This is
what is done in (10).
Use of Discount Sequences Discount sequences ~d are used for two purposes. Firstly, as
we already described, its length |~d| indicates the alternation between positive and negative
views on a formula—observe that a discount sequence gets longer in (9). Consequently
many clauses in the definition of δ distinguish cases according to the parity of |~d|. Secondly
it records all the discount factors that have been encountered. See (11), where the last
element of ~d is multiplied by the newly encountered factor η(0) and updated to ~d � η(0).
Such accumulation ~d of discount factors acts on a truth value via the � operator, like in (10)
and in the definition of δ

(
(True, ~d), σ

)
.

I Lemma 4.8. The automaton Aϕ,ε has only finitely many states. J

The following “correctness lemma” claims that Aϕ,ε conducts the expected task.

I Lemma 4.9. Let ϕ be an LTLdisc[D, ∅] formula and ε ∈ (0, 1) be a positive real number.
For each computation π ∈ (P(AP))ω, we have Jπ, ϕK− ε ≤ L(Aϕ,ε)(π) ≤ Jπ, ϕK J

4.1.3 The Algorithm
After the construction of Aϕ,ε, the algorithm proceeds in the following manner. We first
translate Aϕ,ε to a (non-alternating) [0, 1]-acceptance automaton (relying on Prop. 3.4).

I Corollary 4.10. Let ϕ be an LTLdisc[D, ∅] formula and ε ∈ (0, 1) be a positive real number.
There exists a (non-alternating) [0, 1]-acceptance automaton Ana

ϕ,ε such that Jπ, ϕK − ε ≤
L(Ana

ϕ,ε)(π) ≤ Jπ, ϕK for each computation π ∈ (P(AP))ω. J

Towards the solution of the near-optimal scheduling problem (Def. 4.2), we construct
the product of Ana

ϕ,ε in Cor. 4.10 and the given Kripke structure K. Since transitions of
[0, 1]-acceptance automata are nondeterministic, this product can be defined just as usual.

I Definition 4.11. Let A = (P(AP), Q, I, δ, F) be a [0, 1]-acceptance automaton and K =
(W,R, λ) be a Kripke structure. Their product A × K is a [0, 1]-acceptance automaton
(1, Q′, I ′, δ′, F ′)—over a singleton alphabet 1 = {•}—defined by: Q′ = Q; I ′ = I × W ;
δ′
(

(q, s), •
)

=
{

(q′, s′)
∣∣ q′ ∈ δ(q, λ(s)), (s, s′) ∈ R

}
; and F ′(q, s) = F (q).

14 Near-Optimal Scheduling for LTL with Future Discounting

I Lemma 4.12. Let (q0, s0) • (q1, s1) • . . . be an optimal run of the automaton A×K (that
necessarily exists by Lem. 3.2). The path s0s1 . . . ∈ path(K) realizes the optimal value of A,
that is, L(A)

(
λ(s0)λ(s1) . . .

)
= maxξ∈path(K) L(A)

(
λ(ξ)

)
. J

I Theorem 4.13 (optimal scheduling for LTLdisc[D, ∅]). Assume the setting of Def. 4.2, and
that F = ∅ (i.e. the formula ϕ contains no propositional quality operators). Let (q0, s0) •
(q1, s1) • . . . be an optimal run (computed by Lem. 3.2) for the [0, 1]-acceptance automaton
Ana
ϕ,ε × K constructed as in Def. 4.7, Cor. 4.10 and Def. 4.11. Then the path s0s1 . . . ∈

path(K) is a solution to the near-optimal scheduling problem (Def. 4.2).
Moreover, the solution s0s1 . . . can be chosen to be ultimately periodic. J

4.2 Our General Algorithm for LTLdisc[D,Fmc]
Our general algorithm works in the setting of LTLdisc[D,Fmc]—i.e. in the presence of mono-
tone and continuous propositional quality operators like ⊕—where threshold model check-
ing is potentially undecidable [3] and therefore the binary-search algorithm (described after
Def. 4.2) may not work.

The general algorithm is a (rather straightforward) adaptation of the one we described
for LTLdisc[D, ∅] (§4.1). Here we construct the alternating [0, 1]-acceptance automaton Aϕ,ε
inductively on the construction on the formula ϕ:

When the outermost connective is other than a propositional quality operator, the con-
struction is much like in Def. 4.7.
When the outermost connective is a propositional quality operator, we rely on Prop. 3.5.

The rest of the algorithm (i.e. the part described in §4.1.3) remains unchanged. An extensive
description of the details of the construction is deferred to Appendix A.

I Theorem 4.14 (main theorem, optimal scheduling for LTLdisc[D,Fmc]). In the setting of
Def. 4.2, assume that F ⊆ Fmc (i.e. all the propositional quality operators in ϕ are monotone
and continuous). Then the near-optimal scheduling problem is decidable. J

4.3 Complexity
The two parameters D and F in LTLdisc[D,F]—i.e. discounting functions (Def. 2.1) and
propositional quality operators (Def. 2.2)—are both relevant to the complexity of our algo-
rithm. Formulating a complexity result is hard when these parameters are left open. We
therefore restrict to:

exponential discounting functions (Def. 2.1), i.e. D = Dexp = {expλ | λ ∈ (0, 1) ∩Q}, as
is done in [3]; and
the average operator ⊕, i.e. F = {⊕}.

We use the definition |〈ϕ〉| of the size of a formula ϕ, which is from [3]: it reflects the
description length of λ ∈ Q that appears in discounting functions, as well as the length of ϕ
as an expression.

I Proposition 4.15 (size of Aϕ,ε). Let ϕ be an LTLdisc[Dexp, {⊕}] formula and ε ∈ (0, 1)∩Q
be a positive rational number. The size of the state space of the alternating [0, 1]-acceptance
automaton Aϕ,ε is singly exponential in |〈ϕ〉| and in the length of the description of ε. J

I Theorem 4.16 (complexity for LTLdisc[Dexp, {⊕}]). The near-optimal scheduling problem
for LTLdisc[Dexp, {⊕}] is: in EXPSPACE in |〈ϕ〉| and in the description length of ε; and in
NLOGSPACE in the size of K. J

S. Nakagawa and I. Hasuo 15

ε = 1
10 ε = 1

50 ε = 1
100

formula ϕ \ #(states) Aϕ,ε Ana
ϕ,ε Aϕ,ε Ana

ϕ,ε Aϕ,ε Ana
ϕ,ε

Fexp 1
2
p1 5 10 7 14 8 16

Fexp 99
100

p1 231 462 391 782 460 920
Fexp 1

2
Gexp 1

2
p1 15 36 28 85 36 121

Fexp 1
2
p1 ⊕ Fexp 1

2
p2 33 128 61 1859 78 7421

Fexp 1
2
p1 ⊕ Gexp 1

2
p2 29 272 55 6659 71 32703

Fexp 3
5
p1 ⊕ Fexp 3

5
p2 46 477 97 29655 141 timeout (2 min.)

F(Gp1 ⊕ Fexp 1
2
p2) 14 19 20 27 23 31

Table 2 Size of the alternating [0, 1]-acceptance automaton Aϕ,ε, and [0, 1]-acceptance automa-
ton Aϕ,ε
margin ε #(states of K) max. outgoing degree of K time (sec) space (MB)

1
10 100 3 0.085508 5.861

10 0.114427 9.368
200 3 0.186989 10.586

10 0.249392 18.216
1

50 100 3 5.928842 199.782
10 8.108335 405.884

200 3 10.750703 405.313
10 18.250345 851.255

Table 3 Time and space consumption of our algorithm for near-optimal scheduling, for the
formula Gexp 1

2
p1 ⊕ Gexp 1

2
p2 and a randomly generated Kripke structure K. For each choice of

the number of states (100 or 200) and of the maximum outgoing degree (3 or 10), we randomly
generated 100 instances of K and the above shows the average

Gexp 1
2

Fp Fexp 1
2

Gp
time (sec) space (MB) time (sec) space (MB)

our algorithm (§4.1) 18.918600 897.111 0.019800 4.629
binary search 0.047200 5.140390 0.069500 5.567

Table 4 (Comparison with binary search, in absence of ⊕) Time and space consumption for
near-optimal scheduling, for the margin ε = 1

100 and a randomly generated Kripke structure K (500
states, max. outgoing degree 10, average over 100 instances)

In case of absence of propositional quality operators (i.e. LTLdisc[Dexp, ∅]), we can further
optimize the complexity by using a heuristic and avoiding the exponential blowup from Aϕ,ε
to Ana

ϕ,ε. This yields the following complexity result, which is also achievable by the binary-
search algorithm.

I Theorem 4.17 (complexity for LTLdisc[Dexp, ∅]). The near-optimal scheduling problem
for LTLdisc[Dexp, ∅] is: in PSPACE in |〈ϕ〉| and in the description length of ε; and in
NLOGSPACE in the size of K. J

5 Experiments

We implemented our algorithm in §4 that solves the near-optimal scheduling for LTLdisc[Dexp, {⊕}].
The implementation is in OCaml. The following experiments were on a MacBook Pro laptop
with a Core i5 processor (2.7 GHz) and 16 GB RAM. In Table 2, for each choice of ϕ and
ε, we show the size of the alternating automaton Aϕ,ε, and the non-alternating Ana

ϕ,ε that

16 Near-Optimal Scheduling for LTL with Future Discounting

results from Aϕ,ε. The first three rows have no ⊕, in which case the implementation scales
well for bigger bases (i.e. discount functions that decrease more slowly). We observe that
presence of ⊕ incurs substantial computational costs: the small increase of bases from 1

2
(the fourth row) to 3

5 (the sixth row) makes Aϕ,ε much bigger, resulting in one timeout.
This is as expected, however: ⊕ makes other problems harder too, such as model checking
(undecidable).

In Table 3 we fix a formula ϕ = Gexp 1
2
p1 ⊕ Gexp 1

2
p2 and measure time and space con-

sumption, for various choices of a margin ε and a Kripke structure K. Kripke structures K
were randomly generated: we first set the number of states (100 or 200) and the maximum
outgoing degree of K (3 or 10); for each state we fixed its outgoing degree, from the uniform
distribution from 1 to the maximum (that we had already fixed); and then, for each outgo-
ing edge, its target state is chosen from the uniform distribution over the set of states. We
observe that time and space consumption grows significantly as the problem becomes more
difficult. However, for problem instances of a considerable size we still see manageable costs:
a margin ε = 1

50 (2%) is fairly small, and a Kripke structure K with 200 states is likely to
be capable of modeling many communication protocols.

In Table 4, for reference, we compare our algorithm in §4.1 with the binary-search al-
gorithm that exploits the model-checking algorithm in [3] (we also implemented the latter).
We emphasize again that the latter does not work in presence of ⊕. Our experience shows
that the binary-search algorithm can in some cases be faster by a magnitude (e.g. for the
first formula here), but not always (for the second formula our algorithm is a few times
faster).

Those experimental results indicate that, although presence of the average operator ⊕
incurs significant computational cost (as expected), automata-based optimal scheduling for
LTLdisc[Dexp, {⊕}] is potentially a viable approach. It is not that our algorithm scales
up to huge problem instances, but systems of hundreds of states can be handled without
difficulties. Identification of concrete real-world challenges, and enhancement of the tool’s
efficiency to match up to them, is an important direction of future work.

6 Conclusions and Future Work

For the quantitative logic LTLdisc[Dexp,F] with future discounting [3], we formulated a
natural problem of synthesizing near-optimal schedulers, and presented an algorithm. The
latter relies on: the existing idea of event horizon exploited in [3] for the threshold model
checking problem, as well as a supposedly widely-applicable technique of translation to
[0, 1]-acceptance automata and a lasso-style optimal value algorithm for them.

Here are several directions of future work.
Controller Synthesis for Open Systems We note that the current results are focused
on closed systems. For open or reactive systems (like a server that responds to requests that
come from the environment) we would wish to synthesize a controller—formally a strategy
or a transducer—that achieves a near-optimal performance.

An envisaged workflow, following the one in [22], is as follows. We will use the same
automaton Aϕ,ε (Def. 4.7). It is then: 1) determinized, 2) transformed into a tree automaton
that accepts the desired strategies, and 3) the optimal value of the tree automaton is checked,
much like in Lem. 3.2. While the step 2) will be straightforward, the steps 1) and 3) (namely:
determinization of [0, 1]-acceptance automata, and the optimal value problem for “[0, 1]-
acceptance Rabin automata”) are yet to be investigated. Another possible workflow is by
an adaptation of the Safraless algorithm [16].

S. Nakagawa and I. Hasuo 17

Probabilistic Systems and LTLdisc[Dexp,F] Here and in [3] the system model is a Kripke
structure that is nondeterministic. Adding probabilistic branching will gives us a set of
new problems to be solved: for Markov chains the threshold model-checking problem can
be formulated; for Markov decision processes, we have both the threshold model-checking
problem and the near-optimal scheduling problem. Furthermore, another axis of variation is
given by whether we consider the expected value or the worst-case value. In the latter case
we would wish to exclude truth values that arise with probability 0. All these variations
have important applications in various areas.

Acknowledgments

Thanks are due to Shaull Almagor, Shuichi Hirahara, and the anonymous referees, for useful
discussions and comments. The authors are supported by Grants-in-Aid No. 24680001,
15KT0012 and 15K11984, JSPS.

References
1 Yasmina Abdeddaïm, Eugene Asarin, and Oded Maler. Scheduling with timed automata.

Theor. Comput. Sci., 354(2):272–300, 2006.
2 Shaull Almagor, Udi Boker, and Orna Kupferman. Formalizing and reasoning about qual-

ity. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors,
Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013,
Riga, Latvia, July 8-12, 2013, Proceedings, Part II, volume 7966 of Lecture Notes in Com-
puter Science, pages 15–27. Springer, 2013.

3 Shaull Almagor, Udi Boker, and Orna Kupferman. Discounting in LTL. In Erika Ábrahám
and Klaus Havelund, editors, Tools and Algorithms for the Construction and Analysis of
Systems - 20th International Conference, TACAS 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-
13, 2014. Proceedings, volume 8413 of Lecture Notes in Computer Science, pages 424–439.
Springer, 2014.

4 Shaull Almagor, Udi Boker, and Orna Kupferman. Formalizing and reasoning about quality.
Extended version of [2], preprint (private communication), 2014.

5 Christel Baier, Clemens Dubslaff, and Sascha Klüppelholz. Trade-off analysis meets prob-
abilistic model checking. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, page 1. ACM, 2014.

6 Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.
Better quality in synthesis through quantitative objectives. In Ahmed Bouajjani and Oded
Maler, editors, Computer Aided Verification, 21st International Conference, CAV 2009,
Grenoble, France, June 26 - July 2, 2009. Proceedings, volume 5643 of Lecture Notes in
Computer Science, pages 140–156. Springer, 2009.

7 Patricia Bouyer, Nicolas Markey, and Raj Mohan Matteplackel. Averaging in LTL. In
Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 - Concurrency Theory - 25th
International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings,
volume 8704 of Lecture Notes in Computer Science, pages 266–280. Springer, 2014.

8 Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna, and
Rohit Singh. Quantitative synthesis for concurrent programs. In Ganesh Gopalakrishnan
and Shaz Qadeer, editors, Computer Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture
Notes in Computer Science, pages 243–259. Springer, 2011.

18 Near-Optimal Scheduling for LTL with Future Discounting

9 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Expressiveness and
closure properties for quantitative languages. Logical Methods in Computer Science, 6(3),
2010.

10 Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski. Mean-payoff parity
games. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June
2005, Chicago, IL, USA, Proceedings, pages 178–187. IEEE Computer Society, 2005.

11 Ling Cheung, Mariëlle Stoelinga, and Frits W. Vaandrager. A testing scenario for proba-
bilistic processes. J. ACM, 54(6), 2007.

12 Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Discounting the future
in systems theory. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Ger-
hard J. Woeginger, editors, Automata, Languages and Programming, 30th International
Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceed-
ings, volume 2719 of Lecture Notes in Computer Science, pages 1022–1037. Springer, 2003.

13 Manfred Droste and Ulrike Püschmann. On weighted Büchi automata with order-complete
weights. IJAC, 17(2):235–260, 2007.

14 Marco Faella, Axel Legay, and Mariëlle Stoelinga. Model checking quantitative linear time
logic. Electr. Notes Theor. Comput. Sci., 220(3):61–77, 2008.

15 Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Asp. Comput., 6(5):512–535, 1994.

16 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Safraless compositional synthesis. In
Thomas Ball and Robert B. Jones, editors, Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144
of Lecture Notes in Computer Science, pages 31–44. Springer, 2006.

17 Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach
to branching-time model checking. J. ACM, 47(2):312–360, March 2000.

18 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words. Theor.
Comput. Sci., 32:321–330, 1984.

19 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Conference Record
of the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin,
Texas, USA, January 11-13, 1989, pages 179–190. ACM Press, 1989.

20 George Rahonis. Infinite fuzzy computations. Fuzzy Sets and Systems, 153(2):275–288,
2005.

21 R. J. van Glabbeek. The linear time–branching time spectrum I; the semantics of concrete,
sequential processes. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of
Process Algebra, chapter 1, pages 3–99. Elsevier, 2001.

22 Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics
for Concurrency: Structure versus Automata, volume 1043 of Lecture Notes in Computer
Science, pages 238–266. Springer-Verlag, 1996.

S. Nakagawa and I. Hasuo 19

A Our General Algorithm for LTLdisc[D,Fmc], Further Details

In this section, we extend §4.2 and describe details of the construction of Aϕ,ε for a formula
ϕ of LTLdisc[D,Fmc]. We inductively construct an alternating [0, 1]-acceptance automaton
A~dϕ,ε—that is also parametrized by a discount sequence ~d. Then the automaton Aϕ,ε is
defined by A〈1〉ϕ,ε (for the sequence 〈1〉 of length one).

I Lemma A.1. Let ϕ be an LTLdisc[D,Fmc] formula, ε ∈ (0, 1) be a positive real number,
and ~d = d1d2 . . . dn be a discount sequence (Def. 4.4). There exists an alternating [0, 1]-
acceptance automaton A~dϕ,ε such that, for each computation π ∈ (P(AP))ω,(

~d� Jπ, ϕK
)
− ε ≤ L(A~dϕ,ε)(π) ≤ ~d� Jπ, ϕK . (15)

Proof. The proof is inductive on the construction of ϕ.1 In this proof we assume without
loss of generality that an alternating [0, 1]-acceptance automaton has exactly one initial
state, and consequently, the initial state of A~dϕ,ε shall be denoted by q

~d
ϕ,ε. For the case

where the outermost connective of ϕ is other than a propositional quality operator, we only
describe the construction of A~dϕ,ε. The correctness of this automaton can be proved in a
similar way to the proof of Lem. 4.9: recall that Lem. 4.9 is also proved by induction on the
construction of a formula.

Suppose that ϕ = True. We define A~dTrue,ε = (P(AP), {q~dTrue,ε}, {q
~d
True,ε}, δ, F) where

δ(q~dTrue,ε, σ) = ~d� 1 and F (q~dTrue,ε) = 0.
Suppose that ϕ = p ∈ AP. We define A~dp,ε = (P(AP), {q~dp,ε}, {q

~d
p,ε}, δ, F) where

δ(q~dp,ε, σ) =
{
~d� 1 if p ∈ σ
~d� 0 otherwise

and F (q~dp,ε) = 0 .

Suppose that ϕ = ϕ1 ∧ ϕ2 and that |~d| is odd. By the induction hypothesis, for each
of i ∈ {1, 2}, there exists A~dϕi,ε = (P(AP), Qi, {q

~d
ϕi,ε}, δi, Fi) that satisfies the postulated

condition. Then we define A~dϕ,ε = (P(AP), Q, {q~dϕ,ε}, δ, F) as follows. Its state space Q is
{q~dϕ,ε} ∪Q1 ∪Q2. The transition function δ is

δ(q, σ) =
{
δ1(q~dϕ1,ε, σ) ∧ δ2(q~dϕ2,ε, σ) if q = q

~d
ϕ,ε

δi(q, σ) if q ∈ Qi.

The acceptance function F is

F (q) =
{

0 if q = q
~d
ϕ,ε

Fi(q) if q ∈ Qi.

Suppose that ϕ = ϕ1 ∧ ϕ2 and that |~d| is even. By the induction hypothesis, for each
of i ∈ {1, 2}, there exists A~dϕi,ε = (P(AP), Qi, {q

~d
ϕi,ε}, δi, Fi) that satisfies the postulated

condition. Then we define A~dϕ,ε = (P(AP), Q, {q~dϕ,ε}, δ, F) as follows. Its state space Q is
{q~dϕ,ε} ∪Q1 ∪Q2. The transition function δ is

δ(q, σ) =
{
δ1(q~dϕ1,ε, σ) ∨ δ2(q~dϕ2,ε, σ) if q = q

~d
ϕ,ε

δi(q, σ) if q ∈ Qi.

1 To be precise, we have two nested induction: the outer one is with respect to the number of propositional
quality operators occurring in ϕ; and the inner one is with respect to the size of a formula ϕ.

20 Near-Optimal Scheduling for LTL with Future Discounting

The acceptance function F is

F (q) =
{

0 if q = q
~d
ϕ,ε

Fi(q) if q ∈ Qi.

Suppose that ϕ = ¬ϕ′. By the induction hypothesis, there exists A~d:1
ϕ′,ε that satisfies the

postulated condition. Let A~dϕ,ε = A~d:1
ϕ′,ε.

Suppose that ϕ = Xϕ′. By the induction hypothesis, there existsA~dϕ′,ε = (P(AP), Q′, {q~dϕ′,ε}, δ′, F ′)
that satisfies the postulated condition. Then we define A~dϕ,ε = (P(AP), Q, {q~dϕ,ε}, δ, F) as
follows. Its state space Q is {q~dϕ,ε} ∪Q′. The transition function δ is

δ(q, σ) =
{
q
~d
ϕ′,ε if q = q

~d
ϕ,ε

δ′(q, σ) otherwise.

The acceptance function F is

F (q) =
{

0 if q = q
~d
ϕ,ε

F ′(q) otherwise.

Suppose that ϕ = ϕ1 U ϕ2 and that |~d| is odd. By the induction hypothesis, for each
of i ∈ {1, 2}, there exists A~dϕi,ε = (P(AP), Qi, {q

~d
ϕi,ε}, δi, Fi) that satisfies the postulated

condition. Then we define A~dϕ,ε = (P(AP), Q, {q~dϕ,ε}, δ, F) as follows. Its state space Q is
{q~dϕ,ε} ∪Q1 ∪Q2. The transition function δ is

δ(q, σ) =
{
δ2(q~dϕ2,ε, σ) ∨ (δ1(q~dϕ1,ε, σ) ∧ q~dϕ,ε) if q = q

~d
ϕ,ε

δi(q, σ) if q ∈ Qi.

The acceptance function F is

F (q) =
{

0 if q = q
~d
ϕ,ε

Fi(q) if q ∈ Qi.

Suppose that ϕ = ϕ1 U ϕ2 and that |~d| is even. By the induction hypothesis, for each
of i ∈ {1, 2}, there exists A~dϕi,ε = (P(AP), Qi, {q

~d
ϕi,ε}, δi, Fi) that satisfies the postulated

condition. Then we define A~dϕ,ε = (P(AP), Q, {q~dϕ,ε}, δ, F) as follows. Its state space Q is
{q~dϕ,ε} ∪Q1 ∪Q2. The transition function δ is

δ(q, σ) =
{
δ2(q~dϕ2,ε, σ) ∧ (δ1(q~dϕ1,ε, σ) ∨ q~dϕ,ε) if q = q

~d
ϕ,ε

δi(q, σ) if q ∈ Qi.

The acceptance function F is

F (q) =
{

1 if q = q
~d
ϕ,ε

Fi(q) if q ∈ Qi.

Suppose that ϕ = ϕ1 Uη+k ϕ2 and that |~d| is odd. Since limi→∞ η(i) = 0, there exists
a natural number kmax ∈ N such that η(kmax) ·

∏n
i=1 di ≤ ε (i.e. kmax is beyond the event

horizon). We construct A~dϕ,ε by induction on k backwards, that is, starting from k = kmax

S. Nakagawa and I. Hasuo 21

and decrementing k one by one until k = 0. If η(k) ·
∏n
i=1 di ≤ ε, we define A~dϕ,ε =

(P(AP), {q~dϕ,ε}, {q
~d
ϕ,ε}, δ, F) where δ(q~dϕ,ε, σ) = ~d� 0 and F (q~dϕ,ε) = 0. Otherwise, we define

A~dϕ,ε = (P(AP), Q, {q~dϕ,ε}, δ, F) as follows. By the induction hypothesis, for each of i ∈
{1, 2}, there exists A

~d�η(k)
ϕi,ε = (P(AP), Qi, {q

~d�η(k)
ϕi,ε }, δi, Fi) that satisfies the postulated

condition. Moreover, there exists A~dϕ1U
ηk+1ϕ2,ε

= (P(AP), Q3, {q
~d
ϕ1U

ηk+1ϕ2,ε
}, δ3, F3). We

define the state space Q of A~dϕ,ε by {q~dϕ,ε} ∪Q1 ∪Q2 ∪Q3. The transition function δ is

δ(q, σ) =

δ2(q
~d�η(k)
ϕ2,ε , σ) ∨ (δ1(q

~d�η(k)
ϕ1,ε , σ) ∧ q~dϕ1U

ηk+1ϕ2,ε
) if q = q

~d
ϕ,ε

δi(q, σ) if q ∈ Qi.

The acceptance function F is

F (q) =
{

0 if q = q
~d
ϕ,ε

Fi(q) if q ∈ Qi.

Suppose that ϕ = ϕ1 Uη+k ϕ2 and that |~d| is even. Similarly to the case where |~d|
is odd, we construct A~dϕ,ε by induction on k backwards. If η(k) ·

∏n
i=1 di ≤ ε, we define

A~dϕ,ε = (P(AP), {q~dϕ,ε}, {q
~d
ϕ,ε}, δ, F) where δ(q~dϕ,ε, σ) = ~d�η(k) and F (q~dϕ,ε) = 0. Otherwise,

we define A~dϕ,ε = (P(AP), Q, {q~dϕ,ε}, δ, F) as follows. By the induction hypothesis, for each of
i ∈ {1, 2}, there exists A

~d�η(k)
ϕi,ε = (P(AP), Qi, {q

~d�η(k)
ϕi,ε }, δi, Fi) that satisfies the postulated

condition. Moreover, there exists A~dϕ1U
ηk+1ϕ2,ε

= (P(AP), Q3, {q
~d
ϕ1U

ηk+1ϕ2,ε
}, δ3, F3). We

define the state space Q of A~dϕ,ε by {q~dϕ,ε} ∪Q1 ∪Q2 ∪Q3. The transition function δ is

δ(q, σ) =

δ2(q
~d�η(k)
ϕ2,ε , σ) ∧ (δ1(q

~d�η(k)
ϕ1,ε , σ) ∨ q~dϕ1U

ηk+1ϕ2,ε
) if q = q

~d
ϕ,ε

δi(q, σ) if q ∈ Qi.

The acceptance function F is

F (q) =
{

0 if q = q
~d
ϕ,ε

Fi(q) if q ∈ Qi.

Suppose that ϕ = f(ϕ1, . . . , ϕk) where f ∈ Fmc and that |~d| is odd. Since f is continuous
and its domain [0, 1]k is bounded and closed in the Euclidean space Rk, this function f is
uniformly continuous by the Heine–Cantor theorem. By the monotonicity and the uniform
continuity, there exists ε′ ∈ (0, 1) such that, for each x = (x1, . . . , xk) ∈ [0, 1]k,

f(x1 −̇ ε′, . . . , xk −̇ ε′) ≥ f(x)− ε/(d1 · d2 · · · · · dn) , (16)

where a−̇b is defined by max{a−b, 0}. By the induction hypothesis, there existA〈1〉ϕ1,ε′ , . . . ,A〈1〉ϕk,ε′

such that, for i ∈ {1, . . . , k},

Jπ, ϕiK− ε′ ≤ L(A〈1〉ϕi,ε′)(π) ≤ Jπ, ϕiK

for each π ∈ (P(AP))ω. Since |~d| is odd, the function g : [0, 1]k → [0, 1] defined by g(x) = ~d�
f(x) is monotone in x. Since the class of languages of alternating [0, 1]-acceptance automata
and that of [0, 1]-acceptance automata are the same by Prop. 3.4, the closure property in

22 Near-Optimal Scheduling for LTL with Future Discounting

Prop. 3.5 remains true even if [0, 1]-acceptance automata are replaced by alternating [0, 1]-
acceptance automata. Hence, there exists g(A〈1〉ϕ1,ε′ , . . . ,A〈1〉ϕk,ε′) defined in Prop. 3.5. By (16)
and the definition (7) of the operator �, we have

g(x1 −̇ ε′, . . . , x1 −̇ ε′) ≥ g(x)− ε = ~d� f(x)− ε .

Hence, if we define A~dϕ,ε by g(A〈1〉ϕ1,ε′ , . . . ,A〈1〉ϕk,ε′), it satisfies the postulated condition.
Suppose that ϕ = f(ϕ1, . . . , ϕk) where f ∈ Fmc and that |~d| is even. Let ~d′ =

d1d2 . . . dn−1 be a prefix of ~d. Then we have ~d � v = ~d′ � (1 − dn · v). We define a
function (dn · f)∗ : [0, 1]k → [0, 1] by (dn · f)∗(x1, . . . , xk) = 1 − dn · f(1 − x1, . . . , 1 − xk).
Let ϕ′ = (dn · f)∗(¬ϕ1, . . . ,¬ϕk). It is obvious that (dn · f)∗ ∈ Fmc. Moreover, we have
~d� Jπ, ϕK = ~d′ � Jπ, ϕ′K for each π ∈ (P(AP))ω, and ~d′ is odd. Therefore there exists A~d′

ϕ′,ε

because of the previous case (i.e. when |~d| is odd),2 and we take this as A~dϕ,ε. Then A~dϕ,ε
satisfies the postulated condition. J

Once Aϕ,ε is constructed, the procedure described in §4.1.3 works regardless of the
presence of propositional quality operators.

B Omitted Proofs

B.1 Proof of Prop. 3.4
Proof. We first describe the formal construction; intuitions follow shortly.

Without loss of generality, we can assume that a positive Boolean formula δ(q, a) is
a disjunctive normal form; therefore the transition function is of the type δ : Q × Σ →
P(P(Q ∪ [0, 1])). More concretely, for each q ∈ Q and a ∈ Σ, the formula δ(q, a) is a
disjunction of formulas of the form

(q1 ∧ · · · ∧ qk) ∧ (v1 ∧ · · · ∧ vl)

where qj ∈ Q and vj ∈ [0, 1] are atomic propositions (we changed their order suitably).
Moreover, since the conjunction v1 ∧ · · · ∧ vl is equivalent to a single atomic proposition
min{v1, . . . , vl}, we assume that any disjunct of the DNF formula δ(q, a) is of the form

(q1 ∧ · · · ∧ qk) ∧ v .

Let VQ = {F (q) | q ∈ Q} be the set of acceptance values that occur in A, and Vδ be
the set of values from [0, 1] (i.e. atomic propositions from [0, 1]) that occur in the transition
function δ, that is,

Vδ =
⋃

q∈Q,a∈Σ

{
v
∣∣ ((q1 ∧ · · · ∧ qk) ∧ v

)
∈ δ(q, a)

}
.

We define A′ = (Σ, Q′, I ′, δ′, F ′) as follows.

Q′ = P(Q× VQ)× Vδ × {ff, tt} ,
I ′ =

{ ({
(q0, F (q0))

}
, 1, ff

) ∣∣ q0 ∈ I
}
,

F ′(Y, v, b) =
{

min
{
v,min{v′ | ∃q ∈ Q. (q, v′) ∈ Y }

}
if b = tt

0 otherwise.

2 Recall that we are currently running two nested induction, with the outer one being with respect to
the number of propositional quality operators.

S. Nakagawa and I. Hasuo 23

The transition function δ′ is defined as follows. Let q̃ =
({

(q1, v1), . . . , (qn, vn)
}
, v, b

)
be a

state in Q′, and a ∈ Σ. Then δ′(q̃, a) is defined, in case b = ff, by:




(
q1
1 , max{v1, F (q1

1)}
)
, . . . ,

(
q1
l1
, max{v1, F (q1

l1
)}
)
,

...(
qn1 , max{vn, F (qn1)}

)
, . . . ,

(
qnln , max{vn, F (qnln)}

)
 ,

min{v, u1, . . . , un} ,
b′


∣∣∣ (

(qi1 ∧ · · · ∧ qili) ∧ u
i
)
∈ δ(qi, a) , b′ ∈ {tt, ff}

}
;

(17)

in case b = tt,




(
q1
1 , F (q1

1)
)
, . . . ,

(
q1
l1
, F (q1

l1
)
)
,

...(
qn1 , F (qn1)

)
, . . . ,

(
qnln , F (qnln)

)
 ,

min{v, u1, . . . , un} ,
b′



∣∣∣∣∣∣∣∣∣∣∣∣

(
(qi1 ∧ · · · ∧ qili) ∧ u

i
)

∈ δ(qi, a) ,

b′ ∈ {tt, ff}


. (18)

In each case (b = ff or tt), different a-successors of q̃ arise from: 1) different choices of a
disjunct of a DNF formula δ(qi, a), for i ∈ [0, n]; and 2) different choices of b′ (it can always
be chosen from tt and ff).

In the setting of [18] (that is Boolean instead of quantitative), the state space Q′ of the
nondeterministic automaton obtained as a translation of an alternating one is P(Q×{0, 1}).
Its quantitative adaptation P(Q × VQ) occurs as the first component of Q′ in our above
quantitative construction; the rest Vδ × {ff, tt} of Q′ is there for handling quantitative
acceptance.

It is not hard to see that A and A′ have the same language.3 For example, in a state
q̃ =

({
(q1, v1), . . . , (qn, vn)

}
, v, b

)
of A′:

The pair (qi, vi) is that of the current state and what we call the internally accumulated
acceptance value.
The set

{
(q1, v1), . . . , (qn, vn)

}
stands for the conjunction of these pairs.

The second component v ∈ [0, 1] of q̃ is for keeping track of: the values at the leaves of
the corresponding run tree, more precisely the smallest among such.
The flag b ∈ {ff, tt} is called an exposition flag: it determines if the internally accumu-
lated acceptance values v1, . . . , vn should be exposed or not. Note the definition of F ′:
the acceptance value of a state of A′ is nonzero only if the exposition flag b is tt.

Let us comment on the definition of the transition function δ′. Starting from q̃ =
({

(q1, v1), . . . , (qn, vn)
}
, v, b

)
—

in which the “current state” is the conjunction q1 ∧ q2 ∧ · · · ∧ qn—we choose one disjunct
qi1 ∧ · · · ∧ qili ∈ δ(q

i, a) for each qi and the “next state” is

(q1
1 ∧ · · · ∧ q1

l1) ∧ (q2
1 ∧ · · · ∧ q2

l2) ∧ · · · ∧ (qn1 ∧ · · · ∧ qnln) .

If the exposition flag b is ff then we keep accumulating the acceptance values that we have
seen since the last exposition, resulting in the occurrence of max in (17). If the flag is tt
then the internally accumulated acceptance values are “used” (see the definition of F ′), and

3 A more rigorous proof can be given via formulating an acceptance game for an alternating [0, 1]-
acceptance automaton.

24 Near-Optimal Scheduling for LTL with Future Discounting

these values must be “forgotten” so that we simulate a Büchi-like acceptance condition for
A. Therefore in (18), there are no v1, . . . , vn occurring and we have a fresh start. J

The state spaceQ′ ofA′ in the previous proof can actually be smaller: we can identify two
states (Y, v, b) and (Y ′, v, b) if min{v′ ∈ VQ | (q, v′) ∈ Y } = min{v′ ∈ VQ | (q, v′) ∈ Y ′} holds
for each q ∈ Q—this is the case for example when Y = {(q, 1

2), (q, 1)} and Y ′ = {(q, 1
2)}.

Therefore we only need states (Y, v, b) such that ∀(q, v), (q′, v′) ∈ Y. (q = q′ ⇒ v = v′), that
is, Y can be regarded as a partial function. Summarizing, we can reduce the state space
to (VQ ∪ {∗})Q × Vδ × {ff, tt}. The size of the first component is 2|Q|×log |VQ|, while it was
2|Q|×|VQ| before this optimization.

B.2 Proof of Prop. 3.5
The proof is an adaptation of that of Prop. 3.4. Here we combine the usual construction of
synchronous products of automata, with the idea of exposition flags.

Proof. Let Ai = (Σ, Qi, Ii, δi, Fi) for each i ∈ {1, . . . , k}. We define f(A1, . . . ,Ak) =
(Σ, Q, I, δ, F) as follows. Its state space Q is Q = (

∏
1≤i≤k(Qi × Vi))× {ff, tt} where Vi =

{0}∪{v ∈ [0, 1] | ∃q ∈ Qi. Fi(q) = v}. The set I of initial states is I = {((q1, 0), . . . , (qk, 0), ff) |
q1 ∈ I1, . . . , qk ∈ Ik}. The acceptance function is defined by

F
(
(q1, v1), . . . , (qk, vk), b

)
=
{
f(v1, . . . , vk) if b = tt

0 otherwise.
(19)

The transition function δ : Q×Σ→ P(Q) is defined as follows. Let q =
(
(q1, v1), . . . , (qk, vk), b

)
∈

Q, and a ∈ Σ.

δ(q, a) =



 ∏
1≤i≤k

{
(q′i, Fi(q′i))

∣∣ q′i ∈ δi(qi, a)
}× {ff, tt} if b = tt ∏

1≤i≤k

{
(q′i,max{vi, Fi(q′i)})

∣∣ q′i ∈ δi(qi, a)
}× {ff, tt} otherwise.

(20)

We shall prove that the automaton f(A1, . . . ,Ak) indeed satisfies the requirement. Recall
that, by definition, a [0, 1]-acceptance automaton has no dead ends. Let w ∈ Σω be an
infinite word.

On the one hand, it follows easily from the above definition (in particular (19)) that if
L(f(A1, . . . ,Ak))(w) = v, there exist v1, . . . , vk ∈ [0, 1] such that: f(v1, . . . , vk) = v, and
L(Ai)(w) ≥ vi for each i ∈ {1, . . . , k}. Hence the monotonicity of f yields L

(
f(A1, . . . ,Ak)

)
(w) ≤

f
(
L(A1)(w), . . . ,L(Ak)(w)

)
.

On the other hand, assuming that L(Ai)(w) = vi for each i ∈ {1, . . . , k}, it is not hard to
see that L

(
f(A1, . . . ,Ak)

)
(w) ≥ f(v1, . . . , vk) = f

(
L(A1)(w), . . . ,L(Ak)(w)

)
. Here the in-

tuition about the automaton f(A1, . . . ,Ak), and especially its state q =
(
(q1, v1), . . . , (qk, vk), b

)
∈

Q, is as follows.
The automaton f(A1, . . . ,Ak) is essentially a synchronous product of A1, . . . ,Ak; the
state qi ∈ Qi is the current state of the constituent automaton Ai.
Each constituent automaton Ai is additionally equipped with a register for storing “the
greatest acceptance value that is recently seen.” The value vi is the one stored in that
register.

S. Nakagawa and I. Hasuo 25

The flag b ∈ {ff, tt} decides if the stored acceptance value vi is “exposed” or not. See (19)
where the acceptance value of the composed automaton f(A1, . . . ,Ak) is nonzero only if
b = tt. Also observe that, in (20), the register vi is reset to the current acceptance value
Fi(q′i) when the register is exposed (i.e. b = tt).

Following this intuition, it is not hard to see that the claimed fact L
(
f(A1, . . . ,Ak)

)
(w) ≥

f(v1, . . . , vk) is witnessed by a run such that: it does not expose the register values before
all the registers acquire the values v1, . . . , vk; and once they have all done so, the register
values are exposed by setting b = tt.

From the above two inequalities, we conclude that L
(
f(A1, . . . ,Ak)

)
(w) = f

(
L(A1)(w), . . . ,L(Ak)(w)

)
.

J

B.3 Proof of Lem. 4.8
Proof. The state space Q = xcl(ϕ) × [0, 1]+ of Ap

ϕ,ε is infinite for three reasons: 1) the
extended closure xcl(ϕ) contains ϕ1 Uη+k ϕ2 for unbounded k ∈ N (see (5)); 2) discount
factors occurring in ~d ∈ [0, 1]+ are multiples of numbers from an infinite set {η(0), η(1), . . . };
and 3) the length of a discount sequence ~d ∈ [0, 1]+ is potentially unbounded.

We can easily see that the reason 3) is not a problem for us: in the construction of Ap
ϕ,ε

(Def. 4.7), the length of a discount sequence ~d grows only when we encounter negation (i.e.
in the definition of δ

(
(¬ψ, ~d), σ

)
). Therefore in a reachable state (ψ, ~d) of Ap

ϕ,ε, the length
of ~d is bounded by the number of negation operators occurring in ϕ.

To see that the reasons 1) and 2) are not problematic either, note that we obtain new
states for these reasons only in the clause (11) of the definition of δ

(
(ψ1 Uη ψ2, ~d), σ

)
. This

clause is applied only when η(0) ·
∏n
i=1 di > ε, a condition satisfied by only finitely many

reachable states of Ap:
The discount function η here is of the form η = (η′)+k, where η′ occurs in the original
formula ϕ and k ∈ N. Since a discounting function η′ tends to 0 (Def. 2.1), η(0) =
(η′)+k(0) = η′(k) tends to 0 as k →∞, too, making only finitely many k suitable.
Each discount factor dj in ~d is a multiple η1(k1)×· · ·×ηm(km), where ηi is a discounting
function occurring in ϕ and ki ∈ N. They must at least satisfy ηi(ki) > ε: since ηi
tends to 0, this allows only finitely many choices of ki, for each ηi. Furthermore, the
(necessary) condition that dj = η1(k1) × · · · × ηm(km) > ε bounds the length m of the
multiple, too.

J

B.4 Proof of Lem. 4.9
Proof. In what follows let Q denote the state space of Aϕ,ε; δ denote its transition func-
tion; and F denote its acceptance function. For each (ψ, ~d) ∈ Q, we define an alter-
nation [0, 1]-acceptance automaton A(ψ,~d)

ϕ,ε by changing the initial state to (ψ, ~d), that is,
A(ψ,~d)
ϕ,ε = (P(AP), Q, {(ψ, ~d)}, δ, F). Suppose that ~d = d1d2 . . . dn. We prove the following

more general statement, inductively on the construction of ψ:

~d� Jπ, ψK− ε ≤ L(A(ψ,~d)
ϕ,ε)(π) ≤ ~d� Jπ, ψK (21)

for each π ∈ (P(AP))ω.
The cases where ψ = True, p, ψ1∧ψ2, ¬ψ′ or Xψ′ are straightforward. Here we only prove

the case where ψ = ¬ψ′. By the definition of the automaton Aϕ,ε we have L(A(¬ψ′,~d)
ϕ,ε)(π) =

26 Near-Optimal Scheduling for LTL with Future Discounting

(ψ1 U ψ2, ~d)

δ((ψ1, ~d), π0)

(ψ1 U ψ2, ~d)

δ((ψ1, ~d), π1)

(ψ1 U ψ2, ~d)

δ((ψ1, ~d), π0)

(ψ1 U ψ2, ~d)

δ((ψ1, ~d), π1)
(ψ1 U ψ2, ~d)

δ((ψ2, ~d), πi)

Figure 3 Possible run trees from the state (ψ1 U ψ2, ~d) in Aϕ,ε, when |~d| is odd

L(A(ψ′,~d1)
ϕ,ε)(π), and the latter value lies in the interval

[
(~d1)� Jπ, ψ′K− ε, (~d1)� Jπ, ψ′K

]
by

the induction hypothesis. Now we obtain

(~d1)� Jπ, ψ′K = ~d� (1− Jπ, ψ′K) = ~d� Jπ,¬ψ′K ,

as required. Here the former equality is due to the definition of �; the latter is the semantics
of ¬ψ′.

Suppose ψ = ψ1 Uψ2; we first deal with the case when |~d| is odd. Let π ∈ (P(AP))ω. We
note that, since |~d| is odd, the function ~d� () : [0, 1] → [0, 1] is monotone and continuous
(see (7)). This is used in:

~d� Jπ, ψ1 U ψ2K = ~d� sup
i∈N

{
min

{
Jπi, ψ2K, min

0≤j≤i−1
Jπj , ψ1K

}}
= sup

i∈N

{
min

{
~d� Jπi, ψ2K, min

0≤j≤i−1

(
~d� Jπj , ψ1K

) } }
.

(22)

Now let us take a closer look at how the value L(A(ψ1Uψ2,~d)
ϕ,ε)(π) is defined for an alternating

[0, 1]-acceptance automaton A(ψ1Uψ2,~d)
ϕ,ε . As seen in Def. 3.3, the notions of run tree and path

are Boolean; a non-Boolean value arises for the first time as the “utility” F∞(ρ) of a path ρ
of a run tree. According to Def. 4.7 of Aϕ,ε (in particular the definition of δ

(
(ψ1 Uψ2, ~d), σ

)
),

any possible run tree τ from the state (ψ1 U ψ2, ~d) is of one of the following forms:
the second disjunct δ

(
(ψ1, ~d), σ

)
∧ (ψ1 U ψ2, ~d) is chosen all the way (Fig. 3, left), or

the first disjunct δ
(
(ψ2, ~d), σ

)
is eventually hit (Fig. 3, right).

In the former case, the utility minρ∈path(τ) F
∞(ρ) of such a run tree τ is given by min

{
F (ψ1U

ψ2, ~d), infj∈N L(A(ψ1,~d)
ϕ,ε)(πj)

}
, where the first value F (ψ1Uψ2, ~d) is induced by the rightmost

path in Fig. 3, left. We have F (ψ1 U ψ2, ~d) = 0 by definition (see (12)); therefore the utility
obtained in this case is 0.

In the latter case, assume that the second disjunct δ
(
(ψ2, ~d), σ

)
is hit at depth i. The

tree’s utility is then given by min
{
L(A(ψ2,~d)

ϕ,ε)(πi), min0≤j≤i−1 L(A(ψ1,~d)
ϕ,ε)(πj)

}
where, again,

the first value L(A(ψ2,~d)
ϕ,ε)(πi) arises from the rightmost path in Fig. 3, right.

S. Nakagawa and I. Hasuo 27

Putting all these together, we have

L(A(ψ1Uψ2,~d)
ϕ,ε)(π)

= sup
i∈N

(
min

{
L(A(ψ2,~d)

ϕ,ε)(πi), min
0≤j≤i−1

L(A(ψ1,~d)
ϕ,ε)(πj)

})
∈

[
supi∈N

(
min

{
~d� Jπi, ψ2K− ε, min0≤j≤i−1 ~d� Jπj , ψ1K− ε

})
,

supi∈N
(

min
{
~d� Jπi, ψ2K, min0≤j≤i−1 ~d� Jπj , ψ1K

})]
by the induction hypothesis

=
[
~d� Jπ, ψ1 U ψ2K− ε , ~d� Jπ, ψ1 U ψ2K

]
by (22),

as required.
Suppose that ψ = ψ1 U ψ2 and that |~d| is even. Let π ∈ (P(AP))ω. Since ~d � () is

antitone and continuous, the second equality below holds.

~d� Jπ, ψ1 U ψ2K = ~d� sup
i∈N

{
min

{
Jπi, ψ2K, min

0≤j≤i−1
Jπj , ψ1K

}}
by def. of Jπ, ψ1 U ψ2K

= inf
i∈N

{
max

{
~d� Jπi, ψ2K, max

0≤j≤i−1

(
~d� Jπj , ψ1K

) } }
.

(23)

We use the following observation. It is a quantitative adaptation of the classic duality
between the temporal operators U and R (“release”).

I Sublemma B.1. Let a0, a1, . . . and b0, b1, . . . all be real numbers in [0, 1]. We have

inf
i∈N

(
max{bi, max

0≤j≤i−1
aj}

)
=
{

sup
j∈N

(
min{aj , min

0≤i≤j
bi}
)
, inf
i∈N

bi

}
,

that is, denoting binary min and max by ∧ and ∨:

inf
i∈N

(
bi ∨ (a0 ∨ a1 ∨ · · · ∨ ai−1)

)
=
(

sup
j∈N

(
aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj)

))
∨ inf
i∈N

bi . (24)

Proof. (Of Sublem. B.1) We distinguish two cases. Let us first assume that there exists
i ∈ N such that bi < a0 ∨ a1 ∨ · · · ∨ ai−1. Let k be the least number among such, that is, k
satisfies that

bk < a0 ∨ a1 ∨ · · · ∨ ak−1 and ∀i ∈ [0, k − 1]. bi ≥ a0 ∨ a1 ∨ · · · ∨ ai−1 . (25)

Moreover, let l ∈ [0, k − 1] be a number such that al = a0 ∨ a1 ∨ · · · ∨ ak−1. We have

inf
i∈N

(
bi ∨ (a0 ∨ a1 ∨ · · · ∨ ai−1)

)
= b0 ∧ (b1 ∨ a0) ∧ (b2 ∨ a0 ∨ a1) ∧ · · ·

∧ (bk ∨ a0 ∨ · · · ∨ ak−1) ∧ inf
i≥k+1

(
bi ∨ (a0 ∨ a1 ∨ · · · ∨ ai−1)

)
= b0 ∧ b1 ∧ · · · ∧ bk−1 ∧ al ∧ inf

i≥k+1

(
bi ∨ (a0 ∨ a1 ∨ · · · ∨ ai−1)

)
by def. of k, (25).

Since we have al ≤ bi ∨ (a0 ∨ a1 ∨ · · · ∨ ai−1) for each i ∈ [k + 1,∞),

al ≤ inf
i≥k+1

(
bi ∨ (a0 ∨ a1 ∨ · · · ∨ ai−1)

)
and we obtain

inf
i∈N

(
bi ∨ (a0 ∨ a1 ∨ · · · ∨ ai−1)

)
= b0 ∧ b1 ∧ · · · ∧ bk−1 ∧ al . (26)

28 Near-Optimal Scheduling for LTL with Future Discounting

Now we compare the last value b0 ∧ b1 ∧ · · · ∧ bk−1 ∧ al with the right-hand side of our
goal (24). By the definition of k and l, for each j ∈ [0, k − 1], we have

aj ≤ a0 ∨ a1 ∨ · · · ∨ ak−1 = al and ∀i ∈ [j + 1, k− 1]. aj ≤ a0 ∨ a1 ∨ · · · ∨ ai−1 ≤ bi ,

yielding

aj ≤ al ∧ bj+1 ∧ bj+2 ∧ · · · ∧ bk−1 , and hence
aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj) ≤ b0 ∧ b1 ∧ · · · ∧ bj ∧ bj+1 ∧ · · · ∧ bk−1 ∧ al .

The last inequality holds for each j ∈ [k,∞), too:

aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj) ≤ b0 ∧ b1 ∧ · · · ∧ bk−1 ∧ bk
≤ b0 ∧ b1 ∧ · · · ∧ bk−1 ∧ (a0 ∨ a1 ∨ · · · ∨ ak−1)

by def. of k, (25)
= b0 ∧ b1 ∧ · · · ∧ bk−1 ∧ al by def. of l.

Consequently

sup
j∈N

(
aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj)

)
≤ b0 ∧ b1 ∧ · · · ∧ bk−1 ∧ al . (27)

We turn to the other part infi∈N bi of the right-hand side of (24). By the definition of k and
l, we have bk ≤ a0 ∨ a1 ∨ · · · ∨ ak−1 = al. Therefore

inf
i∈N

bi ≤ b0 ∧ b1 ∧ · · · ∧ bk−1 ∧ bk ≤ b0 ∧ b1 ∧ · · · ∧ bk−1 ∧ al . (28)

By (27) and (28),(
sup
j∈N

(
aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj)

))
∨ inf
i∈N

bi ≤ b0 ∧ b1 ∧ · · · ∧ bk−1 ∧ al , (29)

on the one hand. On the other hand, since l ∈ [0, k − 1],(
sup
j∈N

(
aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj)

))
∨ inf
i∈N

bi ≥ sup
j∈N

(
aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj)

)
≥ al ∧ (b0 ∧ b1 ∧ · · · ∧ bl)
≥ al ∧ (b0 ∧ b1 ∧ · · · ∧ bk−1) .

(30)

By (29) and (30),(
sup
j∈N

(
aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj)

))
∨ inf
i∈N

bi = b0 ∧ b1 ∧ · · · ∧ bk−1 ∧ al . (31)

By (26) and (31),

inf
i∈N

(
bi ∨ (a0 ∨ a1 ∨ · · · ∨ ai−1)

)
=
(

sup
j∈N

(
aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj)

))
∨ inf
i∈N

bi .

This establish the claim, in our first case where there exists i ∈ N such that bi < a0 ∨ a1 ∨
· · · ∨ ai−1.

In the other case we assume that bi ≥ a0 ∨ a1 ∨ · · · ∨ ai−1 for each i ∈ N. By this
assumption, bi ∨ (a0 ∨ a1 ∨ · · · ∨ ai−1) = bi for each i ∈ N. Therefore

inf
i∈N

(
bi ∨ (a0 ∨ a1 ∨ · · · ∨ ai−1)

)
= inf

i∈N
bi . (32)

S. Nakagawa and I. Hasuo 29

(ψ1 U ψ2, ~d)

δ((ψ2, ~d), π0)

(ψ1 U ψ2, ~d)

δ((ψ2, ~d), π1)

(ψ1 U ψ2, ~d)

δ((ψ2, ~d), π0)

(ψ1 U ψ2, ~d)

δ((ψ2, ~d), π1)

(ψ1 U ψ2, ~d)

δ((ψ2, ~d), πi) δ((ψ1, ~d), πi)

Figure 4 Possible run trees from the state (ψ1 Uψ2, ~d) in Aϕ,ε, when |~d| is even. The double-lined
nodes have the acceptance value 1.

Let us now fix j ∈ N. For each i ∈ [j + 1,∞) we have aj ≤ a0 ∨ a1 ∨ · · · ∨ ai−1 ≤ bi,
where the latter inequality holds because of the assumption. Therefore aj ≤ infi≥j+1 bi; this
is used in

aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj) ≤ (inf
i≥j+1

bi) ∧ (b0 ∧ b1 ∧ · · · ∧ bj) = inf
i∈N

bi .

This holds for any j ∈ N; therefore supj∈N
(
aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj)

)
≤ infi∈N bi. This yields(

supj∈N
(
aj ∧ (b0 ∧ b1 ∧ · · · ∧ bj)

))
∨ infi∈N bi = infi∈N bi, which is combined with (32) and

proves the claim (24). This concludes the proof of Sublem. B.1. J

We turn back to the proof of Lem. 4.9. By letting aj = ~d� Jπj , ψ1K and bi = ~d� Jπi, ψ2K
in Sublem. B.1, we obtain

inf
i∈N

(
max

{
~d� Jπi, ψ2K, max

0≤j≤i−1

(
~d� Jπj , ψ1K

) })
= max

{
sup
j∈N

(
min

{
~d� Jπj , ψ1K, min

0≤i≤j

(
~d� Jπi, ψ2K

) })
, inf
i∈N

(~d� Jπi, ψ2K)
}
.

(33)

By (23) and (33), we have

~d� Jπ, ψ1 U ψ2K

= max
{

sup
j∈N

{
min

{
~d� Jπj , ψ1K, min

0≤i≤j

(
~d� Jπi, ψ2K

) } }
, inf
i∈N

(~d� Jπi, ψ2K)
}
.

(34)

Let us now look at the value L(A(ψ1Uψ2,~d)
ϕ,ε)(π). We analyze possible run trees τ starting

from the state (ψ1 U ψ2, ~d), much like in the previous case where |~d| is odd (in the current
case it is even). It is easily seen from Def. 4.7 that τ is of one of the forms shown in Fig. 4.

If τ is of the form in Fig. 4 on the left, its utility minρ∈path(τ) F
∞(ρ) is infj∈N L(A(ψ2,~d)

ϕ,ε)(πj);
note that the rightmost path’s value of F∞ is 1 and hence does not appear here.

30 Near-Optimal Scheduling for LTL with Future Discounting

If τ is of the form in Fig. 4 on the right, its utility minρ∈path(τ) F
∞(ρ) is given by

min
{
L(A(ψ1,~d)

ϕ,ε)(πi), min0≤j≤i L(A(ψ2,~d)
ϕ,ε)(πj)

}
where i is the depth of the last occur-

rence of the node (ψ1 U ψ2, ~d).
The value L(A(ψ1Uψ2,~d)

ϕ,ε)(π) is defined as the supremum of these utilities. Therefore:

L(A(ψ1Uψ2,~d)
ϕ,ε)(π)

= max
{

sup
i∈N

(
min

{
L(A(ψ1,~d)

ϕ,ε)(πi), max
0≤j≤i

L(A(ψ2,~d)
ϕ,ε)(πj)

})
, inf
j∈N
L(A(ψ2,~d)

ϕ,ε)(πj)
}

∈

 max
{

sup
j∈N

(
min

{
~d� Jπj , ψ1K, min

0≤i≤j
~d� Jπi, ψ2K

})
, inf
i∈N

~d� Jπi, ψ2K
}
− ε ,

max
{

sup
j∈N

(
min

{
~d� Jπj , ψ1K, min

0≤i≤j
~d� Jπi, ψ2K

})
, inf
i∈N

~d� Jπi, ψ2K
}


by the induction hypothesis

=
[
~d� Jπ, ψ1 U ψ2K− ε , ~d� Jπ, ψ1 U ψ2K

]
by (34),

concluding the case when ψ = ψ1 U ψ2 and |~d| is even.
Suppose that ψ = ψ1 Uη+k ψ2 and that |~d| is odd. We prove the claim by induction

on k, going backwards, decrementing k starting from the event horizon towards k = 0. As
the base case, assume that k is big enough and we are beyond the event horizon, that is,
η(k) ·

∏n
i=1 di ≤ ε. Let π ∈ (P(AP))ω and ~d = d1 . . . dn. Then we have Jπ, ψK ·

∏n
i=0 di =

Jπ, ψ1 Uη+k ψ2K ·
∏n
i=0 di ≤ ε, by Lem. 2.6 and that η+k(0) = η(k). It follows from (7) that

we have 0 ≤ ~d� Jπ, ψK− ~d� 0 ≤ ε (note that n = |~d| is odd). Therefore

L(A
(ψ1U

η+kψ2,~d)
ϕ,ε)(π) = ~d� 0 by (10)

∈
[
~d� Jπ, ψK− ε, ~d� Jπ, ψK

]
.

Now, as the step case, assume that η(k) ·
∏n
i=1 di > ε and that the claim has been shown

for k + 1. The analogue below of ψ1 U ψ2 ∼= ψ2 ∨
(
ψ1 ∧ X(ψ1 U ψ2)

)
follows easily from

Def. 2.5:

Jπ, ψ1 Uη+k ψ2K = max
{
η+k(0) · Jπ, ψ2K, min

{
η+k(0) · Jπ, ψ1K, Jπ1, ψ1 Uη+(k+1) ψ2K

}}
.

Therefore

~d� Jπ, ψ1 Uη+k ψ2K

= max
{
~d�

(
η+k(0) · Jπ, ψ2K

)
,

min
{
~d�

(
η+k(0) · Jπ, ψ1K

)
, ~d� Jπ1, ψ1 Uη+(k+1) ψ2K

}}
= max

{ (
~d� η+k(0)

)
� Jπ, ψ2K,

min
{ (

~d� η+k(0)
)
� Jπ, ψ1K, ~d� Jπ1, ψ1 Uη+(k+1) ψ2K

}}
,

(35)

where the first equality is due to the monotonicity of ~d� (), and the second is by (8). Now

L(A
(ψ1U

η+kψ2,~d)
ϕ,ε)(π)

= max
{
L(A(ψ2,~d�η+k(0))

ϕ,ε)(π), min
{
L(A(ψ1,~d�η+k(0))

ϕ,ε)(π), L(A
(ψ1U

η+(k+1)ψ2,~d)
ϕ,ε)(π1)

}}
by Def. 4.7. By the induction hypothesis (the claim has been shown for simpler formulas as

S. Nakagawa and I. Hasuo 31

well as ψ1 Uη+(k+1) ψ2), a lower bound of the above value is given by

max
{((

~d� η+k(0)
)
� Jπ, ψ2K

)
− ε,

min
{((

~d� η+k(0)
)
� Jπ, ψ1K

)
− ε,

(
~d� Jπ1, ψ1 Uη+(k+1) ψ2K

)
− ε

}}
= ~d� Jπ, ψ1 Uη+k ψ2K− ε by (35).

Similarly an upper bound ~d�Jπ, ψ1Uη+kψ2K is obtained by the induction hypothesis and (35).
This proves the claim.

The remaining case where ψ = ψ1 Uη+k ψ2 and |~d| is even is similar to the last case. We
describe only the base case of induction, where k is big enough so that η(k) ·

∏n
i=1 di ≤ ε.

By Lem. 2.6 we have Jπ, ψK ∈ [0, ηk(0)]; therefore

0 ≤ η(k)− Jπ, ψK ≤ η(k) ≤ ε/
∏n
i=1 di .

By (7) and that n is even, we have

~d� Jπ, ψK− ~d� η(k) =
(n∏
i=1

di
)
·
(
η(k)− Jπ, ψK

)
∈ [0, ε] .

Hence

L(A
(ψ1U

η+kψ2,~d)
ϕ,ε)(π) = ~d� η(k) by (10)

∈
[
~d� Jπ, ψK− ε, ~d� Jπ, ψK

]
.

This concludes the proof. J

B.5 Proof of Lem. 4.12
Proof. It follows easily from the definition that there is a bijective correspondence between:
a run ζ = (q′0, s′0) • (q′1, s′1) • . . . of A×K; and a pair (ξ, ρ) of a path ξ = s′0s

′
1 . . . ∈ path(K)

of K and a run ρ over λ(ξ) of A. Moreover, the acceptance value of ζ in A×K is equal to
that of ρ in A. The claim follows immediately. J

B.6 Proof of Thm. 4.13
Proof.

Js0s1 . . . , ϕK ≥ L(Ana
ϕ,ε)
(
λ(s0)λ(s1) . . .

)
by Cor. 4.10

= max
ξ∈path(K)

L(Ana
ϕ,ε)
(
λ(ξ)

)
by Lem. 4.12

≥ sup
ξ∈path(K)

Jξ, ϕK− ε by Cor. 4.10.

The solution s0s1 . . . thus obtained arises from a lasso computation of Ana
ϕ,ε × K (by the

algorithm in Lem. 3.2), hence is ultimately periodic. J

B.7 Proof of Prop. 4.15
Proof. In the proof of Lem. A.1, we construct A~dϕ,ε inductively. We shall therefore prove,
inductively on the construction on ϕ, that the size of the state space of A~dϕ,ε is singly
exponential in |〈ϕ〉| and in the length of the description of ε.

32 Near-Optimal Scheduling for LTL with Future Discounting

In the case where ϕ = True, p, ϕ1 ∧ ϕ2,¬ϕ′,Xϕ′ or ϕ1 U ϕ2, the claim is obvious.
Suppose that ϕ = ϕ1 Uexp+k

λ
ϕ2 where λ ∈ (0, 1). Let kmax = dlogλ εe + 1. Recall that

the construction of A~dϕ1U
exp+k

λ

ϕ2,ε
in Lem. A.1 is by backward induction on k, from k = kmax

to k = 0. In the base case when k = kmax, we have exp+k
λ (0) ≤ ε (beyond the event

horizon); in this case the size of the state space of A~dϕ,ε is one. In the step case, the state
space of A~dϕ1U

exp+k
λ

ϕ2,ε
is the union of: those of the two automata for ϕ1 and ϕ2; that of

the automaton A~dϕ1U
exp+(k+1)

λ

ϕ2,ε
; and the singleton of the initial state of A~dϕ,ε. Overall, the

state space of A~dϕ1U
exp+k

λ

ϕ2,ε
increases as k decreases, and the maximum is when k = 0—in

which case the state space of A~dϕ1Uexpλϕ2,ε
is roughly O(kmax) = O(dlogλ εe + 1) copies of

those of the two automata for ϕ1 and ϕ2. Now we appeal to the fact used in [3] that the
value kmax ∼ logλ ε = log ε/ log λ is polynomial in the length of the description of λ—hence
in |〈ϕ〉|—and ε.4 By this fact and the induction hypothesis, the size of the state space of
A~dϕ,ε is singly exponential in |〈ϕ〉| and in the length of the description of ε.

Suppose that ϕ = ϕ1 ⊕ ϕ2. Since (~d � v1 − ε) ⊕ (~d � v2 − ε) = ~d � (v1 ⊕ v2) − ε, we
have A~dϕ,ε coincide with A~dϕ1,ε ⊕ A

~d
ϕ2,ε—where the latter is defined in Prop. 3.5. (We note

that the construction in Prop. 3.5 can be readily adapted to alternating [0, 1]-acceptance
automata, too.) Hence the size of the state space of A~dϕ,ε is polynomial in those of A~dϕ1,ε and
A~dϕ2,ε. By the induction hypothesis, the size of the state space of A~dϕ,ε is singly exponential
in |〈ϕ〉| and in the length of the description of ε. J

B.8 Proof of Thm. 4.16
Proof. The construction in Prop. 3.4 (fromAϕ,ε toAna

ϕ,ε) results inAna
ϕ,ε that is exponentially

bigger than Aϕ,ε; the size of the product Ana
ϕ,ε ×K (Def. 4.11) is linear in those of Ana

ϕ,ε and
K; and finding an optimal run by Lem. 3.2 is in NLOGSPACE. Combined with Prop. 4.15,
the overall complexity is EXPSPACE in |〈ϕ〉| and NLOGSPACE in the size of K. J

B.9 Proof of Thm. 4.17
Firstly we give an alternative proof to the following statement (that is a restriction of
Prop. 4.15). It is used in the proof of Thm. 4.17.

I Sublemma B.2 (size of Aϕ,ε, for LTLdisc[Dexp, ∅]). Let ϕ be an LTLdisc[Dexp, ∅] formula
and ε ∈ (0, 1) ∩Q be a positive rational number. The size of the state space of the alternat-
ing [0, 1]-acceptance automaton Aϕ,ε is singly exponential in |〈ϕ〉| and in the length of the
description of ε. J

Proof. (Of Sublem. B.2) Recall that a state of Aϕ,ε is a pair (ψ, ~d) of ψ ∈ xcl(ϕ) and
~d ∈ [0, 1]+. We first claim that the number of different ψ’s is polynomial in |〈ϕ〉| and log ε.
The claim is obvious except for the number of the formulas ψ of the form ψ1 Uη+i ψ2, for
varying i ∈ N. Let λ0 be the maximum number in ϕ used as the base of an exponential

4 It is not explicit in [3] what is meant by the description length of λ ∈ (0, 1). For the claimed fact
to be true—that logλ ε = log ε/ log λ is polynomial in the length of the description of λ—we expect
it to be a + b where λ = a/b. For example, when λ = 1 − 1

b , we have logλ ε = log ε
logλ = log ε

log(1− 1
b

) =
− log ε

log b−log(b−1) ≤ b · (− log ε) where for the last inequality we used (log x)′ = 1
x . This is linear in b.

S. Nakagawa and I. Hasuo 33

discounting function. For each subformula ψ1 Uη ψ2 of ϕ, the numbers i for which we have
a state

(
ψ1 Uη+i ψ2, ~d

)
in Aϕ,ε is bounded by 1 + dlogλ0 εe. Now we appeal to the fact used

in [3] that the value logλ0 ε = log ε/ log λ0 is polynomial in the length of the description of
λ0—hence in |〈ϕ〉|—and ε.

Our second claim is that the number of different ~d’s occurring in states of Aϕ,ε is expo-
nential in |〈ϕ〉| and the description length of ε, hence is the bottleneck in complexity. The
length of a discount sequence ~d is bounded by the number of negations in ϕ, therefore by
|〈ϕ〉|. Each entry di is a multiple λi1λi2 . . . λim of different discounting bases λj (there are
at most |〈ϕ〉|-many such), and since its value must be bigger than ε, the length m of such
a multiple is at most logλ0 ε. Therefore the number of candidates for di = λi1λi2 . . . λim is
bounded by |〈ϕ〉|logλ0 ε; appealing to the fact (see [3]) that logλ ε = log ε/ log λ is polynomial
in the length of the description of λ and ε, we obtain the claim. J

Proof. (Of Thm. 4.17, sketch) We describe how to avoid the exponential blowup in the
translation from Aϕ,ε to Ana

ϕ,ε.
Looking at the construction of Prop. 3.4 in case of A = Aϕ,ε, we have VQ = {0, 1},

therefore

Q′ = P(Q× 2)× Vδ × 2 ∼=
(
P(Q)

)2 × Vδ × 2 . (36)

Here the original state space Q is bounded by xclε(ϕ)× |〈ϕ〉|logλ0 ε, where

xclε(ϕ) = xcl(ϕ) \ {ϕ1 Uη ϕ2 ∈ xcl(ϕ) | η(0) < ε}

is a finite set and the second component |〈ϕ〉|logλ0 ε is from the proof of Prop. B.2.
The optimization lies in the reduction of P(Q) that occurs in (36) to(
(Q×Q2 ×Q2) ∪ {•}

)xclε(ϕ)
, (37)

hence from a double exponential to a single exponential; recall from the proof of Prop. B.2
that Q is exponential and xclε(ϕ) is polynomial, in |〈ϕ〉| and the description length of ε.

The reduction is done concretely as follows. Given a set{
(ψ, ~d1), (ψ, ~d2), . . . , (ψ, ~dm)

}
(38)

of states of Q with a common first component ψ, we suppress the set into the function

(~d1 ∧ · · · ∧ ~dm)� () : v 7−→ min{ ~d1 � v, · · · , ~dm � v} (39)

that does the same job. The latter is a piecewise linear function on [0, 1] and hence is
presented as a disjunction of pairs (fi, [li, ri]) of a linear function fi and its domain (here
li, ri ∈ (0, 1)). Now fi is represented by some discount sequence so there are at most |Q|-
many of them. A point li ∈ [0, 1] is expressed as the cross point of two linear functions,
each represented by a discount sequence. The same goes for ri. Moreover, disjunction is
taken out of a single state in the resulting automaton—from alternating to non-alternating
we only need to bundle up states in conjunction. In summary, to express the piecewise
linear function in (39) we need: Q to represent fi; Q2 to represent li; and Q2 to represent
ri, resulting in Q×Q2 ×Q2 in (37).

We consider all those sets in the form of (38), therefore we need Q × Q2 × Q2 for each
formula ψ ∈ xclε(ϕ). The set {•} is in (37) to take care of the case when the set (38) for
the formula ψ is empty. J

34 Near-Optimal Scheduling for LTL with Future Discounting

C Reduction of Fuzzy Automata to [0, 1]-Acceptance Automata

A generalization of [0, 1]-acceptance automaton is naturally obtained by making transitions
also [0, 1]-weighted. The result is called fuzzy automaton and studied e.g. in [20]. Here we
show that this generalization does not add expressivity. In fact we prove a more general
result, parametrizing [0, 1] into a general semiring K (under certain conditions).

We follow [13] and impose certain conditions on a semiring K of weights.

I Definition C.1 ([13]). A tuple K = (K,≤,+, ·, 0, 1) is called an ordered semiring if
(K,+, ·, 0, 1) is a semiring, (K,≤) is a partially ordered set and both + and · are monotonic.

An ordered semiring K = (K,≤,+, ·, 0, 1) is said to be lattice-complete if: (K,≤) is a
complete lattice; the units 0, 1 of +, · satisfy 0 ≤ x ≤ 1 for each x ∈ K; and

y + sup
i∈I

xi = sup
i∈I

(y + xi)

for each family (xi)i∈I and each y ∈ K. We define an infinite sum, as usual, by∑
i∈I

xi = sup
F∈Pfin(I)

∑
i∈F

xi

where Pfin(I) is the set of finite subsets of I.
A semiring is locally finite if the underlying monoid (K, ·, 1) is locally finite, that is: for

each finite subset F ⊆ K, the submonoid of (K, ·, 1) generated by F is finite.

The notion of K-weighted (Büchi) automaton is studied in [13], from which the following
definition is taken.

I Definition C.2 (K-acceptance (Büchi) automaton, K-weighted (Büchi) automaton). Let
(K,≤,+, ·, 0, 1) be a lattice-complete semiring. A K-acceptance (Büchi) automaton is a
tuple A = (Σ, Q, I, δ, F), where Σ is a finite alphabet, Q is a finite set of states, I ⊆ Q is a
set of initial states, δ : Q×Σ→ P(Q) is a transition function and F : Q→ K is a function
that assigns an acceptance value to each state. We define the language L(A) : Σω → K of
A as

L(A)(w) =
∑

ρ∈run(w)

max{F (q) | q ∈ Inf(ρ)} .

A K-weighted (Büchi) automaton is a tuple A = (Σ, Q, I, δ, F), where Σ is a finite
alphabet, Q is a finite set of states, I : Q→ K is a function assigns an initial weight to each
state, δ : Q × Σ → KQ is a (K-weighted) transition function and F : Q → K is a function
assigns an acceptance value to each state. We define the language L(A) : Σω → K of A by

L(A)(w) =
∑

q0q1...∈Qω
inf
n∈N

sup
i≥n

(
I(q0) · δ(q0, w0)(q1) · · · · · δ(qi−1, wi−1)(qi) · F (qi)

)
.

These notions specialize to [0, 1]-acceptance automaton and fuzzy automaton [20] by
taking the fuzzy semiring ([0, 1],max,min, 0, 1) as K in the above definitions.

Locally finiteness of a semiring [13] is central in the following result. Its proof is not hard
but the result is not explicit in [13] or elsewhere.

I Lemma C.3. Let K = (K,≤,+, ·, 0, 1) be a lattice-complete semiring and A = (Σ, Q, I, δ, F)
be a K-weighted automaton. If K is locally finite (Def. C.1), there exists a K-acceptance au-
tomaton A′ = (Σ, Q′, I ′, δ′, F ′) such that L(A) = L(A′).

S. Nakagawa and I. Hasuo 35

Proof. Let (F, ·, 1) be the submonoid of (K, ·, 1) generated by the (finite) set of weights of
transitions occurring in A, that is, {δ(q, a)(q′) | q, q′ ∈ Q, a ∈ Σ}. The set F is finite since
K is locally finite. We now define A′ = (Σ, Q′, I ′, δ′, F ′) as follows.

Q′ = Q× F , I ′ = I × {1} ,
δ′
(

(q, k), a
)

=
{ (

q′, k · δ(q, a)(q′)
) ∣∣ q′ ∈ Q } , F ′(q, k) = k · F (q) .

The proof of L(A) = L(A′) is straightforward. J

It is straightforward that the fuzzy semiring ([0, 1],max,min, 0, 1) is locally finite. This
leads to:

I Corollary C.4. Let A be a fuzzy automaton. There exists a [0, 1]-acceptance automaton
A′ such that L(A) = L(A′). J

The main results of [13, 20] concern the characterization of so-called ω-rational for-
mal power series over K—those which are generated by ω-regular-like expressions—by
K-weighted Büchi automata. Lem. C.3 therefore gives us another characterization by K-
acceptance Büchi automata.

	1 Introduction
	2 The Logic LTLdisc[D,F], and Its Threshold Problems
	3 [0,1]-Acceptance Büchi Automata
	4 Near-Optimal Scheduling for LTLdisc[D,Fmc]
	4.1 Our Algorithm, When Restricted to LTLdisc[D,]
	4.1.1 Discounting Sequences
	4.1.2 Construction of A,
	4.1.3 The Algorithm

	4.2 Our General Algorithm for LTLdisc[D,Fmc]
	4.3 Complexity

	5 Experiments
	6 Conclusions and Future Work
	A Our General Algorithm for LTLdisc[D,Fmc], Further Details
	B Omitted Proofs
	B.1 Proof of Prop. 3.4
	B.2 Proof of Prop. 3.5
	B.3 Proof of Lem. 4.8
	B.4 Proof of Lem. 4.9
	B.5 Proof of Lem. 4.12
	B.6 Proof of Thm. 4.13
	B.7 Proof of Prop. 4.15
	B.8 Proof of Thm. 4.16
	B.9 Proof of Thm. 4.17

	C Reduction of Fuzzy Automata to [0,1]-Acceptance Automata

