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Abstract. Application size and complexity are the underlying cause of nu-
merous security vulnerabilities in code. In order to mitigate the risks arising
from such vulnerabilities, various techniques have been proposed to isolate the
execution of sensitive code from the rest of the application and from other soft-
ware on the platform (e.g. the operating system). However, even with these
partitioning techniques, it is not immediately clear exactly how they can and
should be used to partition applications. What overall partitioning scheme
should be followed; what granularity of the partitions should be. To some ex-
tent, this is dependent on the capabilities and performance of the partitioning
technology in use. For this work, we focus on the upcoming Intel Software
Guard Extensions (SGX) technology as the state-of-the-art in this field. SGX
provides a trusted execution environment, called an enclave, that protects the
integrity of the code and the confidentiality of the data inside it from other
software, including the operating system. We present a novel framework con-
sisting of four possible schemes under which an application can be partitioned.
These schemes range from coarse-grained partitioning, in which the full appli-
cation is included in a single enclave, through ultra-fine partitioning, in which
each application secret is protected in an individual enclave. We explain the
specific security benefits provided by each of the partitioning schemes and dis-
cuss how the performance of the application would be affected. To compare
the different partitioning schemes, we have partitioned OpenSSL using four
different schemes. We discuss SGX properties together with the implications
of our design choices in this paper.

1 Introduction

Applications have grown tremendously in functionality and size. This growth in sen-
sitive applications and libraries such as Apache and OpenSSL has long ago surpassed
the feasible limit for assurance techniques such as formal verification to verify the
correctness of the code, and numerous factors have rendered manual review equally
insufficient for that task. Accompanying the growth of the code in these applications,
more classes of vulnerabilities have been identified, such as stealing secrets and mod-
ifying sensitive code [1] [2]. An example that demonstrates this was the HeartBleed
bug in the OpenSSL library where an attacker was able to obtain sensitive informa-
tion including user names and passwords, credentials, and sensitive keys from remote
servers [3].

Much research has considered the design of systems based on well-known operating
systems and hardware components to protect sensitive code. Many of these systems
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leverage virtualisation and trusted computing to isolate the execution of the entire
application [4–12]. However, many applications have thousands lines of code which
makes it hard to gain assurance that no vulnerability exists in the code. Moreover,
when virtualisation is used to provide isolation between different executions, there are
many trust assumptions that make these systems limited in their security properties.
For example, the Virtual Machine Monitor (VMM) or the code providing isolation
needs to be trusted, loading the Trusted Computing Base (TCB) with thousands lines
of code. The TCB is defined by the size of code that runs inside the same environment
such as an isolated environment. The isolation of a software partition protects the
data and the execution from external code, e.g. the OS and applications running in
the same system. It follows that software partitioning of the application into several
trusted partitions and untrusted partition, is expected to produce smaller partitions
of code when considering the whole application as one partition. The latter, when
partitioning to smaller chunks is feasible, may allow to formally verify the partition,
which is protected by an isolated environment from external code and vulnerabilities
such as vulnerabilities in other partitions of the same application.

Other systems [13–20] provide isolation for the execution of a sensitive code with-
out defining the portion of the application running on the trusted space, the granu-
larity of these approaches to port sensitive code, or the feasibility to port small code
such as merely few methods of an existing library. For instance, the TrustVisor [14]
authors appreciate the complexity of porting security sensitive code in trusted envi-
ronment. Porting security sensitive code is straightforward if the program is privilege-
separated and modular. However, it is a greatest challenge in complex applications
such as Apache + OpenSSL [14].

To overcome the above mentioned shortcomings, processor extensions have been
proposed in several pieces of research [21, 22] to protect software execution and re-
duce the TCB. Protecting the code execution of the TCB is achieved with Trusted

Execution Environment (TEE) in hardware, which prevents external software from
tampering with the execution, or modifying an existing code/data. Intel has also pro-
posed security extensions to Intel Architecture called Intel Software Guard Extensions
(Intel SGX) [23],extensions that enable provisioning of sensitive data within applica-
tions. These extensions allow an application to instantiate a protected container to
ensure the confidentiality and integrity of the data even in the presence of malware,
while also relying on hardware to prevent external access to the container’s memory
area. The protected container protects the inner code/data from external software,
even privileged one, and is referred to as an enclave.

Generally, the code and data are freely available for inspection and analysis prior
to loading them into the enclave. Once loaded into the enclave and measured, they
become protected against external software access. In order to store data outside the
enclave’s boundary, e.g. on the disk, the application can request from the enclave to
seal the data beforehand. Furthermore, the platform key, which is used to encrypt the
data, ties the data to the platform and can be used to report platform identity to re-
mote parties. Overall, these capabilities extend the ability of enterprises and personnel
to design secure applications by relying strongly on hardware instead of traditional
software techniques. The aforementioned hardware provides another layer of protec-
tion against exploits of vulnerabilities missed by the tools verifying the correctness of
the code or in manual reviews.
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However, even though many technologies are available, it is not necessarily obvious
exactly how they can and should be used to partition applications. For some simple
cases, the choice of partitioning scheme might indeed be obvious, but as applications
increase in size and complexity, the number of possible partitioning schemes increases
and the choice of the optimal approach becomes a very important non-trivial con-
sideration. From a technical perspective, partitioning schemes vary in terms of the
security guarantees they provide and their impact on the performance of the applica-
tion. The choice of partitioning scheme has also other indirect implications, such as
the effort for the application developers or software maintainers, but these are beyond
the scope of this paper.

In this paper we investigate different software partitioning schemes using protected
container, a TEE, to protect secrets from vulnerabilities in applications. Each scheme
defines a different TCB size in each partition, which has immediate consequences on
the economics of the TCB assurance process, in particular, its relation to the number
of undetected vulnerabilities.

As a rule, we isolate software partitions as defined in each scheme, and use an
enclave to protect its execution and data from access by untrusted code. Previous
research [23]addressed the threat model and components of SGX; our paper explores
the use of hardware primitives, such as those offered by SGX, to provide secure design
of applications through partitioning to keep the confidentiality and integrity of ap-
plication’s data. We implement two of the four partitioning schemes using SGX and
test their ability to protect the system against an exploit of the HeartBleed bug.

Our main contributions are:

– Proposing framework for different software partitioning schemes of an application.
– Investigation of different software-partitioning schemes using SGX, with an em-

pirical focus.
– Proposing and investigating an evaluation matrix for partitioning schemes.

The paper is divided into seven sections. Section 2 provides a brief background on
SGX and some of its instructions and features. Section 3 discusses the rationale of
this paper, objectives, and adversary model. In section 4 we demonstrate the rationale
behind software partitioning and several partitioning schemes. Section 5 presents a
real-world case study partitioned based on our proposed schemes, with security and
efficiency evaluation of each scheme. Section 6 discusses related work, and finally
section 7 concludes the paper.

2 Background

2.1 Isolation Mechanisms

In this section we list different mechanisms used for isolation, and briefly list examples
of systems that make use of such mechanisms.

2.1.1 Software-Enforced Isolation

There are several ways to create separation between partitions. The most common
approach used in software is using privileged code such as an OS or Virtual Machine
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Monitor(VMM) that enforces access control semantics [14]. A VMM will typically
use hardware assistance for virtualisation, however the access control is enforced by
software using meta-data of a memory address table. In contemporary operating sys-
tems the OS enforces access control between processes. Each process has its own code
and data in memory, and the OS prevents one process from accessing another process
space, that includes memory addresses and code.

2.1.2 Hardware-Enforced Isolation

In order to isolate a partition from the rest of the system, hardware primitives have
been proposed to provide TEE [13, 21]. The TEE isolates the code execution from
the rest of the system in hardware and enforces memory access semantics between
the code running in the TEE. We refer to the code in the TEE as trusted code, and
the code of the rest of the system as untrusted code. Arm TZ allows switching to a
TEE from the untrusted space on TEE instruction invocation: the hardware moves
the processor to TEE mode where data and code are separated from the rest of the
system.

2.2 Software Guard Extensions (SGX)

An overview of the SGX protection model [24] was given by Mckeen et al. In their
paper they present the core of this technology, the extensions that enable instantiating
a protected container, describe the SGX instruction set, security model, threat model,
and the hardware component on which this technology is based. In this section we
give the background on SGX and its protection capabilities that is relevant to this
work.

– Enclave - Intel SGX provides hardware features that creates a form of user-level
TEE. The enclave is an isolated region of code and data within an application’s
address space. Data within an enclave can be accessed only with code within the
same enclave. The enclave is able to protect its data using Enclave Page Cache
(EPC); a secure storage used by the processor to store pages when they are part
of an executing enclave. The EPC is built from chunks of 4KB pages; aligned on a
4KB boundary and each page has security attributes in the Enclave Page Cache
Map (EPCM), an internal micro-architecture structure that is not accessible by
software. It tracks the content of each EPC page, and enforces access control for
accessing the pages.

– Measurement - a cryptographic hash of the code and data residing in an enclave
at the time of initialisation. The measurement is used to verify that the loaded
enclave is what the enclave claims it is.

2.2.1 SGX Enclave Instructions and Protection Rings

The enclave instructions available with SGX are divided under two protection rings;
ring 0 and ring 3 [25]. The allowed set of instructions is determined according to
the privilege level of the executing software. For the most part, ring 0 instructions;
ECREATE, EADD, and EINIT are used for EPC management thus executed by
privileged software such as OS and VMM. While ring 3 instructions e.g. EENTER,
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EEXIT, EGETKEY, EREPORT, and ERESUME are used by the user-space software
to execute functionality within or between enclaves.

2.2.2 Enclave Life Cycle

In order to provide strong security features, managing an enclave is done in hardware
through enclave build instructions. To create an enclave, ECREATE instruction is
used. It builds the enclave and sets base and range addresses. Once an enclave is
created, EADD is used to add 4KB protected pages of data and code. This is followed
by measuring the enclave’s content using EEXTEND to protect the integrity of the
data within the enclave. To elaborate on the latter, adding and measuring the enclave’s
pages are done by software prior to EINIT instruction. Once called, it finalises the
measurement of the enclave and establishes an enclave identity. Executing within an
enclave prior to this instruction is not allowed. On success of EINIT, entry to the
enclave is enabled and permitted to run on the processor in privileged mode called
enclave mode.

In order to enter and exit the enclave under program control, EENTER and
EEXIT are used respectively. On enclave entry, the cached addresses are flushed,
including addresses that overlap with the addresses used by the enclave to ensure
the protection of the memory accesses within the enclave. Similarly, on enclave exit
any cached addresses referring to the protected space in an enclave are cleared. The
purpose of this is to prevent external software from using the cached addresses to
access the enclave’s protected memory.

2.2.3 Asynchronous Exit and Resuming Execution

Exiting the enclave asynchronously occurs due to events such as exceptions and in-
terrupts in which the processor handles such events by invoking the internal routine
Asynchronous Exit (AEX). The AEX saves the registers used by the enclave which
are consequently cleared to prevent leaking secrets. In particular, one saved address
to be stored is the location of the returning address, also called the faulting address,
where the execution resumes on the resuming enclave’s execution. While saving the
enclave’s state is essential for resuming the enclave’s execution, equally important is
clearing the data used by the enclave to prevent secret exposure. Once AEX finishes
execution, the processor exits enclave mode and goes back to normal mode where
every instruction is treated as an external instruction.

On the other hand, the ERESUME instruction restores the enclave’s state and
gives back control to the enclave from the point it was interrupted. It is important
to mention that the event whom the AEX was called upon may be triggered again in
case of failure when the event is an exception or faults within the enclave.

3 Objectives and Adversary Model

3.1 Security Objectives

Applications consist of data, e.g. keys, passwords, and code of third-party libraries
such as OpenSSL. Protecting secrets is a major priority; an application would like to
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keep the confidentiality and integrity of these secrets, and the integrity of the code ex-
ecuting using these secrets. The exposure of one element is enough to compromise the
entire system. Furthermore, sensitive parts of an application constitute a small frag-
ment of the code as a whole in most applications. Thus, isolating the data storage and
execution of sensitive parts from the rest can decrease the impact of vulnerabilities.

Our security objective is to keep the Confidentiality even in the presence of mal-
ware (including malware running within the privileged operating system), and reduce
the impact of vulnerabilities in code. It has been shown that hardware-assisted par-
titioning technology, such as Intel SGX, can be used to achieve this [23, 26].

The enclave keeps the confidentiality of the data by encrypting its content when
leaving the processor in enclave mode e.g. in memory. Our objective is to protect se-
crets such as passwords, keys, and sensitive code from vulnerabilities in applications.
One approach to achieving this when considering a trusted OS is to use a different pro-
cess for each partition,relying on the OS to enforce memory access control semantics
between processes. However, we assume untrustworthy OS, an OS that might have
vulnerability or malware, thus, using the processes is not an option. To elaborate on
the latter, we do not consider an OS that is untrustworthy as a result of an adversary
booting malicious OS. We assume that the OS is coming from trusted source but may
have vulnerabilities or malware which may risk the exposure of secrets in applications.

It is important to note that using systems with one TEE such as ARM TrustZone
[21], and Flicker [13] does not scale in flexibility for partitioning applications. These
systems address how to isolate trusted code from untrusted code using one TEE,
and managing the TEE for different partitions requires intervention of software and
not hardware. On the other hand, SGX does allow instantiating of many containers
using hardware operations, thus, it is well suited for our partitioning schemes and in
evaluating the security of each scheme.

3.2 Adversary Model

In this paper, we consider an adversary with the capabilities to insert malware into
the system, read the memory, and manipulate the OS including booting another OS.
An adversary aims to exploit vulnerabilities in application code who may be able
to obtain secrets or cause malfunction, which eventually may lead to exposure or
modification of sensitive data. The adversary may have knowledge of the software
running, but does not have physical access to the system’s CPU and physical parts
of the platform including memory controller or the buses interconnecting between
platform components [27,28]. The adversary may be an insider with a limited physical
access to the system, or a remote adversary. We do not aim to protect against attacks
such as denial of service or side channel attacks.

4 Application Software Partitioning

We are proposing a partitioning scheme framework and that will be illustrated and
explained with a concrete example of OpenSSL. However, the approach taken here
is applicable to all types of applications that protect secret data. In the trusted part
we would like to port sensitive functions and data such as hashing functions, random
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number generator, certificates, keys and passwords. The untrusted code will be lo-
cated out of the TEE with the ability to call protected functions to be executed in
TEE. While the untrusted code may be able to request for encryption and decryption
services from the trusted code, it is unable to read/write the keys and the crypto-
graphic functions that reside within a TEE to provide these services. The untrusted
code may merely call the interface TEE functions for execution. The trusted part is
considered as a Black Box to the untrusted part, thus, protecting the confidentiality
and integrity of the code and data.

The application must be partitioned into several parts by identifying the sensi-
tive partitions that require isolation from other parts of the application. The design
guideline is to keep a sensitive partition minimal and within feasibility borders to
allow formal verification of the code. While the TEE can protect its execution and
secrets from external vulnerabilities, it does not protect against badly written code
with flaws. Thus, a partition with small code is a corner stone for designing a secure
application and has been long advocated by Saltzer and Schroeder [29]. However, it
is important to bear in mind the efficiency of the execution when partitioning the
code. A partition scheme that substantially impairs system efficiency will often be
unfeasible regardless of its security characteristics.

4.1 Partitioning Schemes

In this section, we describe several possible partitions schemes. We start with basic
partitioning configuration and develop it further as a function of the TCB and number
of enclaves that yield different partitioning schemes. These schemes may differ in their
ability to protect the confidentiality of the data, which we will be investigating in more
details in section 5.

Initially, we started by defining a partitioning scheme that considers two guidelines:
1) the number of available enclaves 2) the TCB size inside each enclave. In scheme 1,
we started with the most basic configuration, one enclave and without any limitation
on the size of the TCB inside that enclave. Our aim is clear and simple; to protect
the secrets as described in detail in section 3 from the rest of the code. In scheme 2,
we chose to increase the number of enclaves by one, two enclaves with a reduction in
the TCB as explained in 4.1.2, which led us to scheme 3. In Scheme 2, the size of the
TCB inside each enclave is reduced to an optimal level. However, accounts/connection-
s/users have to use the only available two enclaves, thus, no separation between the
different accounts/connections/users. In scheme 3, we built on scheme 2 and adopted
a similar TCB inside an enclave but with open approach toward the number of en-
claves that isolate between different accounts/connections/users. Scheme 3 proved to
be very complex both for security and implementation. For instance, a trusted chan-
nel is needed between every two enclaves that wished to talk to each other, thus, with
the adopted open approach in scheme 3 many trusted channels are needed. Also, with
this approach every piece of code inside an enclave needed to be duplicated for full
separation between the accounts/connections/users. Hence, we identified a potential
implementation and performance issues prior to evaluating the approach. It follows,
in scheme 4 we took scheme 3 and optimised it by considering reducing the number
of enclaves, TCB, and duplication of code.
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4.1.1 Scheme 1 - Whole Application

In this scheme we choose to put part of an application such as a library inside one
enclave. The residents of the enclave which may be code and data, include all secrets
such as keys (e.g. private key, storage key, session key), passwords, credentials, and
the code.

4.1.2 Scheme 2 - All Secrets

In this scheme we apply smaller granularity compared to scheme 1. We use two en-
claves, we divide the code in two partitions, based on the frequency of accessing the
code and port the code that generates secrets and has high frequency for accessing
the secrets. The rationale is to opt-out the code that does not have high frequency
of accessing the secrets which will result in reduction of code’s lines number, hence,
reduction of the TCB. However, it is important to mention that an application with
different users has all its users’ secrets within the same enclave. Thus, it is the respon-
sibility of the software running inside the same enclave to enforce isolation between
users’ data.

4.1.3 Scheme 3 - Separate Secret

Scheme 3 is smaller in granularity compared to the previous two schemes. We use
multiple enclaves to secure the secretes. Each enclave contains one secret such that
each key resides in a separate enclave. For example code using the session key lies in
one enclave and code using the private key lies in another enclave. We use multiple
enclaves per account/user/connection, where each enclave contains the secrets gener-
ation relevant code and its relevant key, and one enclave for the code that has high
frequency of accessing the code after generation.

4.1.4 Scheme 4 - Hybrid

In this scheme we apply smaller granularity than Scheme 1 and Scheme 2 but less than
Scheme 3. We use multiple enclaves to protect Application’s secretes. Each accoun-
t/user/connection has a separate enclave. One enclave per account/user/connection,
that includes keys (e.g. private key, session key), generation code, and functions with
high frequency for accessing the secrets. For example, an application with multiple
users, each user’s secrets reside within the same enclave. However, in order to reduce
the number of enclaves used, we use an enclave that contains code but not secrets
to give services to all accounts. When a secret is needed, it’s sent to another enclave
which is assumed not to store any data. This scheme is similar to scheme 2 in the def-
inition of the TCB residing inside an enclave, however, while scheme 2 has all secrets
of all users/connections/account in an enclave, scheme 4 isolates between users/con-
nections/account by having enclave for each. On the other hand, scheme 4 is similar
to scheme 3 in the way it isolates the secrets of each users/connections/account.

4.2 Partitioning using SGX

The application uses SGX to protect the execution of sensitive partitions by porting
different sensitive partition into different enclaves. The number of TCBs is the influ-
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ential factor for the number of partitions constructed prior to running the application,
and during the run time, SGX enforces access between these partitions. It is impor-
tant to mention that porting the code to run in trusted space is not the only action
required when partitioning the code, the same ported code should be able to handle
I/O operations and external operations and exit enclave mode when necessary. The
interface to the enclave is limited and the creation process requires the intervention of
privileged software that runs in ring 0, e.g. SGX driver. As a rule, the privileged soft-
ware creates an enclave using ECREATE, adds, and measures the code of the desired
partition. It uses EADD and EEXTEND respectively to perform the latter, which is
then followed by EINIT to finalise the creation process, and entering the enclave by
the same application that created it. In order to enter an enclave, the application uses
synchronous entry instruction EENTER to switch the processor to enclave mode and
to execute the relevant call.

As an essential part of the design, I/O operations are excluded from the enclave
since they require the intervention of the OS, thus, when I/O operation is required,
synchronous exit (EEXIT) is called to switch the processor to normal mode to handle
the requested external operation. In a similar way the OS interrupts are handled
through Asynchronous Exit and Resuming Execution instructions. Once done, the
trusted part resumes by re-entering the enclave with ERESUME.

Once the enclave finishes execution it exits the enclave mode using EEXIT and the
processor returns to normal mode of execution. The life cycle of the enclave and its
content can be terminated by the application using privileged software; the privileged
software tears down the pages inside the enclave (EREMOVE) and removes all the
meta-data associated with it.

5 Security and Efficiency Evaluation

We use a MiniServer + OpenSSL library to examine several software partitioning
schemes. The MiniServer is a web server that serves multiple clients and provides
authentication, and secure communication channel. The MiniServer runs on Linux and
uses merely minimal code to establish secure connections with clients. Furthermore,
it uses the OpenSSL library for establishing secure connection between the server and
the client [30].

To meet our objectives we choose to consider two main components in the SSL
protocol: the handshake protocol and the data exchange. During the handshake, the
client and the server generate keys which are unique for each connection session. The
session defines a set of cryptographic security parameters which can be shared among
multiple connections. For the most part, the handshake protocol allows the server
and the client to authenticate each other and to negotiate a cryptographic suit. The
handshake protocol consists of several messages exchanged between a client and a
server prior to establishing a secure channel. It is followed by the second part of the
protocol execution in which data is exchanged between client and server.

In order to evaluate the security and efficiency of the proposed schemes we consider
partitioning the OpenSSL library 1.0.2-beta1. On the security side we investigate: 1)
the ability of a scheme to protect against vulnerabilities in code such as the HeartBleed
vulnerability; 2) the number of trusted channels required between partitions; and 3)
the size of the TCB. Our primary reason for considering these evaluation items is
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their impact on the attack surface. For example, the size of the TCB has a direct
impact on the number of vulnerabilities in code. Also, an application with various
enclaves requires trusted channels for communicating between these enclaves, thus
increasing the complexity of the system and expanding the attacks surface since there
are more components to protect. On the efficiency side, we consider the number
of enclaves, the number of entries to these enclaves, and the size of each enclave.
Moreover, context switching is required when moving in to and out of the enclave,
introducing an overhead that increases with the number of enclaves and entries to
these enclaves. We evaluate the security and efficiency of the proposed partitioning
schemes from section 4 and present the calculated results in table 1.

5.1 Case Study

In this section we use the OpenSSL library to examine the proposed software partition-
ing schemes. In particular, we choose a vulnerability from the buffer over-read class
of attacks, the HeartBleed vulnerability [31], to evaluate each scheme. The aforemen-
tioned vulnerability will demonstrate the ability of each scheme to meet our objective
of protecting the private and session keys. While, a straightforward solution is to fix
the vulnerability when found, our proposed method of isolating software partitions
from each other aims to counter the over-read class of attacks when a vulnerability is
missed during the verification process.

The vulnerability known as HeartBleed results from missing bounds check in the
heart beat extension which is a ‘keep-alive’ mechanism between two endpoints to keep
the connection alive. The latter was classified as a buffer over-read vulnerability and
it allows more data to be read than was initially negotiated between the client and
server, thus revealing secrets and sensitive data. The sensitive data is not limited
to secret keys used within the OpenSSL library, but also includes user names and
passwords of the application that happen to be in the requested memory space. For
the most part, applications rely on privileged software such as the OS to prevent
external access to an application space. However, in the presence of vulnerability in
an application such as in a third-party library, the OS does not play any part in
protecting the data of the entire application, specifically, data that is generated by
the application but not used by the imported third-party library.

5.2 First Scheme - Whole Application as One Partition

In the first scheme the entire SSL library resides in a single enclave and includes the
heart beat code. The code within an enclave has memory access to every memory
address inside the same enclave, thus when a client requests more data than it has
sent, the heart beat code is still able to extract the requested length, notwithstanding
its content e.g. session and private keys, and send it back to the client. Moreover,
data from the application using OpenSSL, such as user-names and passwords, can be
extracted when residing in adjacent memory addresses to the requested data. Hence,
the rest of the application is vulnerable to secrets exposure.

Using TEE does not protect against vulnerabilities in the code. While the data is
protected with encryption from external software when it resides in the memory, it is
not protected from vulnerabilities that reside in the enclave. To illustrate this using
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the HeartBleed example, the heart beat code resides within an enclave, thus it is part
of the same TCB that contains the secret keys and functions used during the SSL
session. As a result, the security properties provided by the enclave are transparent
to the contained software, and accessing secrets from an inner function, such as the
heart beat code, can be achieved without the enclave’s interference.

Scheme 1 uses one enclave and thus doesn’t require any trusted channels. How-
ever, the big drawback is the large size of TCB that includes the buffer over-read
vulnerability, which in return it doesn’t protect the confidentiality of secrets upon
implementation.

5.3 Second Scheme - All Secrets

In the second scheme we used two enclaves to isolate part of the OpenSSL library
including the handshake protocol, private key, session key, and data exchange. We
partition the code such that only key handling the code (both session and private)
are inside the enclave, but heartbleed code is outside that enclave.

Scheme 2 protects against exploitation of the HeartBleed vulnerability since the
heart-beat code can not access the session key which is encrypted in memory as part
of an enclave. The TCB is smaller than that of scheme 1. However, other secrets of the
application, such as the user-names and passwords of the server which are not part
of the enclave, are not protected. Also, one might question the security of having all
the session keys within the same enclave used by the same code. To state the obvious,
mutual exclusion between the different sessions is not achieved with this scheme.

5.4 Third Scheme - Separate Secrets

In scheme 3 each connection has two enclaves, one for the handshake protocol and
session key, and one for the data exchange. To elaborate on the latter, since each
connection has two enclaves, it’s obvious that some duplication of code is inevitable.
Nonetheless, the private key resides in a different enclave and can be used by other
enclaves that require access to it.

In scheme 3 isolating each secret in a different enclave protects against code vul-
nerabilities, such as HeartBleed, compromising the confidentiality or integrity of the
session key or private key. The TCB in each of the enclaves is significantly smaller
than in scheme 1 . However, this approach brings with it other challenges: In order to
prevent malicious software from exploiting the different enclaves, a trusted channel
must be established between the different enclaves to assure secure communication
and execution of the partitions combined. The latter may impair the execution effi-
ciency in favour of isolating connections. However, more detailed empirical work is
needed to examine this, which is beyond the scope of this paper.

5.5 Fourth Scheme - Hybrid Software Partitioning

In this approach we considered a hybrid partitioning of the code, which is a combina-
tion of the aforementioned schemes. The main code resides in the untrusted space and
only a part of the code and data resides in the enclave. The heart beat code resides in
the untrusted space of the application and is thus unable to access the secrets within
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the enclave. The heart beat code could reside in a separate enclave if need be. The
main focus of our design is on partitioning the application in such a way that sensi-
tive partitions with secrets are isolated from other unrelated partitions. In scheme 4,
the TCB is smaller than in schemes 1 and isolation between the sessions is achieved.
However, TCB is not as small as in scheme 3. The advantage of scheme 4 over scheme
3 is a reduction in the number of enclaves. The number of trusted channels required
between different enclaves is smaller, which results in less overhead in the system and
the trusted channel being a target for adversaries. To test this framework, we imple-
mented the hybrid approach using SGX - a combination that proved to be resilient
to read-overflow vulnerabilities such as HeartBleed. In addition, with this scheme the
size of the TCB inside the enclave proved to be much smaller than scheme 1. In table
1 we summarise the analysis of the 4 different partition schemes discussed.

Table 1: Comparison between the 4 schemes
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Number of Enclaves
(10 Connections)

1 2 21 11

Trusted Channels between Enclaves
(One connection)

0 0 3 2

TCB in enclave L S S S

Duplication of Code No No Yes Yes

Capacity Used M S L M - L

Size Scale : L - Large, M - Medium , S - Small

6 Related Work

In the last decade the topic of executing sensitive code in isolated and trusted en-
vironment has caught the attention of many researchers. McCune et al. presented
Flicker [13]- an infrastructure for code execution in isolated and trusted environment.
In their work they rely merely on 250 lines of code in the TCB to provide strong
isolation. For the most part, they appreciate that 250 lines of code is a tiny code,
therefore formal assurance of its execution is more trusted as a result of the feasibil-
ity to verify the code. Nonetheless, an application running in an isolated execution
environment can be thousands of line of code and isolation between several parts in
the application space is essential to prevent exploits by unfortunate vulnerabilities.
The same group presented TrustVisor [14] a pointed purpose hypervisor that pro-
vides code and data integrity and secrecy for sensitive portions of an application.
TrustVisor provides application developers with a strong secure environment for code
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execution and data storage on untrusted platforms. Moreover, they argue that small
TCB code is easier to be formally verified, thus, it is more trusted when executing
in TEE. Another research effort that takes a similar approach is that of Singaravelu
et al. [32] where they showed that reducing TCB complexity can result in enhancing
the security of the sensitive part of the application. The sensitive part is executed
in a process called AppCore while the rest of the application is executed on a vir-
tualised untrusted operating system. This approach is supported by three real world
case-study applications.

In [33] Strackx proposed Fides: a security architecture that consists of two parts:
a run-time security architecture and a compiler. The run-time security architecture
is based on memory access control to protect applications. The modules are divided
into a private section, where sensitive data is protected and accessed by the relevant
module through limited interface, and a public section that contains the module’s
code. The second part is the compiler which is responsible for compiling standard
C code into protected modules. In another work [34], Cheng et al. presented Driver-
Guard, a hypervisor protection mechanism to shield I/O flow from a malicious kernel.
DriverGuard protects a tiny fraction of the code that is sensitive, such as biometric
authentication. However, they assume secure boot-up and load-time attestation to
ensure the hypervisor’s security in the bootstrapping phase.

In [10] Li et al. introduce MiniBox, a two way sandbox that isolates the memory
space between OS protection modules and applications. Unlike most approaches it
aims to protect the OS from untrusted applications, but also protects the applications
from a malicious OS. In Minibox, the authors focus on the two-way Sandboxing and
don’t address the porting efforts for legacy code, and suffice by mentioning that the
porting efforts are similar to the porting effort on NaCl [17].

In [35] Vasiliadis et al. introduce PixelVault, a system that uses GPUs to secure
cryptographic keys. In PixelVault the private key is created inside the GPU and never
leaves or leaks it even in the presence of malicious OS. However, this is limited to
the private key since PixelVault can not use the GPU to secure keys negotiated at
run-time such as the session key or key pairs. Thus, malicious software can act as a
man in the middle.

Partitioning privileges between hardware and software is not a new paradigm [36].
Hardware/Software partitioning has shown improvement in performance, energy con-
sumption, and optimised run-time. However, there hasn’t been much work that ad-
dresses hardware and software partitioning from security point of view.

Our approach differs in the granularity and feasibility of isolating sensitive code.
Most approaches rely on software to isolate the execution of sensitive code from the
rest of the system. These approaches face significant difficulties when partitioning
the code into trusted and untrusted sections. While it is straightforward to isolate
an entire application using SGX, it is still feasible for programmers to partition the
code into trusted and untrusted sections even when the application is not modular or
privilege-separated. Unlike some hardware-based isolation techniques, SGX enables
concurrent execution of more than one secure enclave. This allows applications to use
various different partitioning schemes to achive the required balance between security
and performance.
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7 Conclusions and Future Work

In order to protect the execution of sensitive code and data, it is desirable to use a
trusted execution environment that does not include untrusted entities such as the OS.
This can be achieved by keeping the TCB as small as possible and excluding irrelevant
parts of the code. Fine-grained software partitioning of the code provides a good
means of isolating different parts of the application and defining trust relationships
between the partitions. Such an approach can protect the execution of a sensitive
code from untrusted partitions when access is enforced properly. SGX proves to be
a good candidate that keeps the OS out of the TCB and protects the execution
of a partition from untrusted code using hardware. It is widely expected that the
adoption of technologies like SGX will facilitate the design of secure applications and
add another level of protection against various vulnerabilities in the code. In this
paper we have proposed a framework that describes exactly how these technologies
could be used to achieve this. We have explored four possible partitioning schemes
that differ in terms of security guarantees and performance. We have demonstrated
how our schemes could be realized using SGX to secure the execution of low level
sensitive code in the SSL library as a proof of concept to our claims.

Another key point is that although the TEE is an important and desirable security
feature, it is not a silver bullet against vulnerabilities in code. We demonstrate a logical
use of TEE and the feasibility of different software partitioning schemes with SGX in
merely one example: the OpenSSL library. In future work we plan to perform broader
research on fine-grained software partitioning using SGX with different applications
that includes bench-marking each of the schemes described above. Eventually, we
intend to develop a methodology to help developers partition applications effectively
using these new technologies in order to balance security with performance.
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