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Abstract. The paper presents the application of various classifica-
tion schemes for actuator fault diagnosis in industrial systems. The
main objective of this study is to compare either single or meta-
classification strategies that can be successfully used as reasoning means
in the diagnostic expert system that is realized within the frame of
the DISESOR project. The applied research was conducted on the
assumption that classic as well as soft computing classification meth-
ods would be adopted. The comparison study was carried out within the
DAMADICS benchmark problem which provides a popular framework
for confronting different approaches in the development of fault diagnosis
systems.

1 Introduction

The increasing complexity of recent industrial objects makes the issue of fault
diagnosis one of the most important directions of research in modern automatic
control and robotics [7,24,32]. Technical systems and processes are required to
be safely and reliably operated due to the protection of human life and health,
the quality of the environment, as well as the economic interests. It is possible to
specify numerous areas of interdependence of human and technical means, where
safety plays a key role, for instance in aircraft, spaceship, automotive, power or
mining industry. The above mentioned factors cause that new developments in
control theory such as passive and active fault-tolerant control approaches are
more often applied in these areas of the industry [5,17,22]. A special attention is
currently paid on the second type of the advanced control methodologies, where
fault diagnosis methods hold a critical importance. The present state of the
art in the field of fault diagnosis shows the really need for development of fault
diagnosis expert systems. The goal is to elaborate general-purposes systems with
multi-domain knowledge representations and multi-inference engines [9,28,36].
Generally, the fault diagnosis can be divided into three steps [18]: fault detec-
tion, fault isolation and fault identification. Moreover, each of them can be devel-
oped by means of model-free (based on data), model-based and knowledge-based
approaches [22]. In this paper the first approach, where experimental data are
exploited was discussed. In this kind of methods data that represents normal and
faulty situations can be obtained from historical databases or from simulators as
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well as laboratory stands. This data is then used to create state classifiers and
meta-classifiers.

The main goal of this paper is to compare different classification strategies
that can be successfully used as reasoning means in the diagnostic expert system.
The development of the diagnostic expert system shell with multi-domain knowl-
edge representations and multi-inference engines is realized within the frame of
the DISESOR project. The DISESOR is an acronym of the decision support
system designed for fault diagnosis of machinery and other equipment oper-
ating in underground mines as well as for monitoring potential threats that
can occur in such kind of industry. The DISESOR system can be used for dif-
ferent purposes, e.g. to assess seismic hazard probabilities in the area of the
coal mine, to forecast dangerous increase in the methane concentration in the
mine shafts, to detect and localize endogenous fires, and also to conduct fault
diagnostics of machines working in such environment. This study shows the
comparison research of the classification schemes for creating fault diagnosis
system of the benchmark actuator [2] which was elaborated on the basis of
the activity of the DAMADICS (Development and Application of Methods for
Actuator Diagnosis in Industrial Control Systems) Research Training Network
funded by the European Commission. The current paper is a continuation of the
research work presented in [20]. The authors taken into account the majority
of reviewers’ comments and also proposed a new approach for searching proper
values of relevant parameters of classifiers used to fault diagnosis. The exam-
ined methods are planed to be used for designing the engine of the DISESOR
system.

2 Single and Meta-Classification Strategies

There are many types of classifiers available in the literature, as well as different
concepts of using them are introduced [25]. Some examples are methods based
on the similarity between objects in the feature space, probabilistic methods
or methods which are based on black box models. Generally, the classification
problems can be divided into two groups including approaches of supervised and
unsupervised machine learning techniques. In the paper, the authors concen-
trated the attention only on methods belonging to the first group. Currently,
the information fusion and meta-classification problems are recognized as the
most important directions of the research in the domain of supervised learning.
The main idea in this approach is the application of simple classifiers working
together to solve a problem with better results than it can be done by means of
single one or more complicated classifiers. There are a lot of different kinds of
information fusion methods, but the most popular are majority voting, weighted
voting, boosting, and AdaBoost [25]. On the other hand, meta-classifiers are very
often used for the same reason that means its efficiency is often higher, than the
efficiency of the best single classifier [26].

The current research trends in developing machine learning methods are
focused on ideas of improving the general efficiency of different classification and
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meta-classification methods. The most important investigations can be found
for instance in [4,12,30,33,38,39]. The main directions presented in these stud-
ies are concentrated on optimization techniques which are used to tune rel-
evant parameters of the classical methods, e.g. with the use of evolutionary
and particle swarm algorithms. A number of results included in the related
works show the benefits of using these methods. In case of a task of fault
detection and isolation the key features of the signals in time or frequency
domains are most commonly used. Industrial actuators may be characterized
by a very high complexity which affects the large number of measuring sig-
nals and their features. Therefore, another approach aimed at improving the
efficiency of the classifier, and often shortening the time of its learning, is
to remove irrelevant variables [14]. There are various methods that can be
used in this procedure, e.g. forward or backward selection methods, as well
as elimination methods based on statistical measures. Another group of meth-
ods stands fusion methods such as bagging, boosting, and the development of
these concepts that is AdaBoost method [19,40]. These methods are often more
effective than simple classifiers but also show some drawbacks. The advanced
concepts were developed to take merits and positive aspects of classic meth-
ods and to eliminate their limitations [37]. There are also attempts to con-
nect together several different methods such as selection of relevant features
and usage of boosting into one algorithm [21]. Such approach may lead to
the final result that should be better than the results of the methods applied
separately.

3 Model-Free Fault Diagnosis Using Different
Classification Schemes

The idea of the well practised model-free fault detection and isolation method
is presented in Fig. 1. It can be seen, that faults are detected and distinguished
using primary and redundant process variables. In this method two separated
classifiers must be created. The first classifier uses the subset of process vari-
ables (U’ UY") as its input and it is dedicated for generating diagnostic signals
(S), whereas the second one has the same set of input variables but its task is
to calculate a fault signature (F'). This classifier is triggered in case when the
diagnostic signal indicates a fault scenario. The proposed method can be viewed
as the extension of the most often used model-free fault diagnosis approach, cf.
Korbicz et al. (2004), Fig. 1.7 at p. 22 [22]. The novelty in this study depends on
that single and also meta-classifiers are automatically tuned in order to obtain
the maximum accuracy of fault diagnosis.

Fault detection and isolation algorithms corresponding to the diagram pre-
sented in Fig. 1 can be designed using different classification methods [18,22,31].
Generally, it is possible to apply so-called classical (e.g. decision trees, k-nearest
neighbour, naive Bayes, etc.) or soft computing approaches (e.g. neural networks,
bayesian networks, fuzzy systems, neuro-fuzzy systems, etc.). The paper deals
with either classic or soft computing methods. In the next part of the article,
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Fig. 1. A diagram of model-free fault detection and isolation

model-free fault detection and isolation approaches with the use of different
classification schemes are described. As it was mentioned above, these kinds of
methods require data (process variables) corresponding to regular (faultless) and
faulty states of the system. In this section, different variants of three basic con-
cepts with a single classifier, meta-classifier and a bank of classifiers are applied
in order to provide the fault detection and isolation system that is directly based
on the process variables.

3.1 Fault Detection Schemas

The first concept of fault detection is presented in Fig.2 and this is elaborated
basing on a single classifier which returns a diagnostic signal corresponding to
fault or faultless states of the device. In this method, the process variables are
converted by a moving window in order to compute scalar features of the measur-
ing signals. These values are used as input of a single classifier which generates
directly the diagnostic signal. The second fault detection scheme is presented
in Fig. 3. In this approach a series of two-state classifiers is applied and their
task is to determine the degree of the belief for fault detection. The level of
belief about faults occurring is a numerical value from 0 to 1. The signal values
returned from each classifier are connected to the meta-classifier as its input.
The features of the process variables are also connected to the meta-classifier as
the additional input.
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Fig. 2. A scheme of fault detection using the global classifier
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Fig. 3. A scheme of fault detection using the set of various classifiers and meta-classifier

The result of both methods is a diagnostic signal which indicates fault occur-
rence. When a classifier or a meta-classifier detects a fault, the second part of
the fault diagnosis system is run in order to isolate the faults.

3.2 Fault Isolation Schemes

The first method of fault isolation is comparable to the method that was pro-
posed for the fault detection. It is presented in Fig.4. As one can see it is a
single global classifier. Its task is to determine a type of the fault. Similarly to
the previous method, in this case the process variables are calculated in the mov-
ing window to obtain scalar features of the measuring signals. The preprocessed
signals are connected to the input of a global classifier. This classifier returns a
fault signature.
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Fig. 4. A scheme of fault isolation using the global classifier

The next fault isolation scheme is presented in Fig. 5. In this approach a set
of classifiers of different types is used in order to calculate the degrees of beliefs
that are related to fault signatures. These values are given to the input of the
meta-classifier and the final decision (fault signature) is obtained.

The last concept of fault isolation is shown in Fig. 6. The main idea is based
on a bank of classifiers that are used to calculate degrees of beliefs for specific
faults and unknown states of a device. In this case, M single classifiers must be
created for M faulty states. Each classifier is dedicated for one state only (it
is used for detection one fault solely). In the next step, all available variables
(features of the process variables and outputs from base classifiers) are linked to
a single dataset. The prepared signals are sent to the input of the meta-classifier
which is employed to return the final decision.
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Fig. 5. A scheme of fault isolation using the set of different classifiers and meta-classifier
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Fig. 6. A scheme of fault isolation using the set of local classifiers (fault detectors) and
meta-classifier

The engines of fault detection and isolation schemes presented above can be
elaborated with the use of well practised classification methods. The classification
problem is possible to be solved using many known approaches, however, in
this research the following methods are applied: k- nearest neighbour [1], naive
Bayes [10], decision tree [6,27], rules induction [11], neural networks [13,15] and
support vector machine [16]. Each of these classifiers returns a label of a chosen
class and the degrees of belief for all predicted classes. The best solution is
pointed at the moment when one of the class is characterised by the belief level
equal to 1 and the rest of them are equal to 0. It gives us 100 % certainty that
a new element should be classified as this particular class.

4 Verification Studies

The proposed schemes of fault detection and isolation were implemented using
RapidMiner@®software. It is an open source software created for solving data
mining problems. The verification studies were conducted on data generated
using the DAMADICS simulator [3] in order to investigate selected classification
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schemes. This simulator was elaborated in collaboration of scientists and engi-
neers to simplify the process of evaluating and comparing different methods of
fault detection and isolation for industrial systems. In the literature there are
available several papers where case study results deal with this problem are
presented, see e.g. [23,29,35]. The numeric model is used to simulate an electro-
pneumatic valve (Fig.7) which is a part of the production line in Lublin sugar
factory in Poland.
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Fig. 7. Structure of benchmark actuator system [2]

The presented model was created and tuned in MATLAB/Simulink®software
taking into account the physical phenomena related to the origin of faults in the
real actuator system. This simulator was used to generate the following signals of
the process variables: C'V - process control external signal, P1 - inlet pressures
on valve, P2 - outlet pressures on valve, X - valve plug displacement, F' - main
pipeline flow rate, T" - liquid temperature, f - fault indicator. All of these signals
were normalized to the range between 0 and 1.

The DAMADICS simulator allows to choose only one from nineteen avail-
able faults - a part of them is considered only as incipient faults or as abrupt
faults (there are three sizes of abrupt faults: small, medium and big) and some
of them as both. In this paper the authors decided to investigate only abrupt
faults, such as: fl - valve clogging, 2 - valve or valve seat sedimentation, {7 -
medium evaporation or critical flow, {8 - twisted servo-motor stem, f10 - servomo-
tor diaphragm perforation, f11 - servomotor spring fault, f12 - electro-pneumatic
transducer fault, f13 - stem displacement sensor fault, f14 - pressure sensor fault,
f15 - positioner spring fault, f16 - positioner supply pressure drop, f17 - unex-
pected pressure change across valve, f18 - fully or partly opened bypass valves,
19 - flow rate sensor fault. Moreover, only scenarios with single faults were taken
into account. The list does not include some faults, because the incipient faults
such as f3 - Valve or valve seat erosion or f4 - Increase of valve friction were not
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considered. The verification tests were performed basing on the process variables
generated by the DAMADICS simulator for fault-free and faulty scenarios.

4.1 Data Preparation

Collections of data for the training, test and verification of classifiers were pre-
pared in such a way that the results of classifiers were very similar to classifiers
working in a real environment. The process of learning (training and testing) and
verification for the applied classifiers was described in this section. Data prepara-
tion is a very important part of the classifier learning process. The dataset should
be divided into two et last equal parts, where the first part describes correctly
working device (fault-free state) and the second part corresponds to situation
when fault occurs. It was important to divide the prepared data again into two
separated groups (learning group and verification group). For the meta-classifier
the number of groups was extended to four, because the first and the second
group were used in the learning and verification process for the base classifier.
The other two groups were used for a meta-classifier. In this approach, the size
of the dataset for each group was equal to 25200 samples, where 12600 samples
were prepared from data without faults and rest of them contained data with
all considered faults.

The data prepared for the first two fault isolation methods consists of char-
acteristic process values for all chosen faults. The number of elements for each
fault was the same for all sets. For learning and verification process four inde-
pendent groups of data were prepared (like in fault detection methods, two for
base classifiers and two for meta-classifier). The dataset for a single fault for one
group contains 900 samples, while the full dataset size is equal to 12600 sam-
ples. The third method of fault isolation requires a different type of data. The
initial classifier needs data, where a half of the elements describes an actuator
device working with one specific fault and the rest of the elements describe the
device working with the other faults. In this case, a classifier can generate a
two-state signal where the first state defines one specific fault and the other ones
are correlated with unknown faults. The size of the dataset in this approach is
similar as in case for the method of fault detection. The size of the dataset for
the considered fault is equal to 3900 samples and it is equal to the rest of a
dataset which contains samples corresponding to other faults.

4.2 Statistical Analysis and Features Computation

Linear correlation and mutual information analysis were used for choosing rel-
evant process variables and a proper value of the width of a moving window
function. In the analysis, all of available process variables were compared for
different device status (e.g. device without faults and with a chosen fault). The
results of these tests showed very strong correlations between states F8, F14 and
FO. A group of useful process signals was prepared on the basis of results of these
tests. Most of the process signals had very difficult character for model-free fault
detection and isolation methods. Therefore, the authors decided to apply scalar
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features of the process variables. The authors employed a few well known features
often used in fault detection and isolation processes such as average, maximum
and minimum values, standard deviation, root mean square, shape factor (a
factor determines the shape of the periodic signal), kurtosis (the measure for
evaluating the shape of the probability distribution), energy, skewness (the mea-
sure of the asymmetry of the probability distribution) and entropy. The scalar
features were computed using a moving window of 100 samples width. Such the
width value was assumed on the basis of frequency of the harmonic control signal
of the valve which was equal to 0,01 Hz. The authors also studied other values
of the window width, however, expected effects in increasing of the efficiencies
of the models were not observed.

4.3 Results of Verification Studies

The learning process for the whole set of applied classifiers was conducted using
the X-validation method. To show the efficiency of a classification process, the
authors used three measures corresponding to accuracy, sensitivity and preci-
sion. The accuracy presents the proportion of correct guesses which can be used
directly as efficiency of classification because all datasets were very good balanced
(the number of samples for each class was equal). The sensitivity corresponds to
the proportion of samples in actual class which are correctly identified. The pre-
cision denotes the probability that an example assigned to specific class should
be really connected with this class. The sensitivity and precision were calculated
for each class, whereas the accuracy were calculated as one value for the whole
confusion matrix. In order to have study results more clearly in each table within
this section the following notation was assumed: kNN - k-nearest neighbours, NB
- Naive Bayes, DT - Decision Tree, RI - Rule Induction, NN - Neural Net, SVM
- Support Vector Machine. The prefix letter M placed before each label of the
classifier means the meta-version of this classifier, for example, the label MNB
denotes the meta-classifier which is based on a naive Bayes classifier.

Moreover, the authors decided to apply the parameter optimization operator
included in Rapidminer software in order to tune behavioural parameters of the
investigated classifiers. The described schemes of fault detection and isolation
were examined taking into consideration all types of classifiers. The optimization
operator for each variant of a classifier was based on the evolutionary computa-
tion. The standard evolutionary algorithm was used [13]. The maximal number
of generations was set to 30 and the population size was equal to 5. The tour-
nament method was used to select parents for creating new generations (the
tournament fraction was equal to 0.25). Reproduction was realized based on
Gaussian mutation function and crossover operator. The crossover probability
was equal to 0.9. The optimization operator maximized accuracy value of chosen
classifier. In the case of Naive Bayes classifier the optimize selection operator was
only applied to choose the most relevant attributes. The features of this algo-
rithm were similar to the previous one. The k-nearest neighbours classifier was
optimized by searching a proper value of the parameter k. In case of decision tree
following values of parameters were chosen: the minimal leaf size, the maximal
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depth of tree, the minimal gain which affects the ability of the splitting of leaf as
well as the confidence used for the pessimistic error calculation of pruning. The
rule induction was optimized in the context of the sample ratio that specifies
the sample ratio of training data used for growing and pruning, the pureness
corresponds to the desired pureness and the minimal prune benefit. In the case
of a neural net classifier the number of layers and the number of neurons in each
layer were tested and chosen by the authors based on heuristics known from the
literature. The other parameters of neural classifiers were optimized by the oper-
ator: the number of training cycles, the learning rate determines how much the
weights are adjusted at each step, the momentum coefficient smooths optimiza-
tion directions and the error epsilon as training error threshold. The SVM based
classifier has many behavioural parameters and therefore the authors decided
to use the methodology described in [16] and focused their attention only on
~v and C parameters of the radial base function. The more detailed description
of relevant parameters of classifiers and the optimization operator can be found
in [1]. The minimum and maximum values of the optimized parameters were
defined on the basis of the information contained in the literature.

Results of Fault Detection. In the first concept of fault detection (Fig. 2) six
single classifiers were compared. Table 1 shows the accuracy and sensitivity of two
concepts of fault detection realized relating to the schemes presented in Figs. 2
and 3. The sensitivity values of classifiers are given in columns. The column
indicated as “All” includes the general efficiency calculated on the basis of the
confusion matrix which was generated after the classifier verification process. The
next column (F0) includes the sensitivity obtained for faultless states. The rest
of the columns (F1-F19) show the sensitivity of fault detection for all considered
faults, separately. Above these columns the general result of the sensitivity of
fault detection is presented. Rows from 1 to 6 show results for single classifiers,
whereas the next six rows show results for considered meta-classifiers. The second
table (Table 2) shows the precision of fault detection for each classifier and class
(faultless state and failure state). All precision values are less than 1,00 which
means that there always exist some samples which are assigned to another state
than it should.

In first fault detection scheme the accuracy of most used classifiers is high
(above 0,93). The accuracy of neural net and naive bayes based classifiers is a
little bit lower than other ones but it is still in the acceptable range. The sensitiv-
ity of faultless state detection is very close to 1,00, which means that almost all
samples corresponding to faultless state were classified correctly to this class. It
is easy to distinguish faults which are low-correlated with faultless state because
the sensitivity in this case is equal to 1, 00. Faults highly-correlated with faultless
state have very low sensitivity value, sometimes even equal to zero. The precision
values presented in the Table 2 shows proportion between the number of samples
which belong to this class and the number of all samples assigned by classifier
to the specific class. In the second scheme of fault detection meta-classifiers were
used. All six classifiers trained in the previous process based on the first scheme
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Table 1. The accuracy and sensitivity of fault detection for global classifiers and meta-
classifiers

[All | FO | F1 ]| F2 | F7 | F8 [F10[F11|F12[F13[F14[F15|F16|F17|F18|F19]
0,887
0,93[1,00[1,00]0,67[0,84]0,84]0,67[1,00]0,67[1,00]0,78[1,00[1,00]0,99
0,764
1,00[1,00]1,00[0,00]0,65]1,00[0,71]1,00]0,00]1,00]0,33[1,00]1,00[L,00
0,946
1,00[1,00]1,00[0,65]0,98[1,00[1,00]1,00[0,67]1,00]0,94]1,00]1,00[1,00
0,939
1,00[1,00]1,00[0,67]0,95]1,00[0,98]1,00[0,72]1,00]0,81[1,00]1,00[L,00
0,681
0,75[1,00[1,00]0,24]0,49]0,17]0,25[1,00]0,24[L,00]0,50[1,00[1,00]0,89
0,804
0,96]1,00[1,00]0,67[0,86]0,95[0,67[1,00]0,67[L,00]0,78[1,00[1,00]0,96
0,793
1,00[1,00]1,00[0,01]0,84[1,00[0,92]1,00[0,01]1,00]0,34[1,00]1,00[1,00
0,799
1,00[1,00]1,00[0,00]0,87[1,00[0,99]1,00[0,00]1,00]0,33[1,00]1,00[1,00
0,794
1,00[1,00]1,00[0,00[0,83[1,00[0,95]1,00[0,00[1,00]0,33[1,00]1,00[L,00
0,803
1,00[1,00]1,00[0,00]0,85[1,00[1,00]1,00[0,00]1,00]0,39[1,00]1,00[1,00
0,824
1,00[1,00]1,00[0,15]0,86]1,00[0,93]1,00[0, 15[1,00]0,45[1,00]1,00[L,00
0.587
0,69[0,89]0,750,00[0,57]0,87]0,63]0,39]0,00[0,88]0,23]0,87]0,69]0,76

kNN 10,933|0,978

NB 0,878|0,992

DT 10,960(0,976

RI ]0,957|0,973

NN 0,829|0,977

SVM |0,938/0,982

MkNN0,862(0,931

MNB |0,889/0,980

MDT |0,883|0,971

MRI |0,888|0,974

MNN (0,875(0,926

MSVM|0,773]0.959

(Fig. 3) were used to calculate degrees of belief of fault detection. The obtained
data were merged with base classifier’s input data. The final results of classifica-
tion for the second scheme of fault detection is presented in Tables 1 and 2. In most
cases (except classifier based on neural net and naive Bayes) the general accuracy,
sensitivity and precision of classification in the second scheme are lower or simi-
lar to analogous measures in the first scheme. The meta-classifier based on neural
net provided the higher accuracy, sensitivity and precision than neural net used
as a simple classifier. It means that additional variables (degrees of beliefs of base
classifiers) can be successfully applied to improve the efficiency of classification.

Table 2. The precision of fault detection for global classifiers and meta-classifiers

kNN |NB DT |RI |NN |SVM|MKNN | MNB | MDT |MRI MNN | MSVM
FO 0,90 /0,81/0,95/0,94|0,75/0,90 0,82 0,83 |0,83 |0,83 |0,84 |0,70
F1-F19/0,98 10,99/0,97/0,97 0,97/0,98 10,92 0,98 /0,97 /0,97 |0,92 |0,93
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Results of Fault Isolation. The last three methods concerned fault isolation
without taking into account a faultless scenario. The results of comparison of the
first fault isolation method (Fig.4) are included in Tables3 and 4. The column
indicated as “All” in Table 3 includes values of the accuracy for single classifiers
of different types. The rest of the columns show information deals with the
sensitivity of fault isolation for each scenario.

Table 3. Accuracy and sensitivity of fault isolation for global classifiers

Al [F1 |F2 |F7 |F8 |F10 |F11 |F12 | F13 |F14 |F15 | F16 | F17 | F18 | F19
kNN | 0,73 10,84 1,00 1,00 |0,35| 0,76 | 0,72 | 0,51 | 0,81 | 0,05 1,00 | 0,48 | 1,00 | 1,00 | 0,67
NB | 0,77 0.67|1,00 1,00 0,58 0,63 | 1,00 1,00 0,58 0,40 1,00 0,28 1,00 0,91 0,67
DT 0,07 1,00]0,00 0,00]0,00]0,00]0,00]0,00]0,00] 0,00 0,00]0,00]0,00]0,00] 0,00
RI |0,78 1,00|1,00 1,00 0,59|0,67 1,00 0,98 0,61|0,00 1,00 0,73|1,000,63 0,67
NN | 0,77 1,00 1,00 1,00 |0,00| 0,62 0,96 | 1,00 0,81 0,00 1,00 0,65 1,00|1,00/ 0,67
SVM | 0,67 | 0,48 | 0,96 | 1,00 0,09 | 0,78 | 0,95 | 0,79 | 0,64 | 0,00 0,98 | 0,50 | 0,91 | 0,63 | 0,67

Table4 presents the precision of classification for each class and classifier.
The results of tested classifiers (Table 3) were varied, e.g. the accuracy of decision
tree was 0.07 and the second one (sorted by their accuracy values) was 0.67. The
sensitivity of decision tree for fault 1 is equal to 1,00 but the precision is equal
to 0,07. It means that a classifier is able to classify correctly samples related to
fault 1 but unfortunately the rest of samples connected with other faults are also
classified as fault 1. This kind of classifier is not useful. The accuracy of the next
group of classifiers are better and rule induction based ones reach the best result
equal to 0,78. In the sensitivity table (Table2) all classifiers (except decision
tree) reach very similar results for most of the classes. The sensitivity value is
more varied for classes which are not easily distinguishable e.g. classification
sensitivity for fault 16 is the range from 0,00 to 0,73 and each classifier reach a
different value. The precision values (Table4) are correlated with the sensitivity
value. For faults which are easy to classify the precision is equal or close to 1,00,
for more difficult faults to recognize the precision values are varied.

Table 4. The precision of fault isolation for global classifiers

F1 |F2 F7 |F8 |F10 F11 F12 F13 F14 F15 F16 F17 F18 F19
kNN 0,99 1,00 1,00 0,27 0,61 0,50 0,47 0,99 0,15 1,00 0,61 0,75 0,84 1,00
NB 1,00 1,00 1,00 0,34 0,69 0,86 0,97 0,87 0,35 1,00 0,73 0,75 0,68 1,00
DT 0,07 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
RI 0,75 1,00 1,00 0,47 1,00 0,88 0,95 0,58 0,00 1,00 0,37 1,00 0,74 1,00
NN 1,00 1,00 1,00 0,05| 0,94 1,00 0,57 0,71 0,00 1,00 0,26 1,00 0,84 0,99
SVM 0,99 1,00 0,34 0,39 0,72 0,92 0,72 0,72 0,04 1,00 0,26 1,00 0,99 0,95
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The second method presented in Fig. 5 uses six classifiers as in the previous
method but the outputs of these classifiers are connected to a meta-classifier.
The results obtained for the meta-classifier are compared in Tables5 and 6.
The results obtained for the second scheme of fault isolation (Fig.5), which
was based on the meta-classifier were more similar to each other than in the
first case (Fig.4). The accuracy of classification (Table5) in the second scheme
is much better than in the first approach of fault isolation. Meta-classifiers
used only degrees of beliefs from base classifiers and they were able to signif-
icantly increase the general efficiency. The most of precision values (Table5)
for each class are very similar. The similarity between sensitivity and preci-
sion tables (Table6) is very high but there is one exception. The sensitiv-
ity of fault 12 is less then 1,00 but the precision for almost all classifiers is
equal to 1,00. It means that not all samples connected with fault 12 are recog-
nized but one can be sure that all recognized samples are really connected with
this fault.

The last method of fault isolation (Fig.6) is based on series of single classi-
fiers, where each classifier is used for detecting a single fault. The first task of
the verification process was to choose a single classifier (from six available) for
the fault detection purpose. To solve this problem the authors tested all clas-
sifiers for all available faults. The results are presented in Table7. The values
included in the table present the general accuracy of each classifier. The bold
values are related to the classifiers which were chosen as the basic classifiers for
the meta-classifier.

Table 5. The accuracy and sensitivity of fault isolation for meta-classifiers

All |F1 |F2 |F7 |F8 |F10 |F11 F12 |F13|F14 |F15 | F16 F17 |F18 F19
MKNN | 0,86 | 1,00 | 1,00 | 1,00 | 0,63 0,98 0,99 |0,88 0,98 0,11 |1,00|0,53 | 1,00 | 1,00 1,00
MNB 0,84 /0,97 |1,00|1,00|0,14|0,91 0,99 | 0,78 | 0,97 | 0,65 | 1,00 | 0,49 | 1,00 | 0,91 | 1,00
MDT |0,84/0,99|1,00|1,00/0,00]0,84|0,99|0,74|0,97|0,84|1,00|0,43|1,00|1,00] 1,00
MRI |0,85/0,99|1,00|1,00|0,70 0,99 | 1,00 0,74 |0,98 0,14 |1,00|0,40 | 1,00 1,00 1,00
MNN 0,87 |1,00|1,00|1,00|1,00|0,95|1,00|0,88 0,97 0,00 1,00 0,41 1,00 1,00 1,00
MSVM | 0,78 | 0,94 | 1,00 | 1,00 | 0,00 | 0,89 | 0,99 | 0,81 | 0,93 | 0,00 | 1,00 | 0,99 | 1,00 | 0,38 | 1,00

Table 6. The precision of fault isolation for meta-classifiers

F1 |F2 |F7 |F8 |F10 F11 F12 F13|F14 F15|F16 F17 F18|F19
MKNN | 1,00|1,00 1,00 0,40 0,94 0,93 0,74 1,00 0,33 1,00 0,66 1,00 0,98 1,00
MNB 0,90/ 1,00 1,00 0,36 0,98 1,00 1,00 0,91 0,38 1,00 0,44 1,00 0,97 1,00
MDT 0,99 1,00 1,00 0,00 1,00 0,86 1,00 1,00 0,37 1,00 0,46 0,99 0,97 0,99
MRI 1,00|1,00 1,00 0,39 0,68 0,99 1,00 1,00 0,28 1,00 0,79 0,99 0,98 1,00
MNN 1,00/0,99 1,00 0,38 0,99 0,90 1,00 1,00 0,00 1,00 0,99 1,00 0,97 1,00
MSVM 1,00 1,00 1,00 0,00 0,99 1,00 1,00 1,00 0,00 1,00 0,25 1,00 0,95 1,00
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Table 7. The comparison results of base classifiers for fault isolation of single faults

F1 |F2 |F7 |F8 |F10 |F11 |F12 |F13 |F14 |[F15 |[F16 |F17 |F18 |F19
kNN [0,92 [1,00 | 1,00 |0,72 | 0,80 | 0,84 |0,80 |0,98 0,72 | 1,00 |0,74 1,00 K 0,98 0,98
NB |0,64 |1,00|1,00 |0,92 |0,71 | 0,99 |0,89 |0,94 0,90 1,00 0,72 1,00 0,96 |1,00
DT |1,00/1,00 | 1,00 |0,77 |0,59 | 1,00 0,95 0,92 [0,79 | 1,00 |0,63 | 0,99 | 0,91 |0,81
RI |0,93 |1,00 1,00 |0,87 0,62 1,00 |0,92 0,94 0,85 1,00 |0,56 0,99 0,94 |0,89
NN |0,94 [0,99 |1,00|0,81 |0,85 0,99 |0,89 |0,97 |0,81 1,00 0,80 1,00 0,98 |0,71
SVM | 0,97 [0,99 |0,98 [0,79 | 0,88]0,92 |0,86 |0,92 [0,99 |0,80 |0,80 |0,99 |0,96 | 0,97

In the next step of the method the meta-classifier is used. Its inputs are
connected to the outputs of basic classifiers (the degrees of the belief for single
fault detection). The main task of this meta-classifier is to compute the final
result. Table 8 presents the sensitivity of different types of classifiers which are
presented in the same form as in the second method of fault isolation (Table5).
In the first column indicated as “All” there are included values of the accuracy
of the meta-classifiers. In the next columns the sensitivity values of single fault
isolation obtained by means of meta-classifiers are included.

Table 8. The accuracy and sensitivity of fault isolation for meta-classifiers with a bank
of classifiers for isolating single faults

All |F1 |F2 |F7 |F8 |F10 F11|F12 |F13|F14 |F15 F16 F17 |F18 F19
MKNN | 0,80 | 1,00| 1,00 | 1,00 | 0,28 | 0,74 | 0,86 | 0,94 | 0,81 0,21 | 1,00 0,42 | 1,00| 0,99 | 0,98
MNB 0,76 | 1,00 |1,00 | 1,00 | 0,46 | 0,55|0,93 0,86 |0,810,18|1,00 0,33|1,00|1,000,55
MDT 0,78 |1,00|1,00|1,00|0,00 0,60|0,79 0,96 0,81 0,20|1,00 0,86|1,00|1,00]0,65
MRI |0,78|1,00|1,00|1,00|0,32/0,94|0,83 0,79 0,74 0,14 |1,00|0,53 | 1,00|0,96 | 0,67
MNN 0,79 |1,00|1,00| 1,00 0,85 |0,56 | 0,85 |0,96 | 0,81 |0,00 | 1,00|0,33 0,98 1,00 0,66
MSVM | 0,77 0,99 | 1,00 | 1,00 | 0,04 | 0,88 | 0,85 | 0,96 | 0,81 | 0,21 |1,00 | 0,48 0,98 |1,00| 0,62

Table 9 includes the precision of fault isolation based on the third scheme
(Fig.6). This scheme of fault isolation (Fig.6) was divided into two parts. The
first part was dealt with the selection of the basic classifiers, applied to isolate
a single fault. After the analysis of the results presented in Table 7 the authors
nominated the classifiers for single fault detection. These classifiers were chosen
on the basis of general results. In case more than one classifier had the same
efficiency value (more classifiers with the efficiency equal to 1,000 for the fault
at the same time) the authors pointed out a classifier with more stable results in
the time domain. The accuracy and sensitivity of meta-classifiers are presented in
Table 8. The accuracy of this method is a little bit higher than in the first scheme
of fault isolation (Fig.4) but the sensitivity (Table 8) and precision (Table9) for
the third scheme are more stable and similar for each class.



146 M. Kalisch et al.

Table 9. The precision of fault isolation for meta-classifiers with a bank of classifiers
for isolating single faults

F1 |F2 |F7 |F8 |F10 F11 F12 F13|F14 F15|F16 | F17 F18|F19
MKNN 1,00/ 1,00 1,00 0,35 0,47 0,95 0,72 0,96 0,36 1,00 0,57 1,00 0,84 0,91
MNB | 1,00|1,00 1,00 0,32 0,44 0,69 0,70 0,99 0,30 1,00 0,84 1,00 0,84 0,75
MDT 0,99 1,00 1,00 0,00 0,82 0,70 0,72 0,95 0,40 1,00 0,34 1,00 0,84 0,90
MRI 1,00|1,00 1,00 0,38 0,55 0,70 0,94 0,96 0,36 1,00 0,41 1,00 0,81 0,89
MNN 1,00|1,00 0,75 0,31 0,84 0,96 0,72 1,00 0,00 1,00 0,99 1,00 0,84 0,86
MSVM 1,00 1,00 1,00 0,34 0,34 0,93 0,72 0,98 0,40 1,00 0,56 1,00 0,84 0,91

Five of the six single classifiers used in the first fault isolation process reached
results between 0,67 and 0,78. One classifier is useless (decision tree) and its
accuracy is equal to 0,07. Meta-classifiers were able to significantly increase the
accuracy of fault isolation. In this case the accuracy values of all classifiers are
between 0, 78 and 0, 87. The sensitivity and precision values are also more stable
and similar in each class. The last approach based on the third scheme of fault
isolation (Fig. 6) shows also small improvement compared to the first scheme (see
Fig.4). Moreover, in this scheme the general efficiency of fault isolation is close
to the result achieved by means of the single classifier. Generally, meta-classifiers
in fault-isolation schemes are more stable and their results are similar to each
other. In case of the second and third schema it is possible to use classifier based
on decision tree so data prepared by base classifiers are simpler and more varied.

In this study, the authors used a confusion matrix in order to evaluate fault
diagnosis systems that were created applying different classification schemes.
Nevertheless, the accuracy, sensitivity and precision obtained from a confusion
matrix can be directly compared with false and true detection/isolation rates
proposed by the authors of the DAMADICS simulator [2]. The results of fault
detection and isolation using single or meta-classification strategies that were
achieved in this study are comparable to even more advanced methods described
in the literature [8,34]. Furthermore, in this study the whole set of potential
faults were investigated, whereas in the related papers only selected states were
taken into consideration.

5 Conclusion

In the paper the application of selected classification schemes for fault diagno-
sis of the actuator systems was presented. The main purpose of the paper was
to compare single and meta-classification strategies that could be successfully
used as knowledge representation in the diagnostic expert system that is realized
within the frame of the DISESOR project. The research was carried out basing
on the well-practised hard and soft computing classification methods. The cur-
rent paper can be viewed as the extension of the research work presented in [20].
In this study, the authors proposed a new approach for searching proper values of



Actuator Fault Diagnosis Using Single and Meta-Classification Strategies 147

relevant parameters of classifiers used to fault diagnosis. The examined methods
were tested in the context to be used for designing the engine of the DISESOR
system. The comparison study was carried out within the DAMADICS bench-
mark problem. The classification schemes were implemented in RapidMiner soft-
ware which is a well-known open source system for data mining and knowledge
discovery. The particular results of the fault detection procedures showed that
for simple industrial actuators it is possible to apply simple classification schemes
without the necessity of using more advanced methods which are based on meta-
classifiers. The final results reached in this paper are much better than results
showed in [20]. The features and parameters of classifiers can be automatically
tuned to increase their accuracy and sensitivity.

Overall, the application of single or meta-classification strategies with opti-
mizing of relevant parameters allows to create effective as well as relatively
less-complicated computational fault detection and isolation systems that can
be successfully employed for on-line and off-line fault diagnosis of industrial
actuators.
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