Skip to main content

Robust Contact Generation for Robot Simulation with Unstructured Meshes

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 114))

Abstract

This paper presents a numerically stable method for rigid body simulation of unstructured meshes undergoing forceful contact, such as in robot locomotion and manipulation. The key contribution is a new contact generation method that treats the geometry as having a thin virtual boundary layer around the underlying meshes. Unlike existing methods, it produces contact estimates that are stable with respect to small displacements, which helps avoid jitter or divergence in the simulator caused by oscillatory discontinuities. Its advantages are particularly apparent on non-watertight meshes and can easily simulate interaction with partially-sensed and noisy objects, such as those that emerge from low-cost 3D scanners. The simulator is tested on a variety of robot locomotion and manipulation examples, and results closely match theoretical predictions and experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    ODE provides an option to disable simulation of rigid bodies that are not moving, which improves the stability of stacks. Such functionality was not used in these tests.

References

  1. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. In: ACM Transactions on Graphics (Proc. ACM SIGGRAPH) (2002)

    Google Scholar 

  2. Bullet physics engine. http://bulletphysics.org/ (2013). Accessed 31 Oct 2013

  3. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Usarsim: a robot simulator for research and education. In: IEEE International Conference on Robotics and Automation, pp. 1400–1405 (2007). doi:10.1109/ROBOT.2007.363180

  4. Coppelia Robotics: virtual robot experimentation platform (v-rep). http://www.coppeliarobotics.com/ (2013). Accessed 31 Oct 2013

  5. Cyberbotics: Webots: the mobile robot simulation software. http://www.cyberbotics.com/ (2013). Accessed 31 Oct 2013

  6. Gazebo. http://gazebosim.org/ (2013). Accessed 31 Oct 2013

  7. Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proceedings of 11th International Conference on Advanced Robotics, pp. 317–323 (2003)

    Google Scholar 

  8. Gottschalk, S., Lin, M., Manocha, D.: OBB-tree: a hierarchical structure for rapid interference detection. In: ACM SIGGRAPH, pp. 171–180 (1996)

    Google Scholar 

  9. Guendelman, E., Bridson, R., Fedkiw, R.: Nonconvex rigid bodies with stacking. In: ACM Transactions on Graphics (Proc ACM SIGGRAPH) (2013)

    Google Scholar 

  10. Heidelberger, B., Teschner, M., Keiser, R., Müller, M., Gross, M.: Consistent penetration depth estimation for deformable collision response. In: Proceedings of Vision, Modeling, Visualization, pp. 339–346 (2004)

    Google Scholar 

  11. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera. In: ACM Symposium on User Interface Software and Technology (2011)

    Google Scholar 

  12. Kim, Y., Otaduy, M., Lin, M., Manocha, D.: Fast penetration depth computation for physically-based animation. In: Symposium on Computer Animation (2002)

    Google Scholar 

  13. Lien, J.M., Amato, N.M.: Approximate convex decomposition of polyhedra. In: Proceedings of the ACM Symposium on Solid and Physical Modeling (SPM). Beijing, China (2007)

    Google Scholar 

  14. Mirtich, B.: Impulse-based dynamic simulation of rigid body systems. Ph.D. thesis, University of California, Berkeley (1996)

    Google Scholar 

  15. Nguyen, B., Trinkle, J.: dvc3d: a three dimensional physical simulation tool for rigid bodies with contacts and coulomb friction. In: The 1st Joint International Conference on Multibody System Dynamics (2010)

    Google Scholar 

  16. Nvidia Corporation: Physx. http://www.nvidia.com/object/nvidia_physx.html (2013). Accessed 31 Oct 2013

  17. Open dynamics engine. http://www.ode.org/ (2013). Accessed 31 Oct 2013

  18. Pan, J., Sucan, I., Chitta, S., Manocha, D.: Real-time collision detection and distance computation on point cloud sensor data. In: IEEE International Conference on Robotics and Automation (2013)

    Google Scholar 

  19. Redon, S., Kheddar, A., Coquillart, S.: Fast continuous collision detection between rigid bodies. Comput. Graph. Forum 21(3), 279–287 (2002)

    Article  Google Scholar 

  20. Stewart, D., Trinkle, J.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction.International Journal of Numerical Methods in. Engineering 39, 2673–2691 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Tang, M., Manocha, D., Otaduy, M.A., Tong, R.F.: Continuous penalty forces. In: ACM Transactions on Graphics (Proc ACM SIGGRAPH) (2012)

    Google Scholar 

  22. The blender project. http://www.blender.org/ (2013). Accessed 31 Oct 2013

  23. Usarsim. http://usarsim.sourceforge.net/ (2013). Accessed 31 Oct 2013

  24. Zhang, L., Kim, Y., Varadhan, G., Manocha, D.: Generalized penetration depth computation. Comput. Aided Des. 39(8), 625–638 (2007)

    Article  Google Scholar 

  25. Zhang, X., Lee, M., Kim, Y.J.: Interactive continuous collision detection for non-convex polyhedra. Vis. Comput. 22(9), 749–760 (2006). doi:10.1007/s00371-006-0060-0

    Google Scholar 

Download references

Acknowledgments

The author thanks Anna Eilering for capturing the Kinect meshes and H. Andy Park for testing the Hubo robot’s force sensors. This work is partially supported by Defense Advanced Research Projects Agency (DARPA) award # N65236-12-1-1005 for the DARPA Robotics Challenge. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Hauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hauser, K. (2016). Robust Contact Generation for Robot Simulation with Unstructured Meshes. In: Inaba, M., Corke, P. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-28872-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28872-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28870-3

  • Online ISBN: 978-3-319-28872-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics