SpringerBriefs in Intelligent Systems

Artificial Intelligence, Multiagent Systems, and Cognitive Robotics

Series editors

Gerhard Weiss, Maastricht University, Maastricht, The Netherlands Karl Tuyls, University of Liverpool, Liverpool, UK

Editorial Board

Felix Brandt, Technische Universität München, Munich, Germany Wolfram Burgard, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany Marco Dorigo, Université libre de Bruxelles, Brussels, Belgium Peter Flach, University of Bristol, Bristol, UK Brian Gerkey, Open Source Robotics Foundation, Bristol, UK Nicholas R. Jennings, Southampton University, Southampton, UK Michael Luck, King's College London, London, UK Simon Parsons, City University of New York, New York, US Henri Prade, IRIT, Toulouse, France Jeffrey S. Rosenschein, Hebrew University of Jerusalem, Jerusalem, Israel Francesca Rossi, University of Padova, Padua, Italy Carles Sierra, IIIA-CSIC Cerdanyola, Barcelona, Spain Milind Tambe, USC, Los Angeles, US Makoto Yokoo, Kyushu University, Fukuoka, Japan

This series covers the entire research and application spectrum of intelligent systems, including artificial intelligence, multiagent systems, and cognitive robotics. Typical texts for publication in the series include, but are not limited to, state-of-the-art reviews, tutorials, summaries, introductions, surveys, and in-depth case and application studies of established or emerging fields and topics in the realm of computational intelligent systems. Essays exploring philosophical and societal issues raised by intelligent systems are also very welcome.

More information about this series at http://www.springer.com/series/11845

A Concise Introduction to Decentralized POMDPs

Frans A. Oliehoek School of Electrical Engineering, Electronics and Computer Science University of Liverpool Liverpool UK Christopher Amato
Computer Science and Artificial Intelligence
Laboratory
MIT
Cambridge, MA
USA

ISSN 2196-548X ISSN 2196-5498 (electronic) SpringerBriefs in Intelligent Systems ISBN 978-3-319-28927-4 ISBN 978-3-319-28929-8 (eBook) DOI 10.1007/978-3-319-28929-8

Library of Congress Control Number: 2016941071

© The Author(s) 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This book presents an overview of formal decision making methods for decentralized cooperative systems. It is aimed at graduate students and researchers in the fields of artificial intelligence and related fields that deal with decision making, such as operations research and control theory. While we have tried to make the book relatively self-contained, we do assume some amount of background knowledge.

In particular, we assume that the reader is familiar with the concept of an *agent* as well as search techniques (like depth-first search, A*, etc.), both of which are standard in the field of artificial intelligence [Russell and Norvig, 2009]. Additionally, we assume that the reader has a basic background in probability theory. Although we give a very concise background in relevant single-agent models (i.e., the 'MDP' and 'POMDP' frameworks), a more thorough understanding of those frameworks would benefit the reader. A good first introduction to these concepts can be found in the textbook by Russell and Norvig, with additional details in texts by Sutton and Barto [1998], Kaelbling et al. [1998], Spaan [2012] and Kochenderfer et al. [2015]. We also assume that the reader has a basic background in game theory and gametheoretic notations like Nash equilibrium and Pareto efficiency. Even though these concepts are not central to our exposition, we do place the Dec-POMDP model in the more general context they offer. For an explanation of these concepts, the reader could refer to any introduction on game theory, such as those by Binmore [1992], Osborne and Rubinstein [1994] and Leyton-Brown and Shoham [2008].

This book heavily builds upon earlier texts by the authors. In particular, many parts were based on the authors' previous theses, book chapters and survey articles [Oliehoek, 2010, 2012, Amato, 2010, 2015, Amato et al., 2013]. This also means that, even though we have tried to give a relatively complete overview of the work in the field, the text in some cases is biased towards examples and methods that have been considered by the authors. For the description of further topics in Chapter 8, we have selected those that we consider important and promising for future work. Clearly, there is a necessarily large overlap between these topics and the authors' recent work in the field.

Acknowledgments

Writing a book is not a standalone activity; it builds upon all the insights developed in the interactions with peers, reviewers and coathors. As such, we are grateful for the interaction we have had with the entire research field. We specifically want to thank the attendees and organizers of the workshops on *multiagent sequential decision making (MSDM)* which have provided a unique platform for exchange of thoughts on decision making under uncertainty.

Furthermore, we would like to thank João Messias, Matthijs Spaan, Shimon Whiteson, and Stefan Witwicki for their feedback on sections of the manuscript.

Finally, we are grateful to our former supervisors, in particular Nikos Vlassis and Shlomo Zilberstein, who enabled and stimulated us to go down the path of research on decentralized decision making.

Contents

1	Mul	ltiagent	Systems Under Uncertainty	
	1.1	Motiva	ating Examples	2
	1.2	Multia	agent Systems	4
	1.3	Uncer	tainty	
	1.4	Applic	cations	7
2	The	Decent	tralized POMDP Framework	11
	2.1	Single	-Agent Decision Frameworks	11
		2.1.1	MDPs	12
		2.1.2	POMDPs	13
	2.2	Multia	agent Decision Making: Decentralized POMDPs	14
	2.3	Exam	ple Domains	17
		2.3.1	Dec-Tiger	17
		2.3.2	Multirobot Coordination: Recycling and Box-Pushing	19
		2.3.3	Network Protocol Optimization	20
		2.3.4	Efficient Sensor Networks	20
	2.4	Specia	al Cases, Generalizations and Related Models	21
		2.4.1	Observability and Dec-MDPs	21
		2.4.2	Factored Models	22
		2.4.3	Centralized Models: MMDPs and MPOMDPs	24
		2.4.4	Multiagent Decision Problems	25
		2.4.5	Partially Observable Stochastic Games	30
		2.4.6	Interactive POMDPs	30
3	Fini	te-Hori	izon Dec-POMDPs	33
	3.1	Optim	ality Criteria	33
	3.2	Policy	Representations: Histories and Policies	34
		3.2.1	Histories	34
		3.2.2	Policies	35
	3.3	Multia	agent Beliefs	37
	3 4	Value	Functions for Joint Policies	37

xii Contents

	3.5	Complexity	39
4	Exa	ct Finite-Horizon Planning Methods	41
	4.1	Backwards Approach: Dynamic Programming	41
		4.1.1 Growing Policies from Subtree Policies	41
		4.1.2 Dynamic Programming for Dec-POMDPs	44
	4.2		46
		4.2.1 Temporal Structure in Policies: Decision Rules	46
		4.2.2 Multiagent A*	47
	4.3	Converting to a Non-observable MDP	48
		4.3.1 The Plan-Time MDP and Optimal Value Function	49
		4.3.2 Plan-Time Sufficient Statistics	49
		4.3.3 An NOMDP Formulation	51
	4.4	Other Finite-Horizon Methods	52
		4.4.1 Point-Based DP	52
		4.4.2 Optimization	52
_			
5	App 5.1		55 56
	3.1	11	56 56
			57
		7 11 8	57
	5.2		58
	3.2		58
		E	59
			59 61
		11	64
		5.2.4 Evolutionary Methods and Cross-Entropy Optimization	04
6	Infi	nite-Horizon Dec-POMDPs	69
	6.1	Optimality Criteria	69
		6.1.1 Discounted Cumulative Reward	69
		6.1.2 Average Reward	70
	6.2	Policy Representation	70
		6.2.1 Finite-State Controllers: Moore and Mealy	71
		6.2.2 An Example Solution for DEC-TIGER	73
		6.2.3 Randomization	74
		6.2.4 Correlation Devices	74
	6.3	Value Functions for Joint Policies	75
	6.4	Undecidability, Alternative Goals and Their Complexity	76
7	Infi	nite-Horizon Planning Methods: Discounted Cumulative Reward	79
′	7.1	_	79
	7.2	·	81
	,		82
			83
			85

Contents xiii

		7.2.4	Expectation Maximization
		7.2.5	Reduction to an NOMDP 87
8	Fur	ther To	pics 91
	8.1	Explo	iting Structure in Factored Models
		8.1.1	Exploiting Constraint Optimization Methods 91
			8.1.1.1 Coordination (Hyper-)Graphs
			8.1.1.2 ND-POMDPs
			8.1.1.3 Factored Dec-POMDPs 95
		8.1.2	Exploiting Influence-Based Policy Abstraction 100
	8.2	Hierar	chical Approaches and Macro-Actions
	8.3	Comm	nunication
		8.3.1	Implicit Communication and Explicit Communication 105
			8.3.1.1 Explicit Communication Frameworks 106
			8.3.1.2 Updating of Information States and Semantics 107
		8.3.2	Delayed Communication
			8.3.2.1 One-Step Delayed Communication
			8.3.2.2 <i>k</i> -Steps Delayed Communication 109
		8.3.3	Communication with Costs
		8.3.4	Local Communication
	8.4	Reinfo	preement Learning
9	Con	clusion	
Ref	erenc	es	117

Acronyms

AH action history AOH action-observation history BG Bayesian game CG coordination graph CBG collaborative Bayesian game COP constraint optimization problem DAG directed acyclic graph DP dynamic programming decentralized Markov decision process Dec-MDP Dec-POMDP decentralized partially observable Markov decision process DICE direct cross-entropy optimization EM expectation maximization EXP deterministic exponential time (complexity class) FSC finite-state controller forward-sweep policy computation FSPC GMAA* generalized multiagent A* interactive partially observable Markov decision process I-POMDP MAS multiagent system MARL multiagent reinforcement learning MBDP memory-bounded dynamic programming MDP Markov decision process MILP mixed integer linear program NEXP non-deterministic exponential time (complexity class) networked distributed POMDP ND-POMDP NDP nonserial dynamic programming nonlinear programming NLP non-deterministic polynomial time (complexity class) NP OH observation history POMDP partially observable Markov decision process PSPACE polynonomial SPACE (complexity class) **PWLC** piecewise linear and convex

xvi Acronyms

RL reinforcement learning TD-POMDP transition-decoupled POMDP

List of Symbols

Throughout this text, we tried to make consistent use of typesetting to convey the meaning of used symbols and formulas. In particular, we use blackboard bold fonts $(\mathbb{A}, \mathbb{B}, \text{etc.})$ to denote sets, and subscripts to denote agents (typically i or j) or groups of agents, as well as time (t or τ).

For instance a is the letter used to indicate actions in general, a_i denotes an action of agent i, and the set of its actions is denoted \mathbb{A}_i . The action agent i takes at a particular time step t is denoted $a_{i,t}$. The profile of actions taken by all agents, a joint action, is denoted a, and the set of such joint actions is denoted \mathbb{A} . When referring to the action profile of a subset e of agents we write a_e , and for the actions of all agents except agent i, we write a_{-i} . On some occasions we will need to indicate the index within a set, for instance the k-th action of agent i is written a_i^k . In the list of symbols below, we have shown all possible uses of notation related to actions (base symbol 'a'), but have not exhaustively applied such modifiers to all symbols.

•	multiplication,
×	Cartesian product,
0	policy concatenation,
JL	subtree policy consumption operator,
$\stackrel{\vee}{\triangle}(\cdot)$	simplex over (\cdot) ,
$\triangle(\cdot)$	simplex over (*),
1	indicator function,
$1_{\{\cdot\}}$	indicator function,
β	macro-action termination condition,
	mapping from histories to subtree policies,
$\Gamma_{j} \ \Gamma^{\mathscr{X}} \ \Gamma^{\mathscr{A}}$	state factor scope backup operator,
I F.	
1 34	agent scope backup operator,
γ	discount factor,
δ_t	decision rule for stage t ,
${\delta}_t$	joint decision rule for stage t ,
$\hat{\delta}_t$	approximate joint decision rule,
$egin{array}{l} egin{array}{l} egin{array}{l} egin{array}{l} eta_t \ ar{\delta}_t \ eta_{i,t} \end{array}$	decision rule for agent i for stage t ,
Δt	length of a stage ts,

xviii List of Symbols

arepsilon	(small) constant,
$rac{arepsilon}{ar{ heta}}$	joint action-observation history,
$ar{ heta}_i$	action-observation history,
$ar{\Theta}_i$	action-observation history set,
ι_i	information state, or belief update, function,
μ_i	macro-action policy for agent i ,
π	joint policy,
π_i	policy for agent i ,
π_{-i}	(joint) policy for all agents but i ,
π^*	optimal joint policy,
ρ	number of reward functions,
Σ	alphabet of communication messages,
σ_t	plan-time sufficient statistic,
τ	stages-to-go ($\tau = h - 1$),
v	domination gap,
$oldsymbol{\phi}_{ exttt{Next}}$	set of next policies,
φ_t	past joint policy,
ξ	parameter vector,
ψ	correlation device transition function,
A	set of joint actions,
\mathbb{A}_i	set of actions for agent <i>i</i> ,
$ar{\mathbb{A}}^{'}$	joint action history set,
$ar{\mathbb{A}}_i$	action history set for agent i ,
a	joint action,
a_t	joint action at stage t ,
a_i	action for agent i ,
a_e	joint action for subset e of agents,
a_{-i}	joint action for all agents except i ,
$ar{a}_i$	action history of agent i ,
$ar{a}_{i,t}$	action history of agent i at stage t ,
\bar{a}	joint action history,
\bar{a}_t	joint action history at stage t ,
$B(b_0, \varphi_t)$	Bayesian game for a stage,
$B(\mathscr{M}_{DecP},b_0,oldsymbol{arphi}_t)$	CBG for stage t of a Dec-POMDP,
B	set of joint beliefs,
b_0	initial state distribution,
$b_i(s_t, q_{-i}^{ au}) \ b$	multiagent belief,
b_i	belief, belief for agent <i>i</i> (e.g., a multiagent belief),
\mathbb{C}	states of a correlation device,
C_{Σ}	message cost function,
c	correlation device state,
\mathbb{D}	set of agents,
$\mathbf{E}[\cdot]$	expectation of ·,
-[]	expectation of ,

List of Symbols xix

\mathcal{E}	set of hyper-edges,
	ndex of local payoff function (corresponding to a hyper edge),
	probability distribution, parameterized by ξ ,
$f_{\varepsilon(i)}$	distribution over joint policies at iteration j ,
$f_{oldsymbol{\xi}(j)} \ f_{oldsymbol{\xi}(j)}$	horizon,
$I_{i o j}$	influence of agent i on agent j ,
I_i	information states for agent i ,
\mathbb{I}_i	set of information states for agent i ,
\mathscr{M}	Markov multiagent environment,
\mathscr{M}_{DecP}	Dec-POMDP,
\mathscr{M}_{MPOMDP}	MPOMDP,
\mathscr{M}_{PT}	plan-time NOMDP,
m_i	agent model, also finite-state controller,
m	agent component (a joint model),
m_i	macro-action for agent i ,
N_b	number of best samples,
N_f	number of fire levels,
Next	operation constructing next set of partial policies,
NULL	null observation, number of agents,
n O	observation function,
O_i	local observation function for agent i,
OC	optimality criterion,
0	set of joint observations,
\mathbb{O}_{i}	set of observations for agent <i>i</i> ,
Ō	joint observation history set,
$egin{array}{c} \mathbb{O}_i \ ar{\mathbb{O}} \ ar{\mathbb{O}}_i \end{array}$	observation history set for agent i,
0	joint observation,
o_i	observation for agent i ,
$o_{i,\emptyset}$	NULL observation for agent i ,
\bar{o}_i	observation history of agent <i>i</i> ,
\bar{o}_t	joint observation history at stage t ,
$egin{array}{l} ar{o}_{t, k } \ \mathcal{Q}^{\pi} \ \mathbb{Q}^{artilde{t}}_{i} \ \mathbb{Q}^{ au} \ \mathbb{Q}^{artilde{t}}_{i} \ \mathbb{Q}^{artilde{ au}} \ \mathbb{Q}^{artilde{t}}_{i,k} \ \mathbb{Q}^{artilde{t}}_{i,k}$	joint observation history at stage t of length k ,
Q^{π}	Q-value function for π ,
$\mathbb{Q}_i^{\mathfrak{r}}$	set of q_i^{τ} ,
\mathbb{Q}^{τ}	$\operatorname{set} \operatorname{of} q^{\tau},$
$\mathbb{Q}_{e,i}^{\tau}$	set of subtree policies resulting from exhaustive backup,
$\mathbb{Q}_{m,i}^{ au+1}$	set of maintained subtree policies,
q_{t-k}^{κ}	joint subtree policy of length k to be executed at stage $t - k$,
q_{t-k}^{k} q_{t}^{τ} q^{τ} R	τ -stage-to-go subtree policy for agent i ,
q^{ι}	au-stage-to-go joint subtree policy,
K	reward function,
$R_i \\ R^e$	local reward function for agent i,
	local reward function (with index e),
\mathbb{R}	real numbers,

xx List of Symbols

S	state space (the set of all states),
\mathbb{S}_i $\check{\mathbb{S}}_i$	set of local state for agent i,
$\dot{\mathbb{S}}_i$	set of interactive states for agent i,
S	state,
s_e	local state of agents participating in e (in agent-wise factored model),
s_i	local state for agent i,
T	transition function,
T_i	local state transition function for agent i,
t	stage,
$U_{ss}()$	sufficient statistic update,
и	payoff function (in context of single-shot game),
u^e	local payoff function,
V	value function,
V^*	optimal value function,
V^e	value function for a particular payoff component e,
V^{π}	value function for joint policy π ,
ν	value vector,
v_{δ}	value vector associated with (meta-level 'action') δ ,
V	set of value vectors,
\mathscr{X}	space of candidate solutions (DICE),
X	set of samples (DICE),
\mathbf{X}_b	set of best samples (DICE),
X	set of state factors
X_{i}^{j}	set of values for <i>j</i> -th state factor,
x^j	value for <i>j</i> -th state factor,
χ^H	fire level of house H ,
x_e	profile of values for state factors in component <i>e</i> ,
X	candidate solution (DICE),
\mathbb{Z}_i	set of auxiliary observations for agent i,