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Preface

This book presents an overview of formal decision making methods for decentral-
ized cooperative systems. It is aimed at graduate students and researchers in the
fields of artificial intelligence and related fields that deal with decision making, such
as operations research and control theory. While we have tried to make the book rel-
atively self-contained, we do assume some amount of background knowledge.

In particular, we assume that the reader is familiar with the concept of an agent as
well as search techniques (like depth-first search, A*, etc.), both of which are stan-
dard in the field of artificial intelligence [Russell and Norvig, 2009]. Additionally,
we assume that the reader has a basic background in probability theory. Although
we give a very concise background in relevant single-agent models (i.e., the ‘MDP’
and ‘POMDP’ frameworks), a more thorough understanding of those frameworks
would benefit the reader. A good first introduction to these concepts can be found
in the textbook by Russell and Norvig, with additional details in texts by Sutton and
Barto [1998], Kaelbling et al. [1998], Spaan [2012] and Kochenderfer et al. [2015].
We also assume that the reader has a basic background in game theory and game-
theoretic notations like Nash equilibrium and Pareto efficiency. Even though these
concepts are not central to our exposition, we do place the Dec-POMDP model in
the more general context they offer. For an explanation of these concepts, the reader
could refer to any introduction on game theory, such as those by Binmore [1992],
Osborne and Rubinstein [1994] and Leyton-Brown and Shoham [2008].

This book heavily builds upon earlier texts by the authors. In particular, many
parts were based on the authors’ previous theses, book chapters and survey articles
[Oliehoek, 2010, 2012, Amato, 2010, 2015, Amato et al., 2013]. This also means
that, even though we have tried to give a relatively complete overview of the work
in the field, the text in some cases is biased towards examples and methods that have
been considered by the authors. For the description of further topics in Chapter 8,
we have selected those that we consider important and promising for future work.
Clearly, there is a necessarily large overlap between these topics and the authors’
recent work in the field.
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Acronyms

AH action history

AOH  action-observation history

BG Bayesian game

CG coordination graph

CBG collaborative Bayesian game

COP  constraint optimization problem

DAG directed acyclic graph

DP dynamic programming

Dec-MDP  decentralized Markov decision process
Dec-POMDP  decentralized partially observable Markov decision process
DICE direct cross-entropy optimization

EM expectation maximization

EXP deterministic exponential time (complexity class)
FSC finite-state controller

FSPC forward-sweep policy computation

GMAA*  generalized multiagent A*

I-POMDP interactive partially observable Markov decision process
MAS multiagent system

MARL  multiagent reinforcement learning

MBDP memory-bounded dynamic programming

MDP Markov decision process

MILP mixed integer linear program

NEXP non-deterministic exponential time (complexity class)
ND-POMDP  networked distributed POMDP

NDP  nonserial dynamic programming

NLP nonlinear programming

NP non-deterministic polynomial time (complexity class)
OH observation history

POMDP partially observable Markov decision process
PSPACE  polynonomial SPACE (complexity class)
PWLC piecewise linear and convex
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RL reinforcement learning
TD-POMDP transition-decoupled POMDP



List of Symbols

Throughout this text, we tried to make consistent use of typesetting to convey the
meaning of used symbols and formulas. In particular, we use blackboard bold fonts
(A,B, etc.) to denote sets, and subscripts to denote agents (typically i or j) or groups
of agents, as well as time (7 or T).

For instance a is the letter used to indicate actions in general, a; denotes an action
of agent i, and the set of its actions is denoted A;. The action agent i takes at a
particular time step ¢ is denoted a; ;. The profile of actions taken by all agents, a joint
action, is denoted a, and the set of such joint actions is denoted A. When referring
to the action profile of a subset e of agents we write a., and for the actions of all
agents except agent i, we write a_;. On some occasions we will need to indicate the
index within a set, for instance the k-th action of agent i is written af?. In the list of
symbols below, we have shown all possible uses of notation related to actions (base
symbol ‘a’), but have not exhaustively applied such modifiers to all symbols.

multiplication,
Cartesian product,

o policy concatenation,
(3 subtree policy consumption operator,
A(Y) simplex over (-),
1{,} indicator function,

B macro-action termination condition,
I; mapping from histories to subtree policies,
r* state factor scope backup operator,
r agent scope backup operator,
Y discount factor,
o) decision rule for stage ¢,

O, joint decision rule for stage ¢,
O; approximate joint decision rule,
it decision rule for agent i for stage 7,

At length of a stage ts,
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List of Symbols

(small) constant,

joint action-observation history,
action-observation history,
action-observation history set,
information state, or belief update, function,
macro-action policy for agent i,

joint policy,

policy for agent i,

(joint) policy for all agents but i,
optimal joint policy,

number of reward functions,

alphabet of communication messages,
plan-time sufficient statistic,
stages-to-go (T =h—1),

domination gap,

set of next policies,

past joint policy,

parameter vector,

correlation device transition function,

set of joint actions,

set of actions for agent i,

joint action history set,

action history set for agent i,

joint action,

joint action at stage ¢,

action for agent i,

joint action for subset e of agents,
joint action for all agents except i,
action history of agent i,

action history of agent i at stage ¢,
joint action history,

joint action history at stage ¢,
Bayesian game for a stage,

CBG for stage t of a Dec-POMDP,
set of joint beliefs,

initial state distribution,
multiagent belief,

belief,

belief for agent i (e.g., a multiagent belief),
states of a correlation device,
message cost function,

correlation device state,

set of agents,

expectation of -,



List of Symbols

&

XiX

set of hyper-edges,

e hyper edge, or index of local payoff function (corresponding to a hyper edge),

Te
fg(j)
h

%DecP
Avipompp
AMpr

m;

m

m;

Np

Ny

Next
NULL

probability distribution, parameterized by &,
distribution over joint policies at iteration j,
horizon,

influence of agent i on agent j,

information states for agent i,

set of information states for agent i,

Markov multiagent environment,
Dec-POMDP,

MPOMDP,

plan-time NOMDP,

agent model, also finite-state controller,
agent component (a joint model),
macro-action for agent i,

number of best samples,

number of fire levels,

operation constructing next set of partial policies,
null observation,

number of agents,

observation function,

local observation function for agent i,
optimality criterion,

set of joint observations,

set of observations for agent i,

joint observation history set,

observation history set for agent i,

joint observation,

observation for agent i,

NULL observation for agent i,

observation history of agent i,

joint observation history at stage ¢,

joint observation history at stage ¢ of length £,
Q-value function for 7,

set of g7,

set of ¢,

set of subtree policies resulting from exhaustive backup,

set of maintained subtree policies,

joint subtree policy of length k to be executed at stage r — k,
T-stage-to-go subtree policy for agent i,

T-stage-to-go joint subtree policy,

reward function,

local reward function for agent i,

local reward function (with index e),

real numbers,
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List of Symbols

state space (the set of all states),

set of local state for agent i,

set of interactive states for agent i,

state,

local state of agents participating in e (in agent-wise factored model),
local state for agent i,

transition function,

local state transition function for agent i,

stage,

sufficient statistic update,

payoff function (in context of single-shot game),
local payoff function,

value function,

optimal value function,

value function for a particular payoff component e,
value function for joint policy 7,

value vector,

value vector associated with (meta-level ‘action’) 0,
set of value vectors,

space of candidate solutions (DICE),

set of samples (DICE),

set of best samples (DICE),

set of state factors

set of values for j-th state factor,

value for j-th state factor,

fire level of house H,

profile of values for state factors in component e,
candidate solution (DICE),

set of auxiliary observations for agent i,
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