
Access Time Tradeoffs in Archive Compression?

Matthias Petri, Alistair Moffat, P. C. Nagesh, Anthony Wirth

Department of Computing and Information Systems
The University of Melbourne

Victoria 3010, Australia

Abstract. Web archives, query and proxy logs, and so on, can all be very large
and highly repetitive; and are accessed only sporadically and partially, rather than
continually and holistically. This type of data is ideal for compression-based
archiving, provided that random-access to small fragments of the original data
can be achieved without needing to decompress everything. The recent RLZ (rel-
ative Lempel Ziv) compression approach uses a semi-static model extracted from
the text to be compressed, together with a greedy factorization of the whole text
encoded using static integer codes. Here we demonstrate more precisely than
before the scenarios in which RLZ excels. We contrast RLZ with alternatives
based on block-based adaptive methods, including approaches that “prime” the
encoding for each block, and measure a range of implementation options using
both hard-disk (HDD) and solid-state disk (SSD) drives. For HDD, the dominant
factor affecting access speed is the compression rate achieved, even when this
involves larger dictionaries and larger blocks. When the data is on SSD the same
effects are present, but not as markedly, and more complex trade-offs apply.

1 Introduction

Large data archives are often retained for long periods. Examples include web crawls;
site edit histories for resources such as the Wikipedia; query, proxy, and click logs; and
many other forms of meta-data associated with the way we store and access informa-
tion. Such archives are rarely decoded in full, and even partial-access operations may
be infrequent. Moreover, the data might be highly repetitive, with occasional very long
repeated strings, and repeated strings that are widely separated. There is thus consider-
able interest in specialized compression techniques that provide a high level of space
saving for such data, plus the ability to support random access to small fragments of it.

The Relative Lempel-Ziv (RLZ) compression approach is designed for archives like
these [5]. It involves a plain-text dictionary extracted from the collection of documents
via fixed-interval sampling across their concatenation. The documents are then factored
against the dictionary using the standard Lempel-Ziv greedy parsing approach, and fac-
tor descriptions consisting of copy offsets and copy lengths are represented with static
integer codes. Because the dictionary and encodings are both static, decoding is possible
from any point in the encoded stream, provided only that a corresponding code-aligned

? Preprint of M. Petri, A. Moffat, P.C. Nagesh, A. Wirth. Access Time Tradeoffs in Archive
Compression, In Proc. Asia Information Retrieval Societies Conference (AIRS) in LNCS vol
9460, pages 15–25, (2015), DOI: 10.1007/978-3-319-28940-3 2

ar
X

iv
:1

60
2.

08
82

9v
1

 [
cs

.I
T

]
 2

9
Fe

b
20

16

byte or bit address is given for the document that is required. Moreover, decoding is
fast – during decoding operations the dictionary is stored in memory uncompressed,
allowing rapid access to factors that can then be copied directly to the output stream as
required. More details of the RLZ approach are given in Section 2.

While the approach provided by RLZ is indeed a good solution to the question of
archive compression, other methods based on adaptive compression mechanisms are
available. For example, standard tools like GZip and xz can be applied on a per-block
basis. The block size then becomes an important parameter that trades compression ef-
fectiveness against access speed. The larger the block size, the better the compression
rate, but the longer it takes for a fragment of text to be reconstructed, since decompres-
sion must start at the beginning of a block.

Our purpose in this paper is to provide detailed evidence of RLZ’s capability in
archive compression. Our analysis includes the effects of the storage device chosen,
and both hard-disk drives (HDD) and solid-state disk (SSD) storage are employed. We
analyze the factors that determine the time required to access a fragment of text from
an arbitrary location in a large corpus, and show how different compression techniques
can be evaluated. The approaches explored include making use of a facility provided by
the standard ZLIB library in which a “priming” text enhances compression effectiveness
during the start-up phase of GZip’s Lempel-Ziv implementation. The various options
are compared on the 426 GiB GOV2 crawl of the .gov domain, which contains a broad
mix of HTML, PDF, and other document formats.

Based on those experiments, we conclude that for HDD the dominant factor affect-
ing access speed for random decoding is compression effectiveness, with block size a
secondary factor; whereas for SSD decompression speed is also a factor. Our results
confirm and extend those of Hoobin et al. [5], providing additional insights into the be-
havior of this important archiving technique. Our new implementation of RLZ will be
made available on completion of the project, so that other compression approaches can
also be incorporated as they are developed.

2 RLZ Compression

We now provide a brief description of the RLZ archive compression mechanism [5].

Forming a Dictionary The collection of documents to be stored are concatenated to
make a single large file; we let C denote that single string, and |C| be its length in bytes.
Two parameters are then identified: the dictionary size, denoted |D| (with D to be used
for the dictionary); and the sample size s, chosen to be a factor of |D|. The dictionary is
formed by taking |D|/s samples, each s bytes long, from C, extracting them at regular
|C|/(|D|/s)-byte intervals. For example, if |C|= 64 GiB and s= 1 kiB, then a dictionary
of |D|= 64 MiB would be formed by concatenating a total of 65,536 samples, extracted
every 1,048,576 bytes of C. Figure 1 shows the process of extracting regular samples
from C to form the dictionary D, regardless of the underlying document boundaries.

Factoring the Collection Once D has been formed, C is broken into a sequence of
blocks, and each block independently factored against D, using a left-to-right greedy
approach. The blocks might be variable-length and formed by considering individual

C

D

Document collection

Dictionary

Fixed−width blocks

Fig. 1. Constructing the RLZ dictionary D by selecting regular samples from the document col-
lection C. Document boundaries in C are shown by dotted lines; block boundaries (over part of
the collection) by dashed lines.

documents in the collection; might be variable-length and formed by taking groups
of documents to reach some minimum size; or might be fixed-length and formed by
taking some exact number of bytes. In our implementation we adopt the latter approach,
meaning that access to any byte range or to any particular document requires that the
corresponding block or blocks be identified and retrieved.

To generate the factorization for each of the blocks, D is indexed via a suffix array
or similar structure, so that for an arbitrary string S, the set of longest-matching prefixes
of S that appear in D can be identified. Starting at the beginning of each block, factors
relative to D are identified and represented by a pair of integer values: the length of
the factor, and its offset in D. If the next character in the block does not appear in D, a
literal is generated – a factor length of zero, and then an ASCII character code rather
than a dictionary offset. There are a range of ways in which the presentation of literals
can be optimized, including the application of a minimum match length, or separating
them into a distinct third stream. These alternatives are explored in Section 4; Hoobin
et al. [5] assume that literals are sufficiently rare that intermingling them in the stream
of offsets will not adversely affect compression effectiveness. Except when specifically
described otherwise, references to factor offsets below include any literals that may have
been required. The last factor in each block is truncated so that it finishes at the block
boundary. The compressed equivalent of each fixed-length block is then the fundamen-
tal access unit for decoding, with higher-level operations such as document retrieval
and byte-range retrieval implemented on top of the block access routines.

Compression Rate The total cost of storing C is the cost of storing D, plus the cost of
storing all of the 〈offset, length〉 pairs. The dictionary can be stored using any desired
compression mechanism, and is fully decoded into memory prior to subsequent access
operations. Even stored uncompressed, it is typically a small fraction of the original
collection. Continuing the previous example, |D|/|C|= 0.1%, and a compressed repre-
sentation of D should occupy well under 0.03% of |C|.

The majority of the space required is in the 〈offset, length〉 pairs. As already noted,
they are separated into two streams on a per-block basis, with each stream coded using
a static method such as 32-bit or minimal-width binary integers, or the variable-width
byte-oriented vbyte approach [9]. The two coded streams are then typically padded to a

byte or word boundary, concatenated to make a single unit, and a small prelude added
that includes a count of the number of factors contained. Continuing with the same
example, suppose that C is partitioned uncompressed into blocks of 16 kiB; that the
average factor length is 20 bytes; that each offset is coded in log2 |D|= 26 bits; and that
almost all factor lengths are coded in one byte each (vbyte codes for factor lengths of
up to 127). Then each factor requires 34 bits, and the offsets and lengths for a block are
stored in around 3.4 kiB, a compression rate of approximately 3.4/16≈ 22%. Previous
experimental results with RLZ suggest that all these various estimates are reasonable
[5], and they are further confirmed in the experiments described in Section 4.

Random Access Decoding To provide random-access decoding, index pointers to each
block in the compressed integer stream are maintained in an auxiliary structure. The
block size determines the number of index points and hence the size of the index, which
is important because the index must also be retained in memory during access opera-
tions. In the same example, with blocks of 16 kiB, a set of 4,194,304 indexing pointers
into the compressed stream is required, with each pointer 34 bits long to address a com-
pressed file of approximately 16 GiB. That is, in the example an index to allow random
access to blocks consumes 17 MiB, a further overhead.

To decode a fragment of C specified by an uncompressed byte range (for example, if
one document is required, and a mapping from document identifiers to byte addresses is
available) standard mod/div arithmetic is performed to determine the ordinal numbers of
the block or blocks that are required. The block index (required to be memory resident)
is then used to determine the address of the bundle of de-interleaved 〈offset, length〉
pairs for that block, and a file operation undertaken to fetch the relevant data from sec-
ondary storage. The dictionary D (also memory resident) is then used, with D[offset] to
D[offset+ length−1] copied to a decode buffer for each 〈offset, length〉 factor extracted
from the compressed blocks. The required range of bytes from within the block can
then be written to the output stream once the block decode buffer is filled. That is, af-
ter a compressed block has been fetched into main memory, reconstructing a fragment
of C consists of decoding two sequences of integers using static integer codes, and then
copying strings. Both operations are fast. Further blocks are fetched and decoded if
required, until the byte range specified in the query has been delivered.

Ferrada et al. [2] have also considered random access in RLZ mechanisms.

Memory Footprint Compression effectiveness is in part determined by the amount of
space used for the dictionary, as another dimension of effectiveness-efficiency trade-off.
For example, if the memory required (64 MiB+17 MiB in the example scenario) must
be reduced for some reason, either the block size can be increased, potentially affecting
access speed; or the dictionary size decreased, potentially affecting compression rate.
If the block size is increased to 64 kiB, the index reduces to 4.3 MiB. The drawback, of
course, is that four times as much data must be transferred into main memory to fulfill
a request, and more of it is likely to be required to be decoded as well, unless internal
structure is added within each block. As is demonstrated in the experiments below,
transfer and decoding times are usually small, and block sizes in the tens of kilobyte
range are acceptable. The uncompressed dictionary D is then the dominant memory
requirement during random-access decoding. To mitigate this cost, methods have been
developed for pruning the dictionary to remove unused or under-used strings [7].

Medium Random read latency Sequential transfer rate

Hard disk (HDD) 8.5 milliseconds 150 MiB/second
Solid-state disk (SSD) 0.12 milliseconds 1000 MiB/second

Table 1. Performance of different storage media. Extracted from product specifications of current
devices: Seagate ST3000DM001 (HDD), Intel SSD 750 Series (SSD).

Access Time In a memory-to-memory context, string-copy decoders similar to RLZ
generate text at around 250 MiB–300 MiB per second.1 A compressed block derived
from 64 kiB of C can thus be decoded in around 0.25 milliseconds. But that can only
happen once it has been fetched from secondary memory. Table 1 provides indicative
performance figures for mechanical (HDD) and solid-state (SSD) secondary memory
devices. In a mechanical disk, there is a non-trivial startup time for each data transfer,
involving (with high probability) a seek operation to move the read head, followed by
a delay resulting from rotational latency. Solid-state disks achieve higher data transfer
rates, and commence the data transfer relatively quickly after the request is received.

If compressed blocks are stored on HDD, the seek-plus-latency cost of approxi-
mately 8.5 milliseconds dominates the cost of transferring the data (around 0.15 mil-
liseconds for the compressed equivalent of a block of, say, 64 kiB of C), and the cost
of decoding that block once it is in memory (around 0.25 milliseconds). Based on this
arithmetic, and assuming that each query consists of accessing a 16 kiB segment of C, a
throughput of around 110 random-access queries per second should be possible. Of that
time, decoding activity occupies less than 3%. On the other hand, if the whole collection
is decoded sequentially (meaning that seek and latency times are amortized to zero), and
if compression effectiveness of 30% or better is achieved (meaning that decoding cost
completely subsumes transfer cost) then data can be handed to another process at the
measured peak output rate. Continuing the same example, a rate of 300 MiB decoded
per second correspond to up to 5,000 64 kiB-blocks, or 20,000 16 kiB-blocks.

If SSD is used, the situation for random access changes markedly. Now the transfer
initialization time is around 0.1 milliseconds, meaning that something like 2,900 64 kiB
blocks per second can be fetched and decoded, with the decoding taking around 60%
of the total time. Sequential access continues to be dominated by decoding cost, and re-
mains capped at around 20,000 16 kiB-blocks per second. All of these estimated access
time and throughput rates are validated empirically in Section 4.

3 Block-Based Adaptive Alternatives

We now consider additional options for archive compression.

Standard Compression Libraries Standard compression tools such as GZip, BZip2,
and xz, are adaptive, in that they use dynamic models and codes, so as to be versa-
tile across file types. For example, the well-known GZip compressor adopts the same

1 https://github.com/Cyan4973/lz4, accessed 27 July 2015.

https://github.com/Cyan4973/lz4

Lempel-Ziv factorization approach as RLZ, starting each compression run with an
empty dictionary, and then adding each parsed factor’s text for possible use in subse-
quent factorizations. If GZip is applied independently to blocks, its “always-start-from-
zero” approach puts it at a disadvantage compared to RLZ, because the global RLZ
dictionary allows identification of long factors right from the beginning of every block.

On the other hand, adaptive compression techniques build models that are focused
on exactly the content being compressed, and hence have an ability to be locally sensi-
tive in a way that RLZ does not. Adaptive methods are also able to exploit encodings
for factor offsets and lengths that are adaptive rather than static, further enhancing their
ability to provide locally sensitive compression. That is, while RLZ’s use of a global
dictionary and static encodings for factor offsets and lengths gives it an advantage on
very short blocks, localized adaptive methods may obtain better compression as the
block size is increased. Part of our purpose in this investigation is to explore the options
provided by these alternatives.

Block Size A second area for exploration is the effect of block size. The connection
between block size and the size of the block index was discussed above. In the case of
RLZ, because it typically uses static integer codes, increasing block size has no effect
on compression effectiveness. But if large blocks are passed to an adaptive compression
utility, average compression effectiveness is likely to improve, because the start up cost
of the model is amortized over a longer section of text. This then raises an interesting
trade-off – at what block size does an adaptive dictionary provide better compression
than a static RLZ-style dictionary of some given size.

For random-access operations using mechanical disk, the added decoding cost due
a large block size may not matter. Even with a block size of 512 kiB, decoding of half
a block, to reach a given byte address within it, takes around 0.8 milliseconds; transfer
of a full block takes approximately 1.1 milliseconds, assuming a 25% compression
rate; and the seek-plus-latency time of around 8.5 milliseconds is unchanged. That is,
it should be possible to extract fragments from a block representing 512 kiB of text in
around 11 milliseconds, or at an estimated rate of approximately 90 queries per second.

Batch-Mode Operation If queries are batched and processed “elevator” style, higher
query throughput rates can be achieved, because average disk-seek times are likely to be
smaller when the access requests are sorted. For example, if 110 random-access queries
per second can be supported without batching, and if batches of sufficient size can be
accumulated so that the average seek-plus-latency time drops from 8.5 milliseconds
to say 4.5 milliseconds then the same hardware configuration should support approxi-
mately 200 queries per second. The drawback is that on average the queries will have
much greater latencies before being processed – perhaps measured in tens or hundreds
of seconds, rather than tens of milliseconds. In applications that fetch small fragments
of a large archive, this mode of operation may still be acceptable.

4 Experiments

A New Implementation To allow precise characterization of the performance of RLZ
compression, we have created a new implementation based on fixed-length data blocks,

each compressed independently, with a block index maintained in memory so that
random-access queries can be supported. The system is written using ≈ 4000 lines of
C++11 code with the help of the sdsl library [4]. We use gcc 4.9.2 running on Ubuntu
15.04 in our experiments, with all optimizations enabled.

We have explored five variants, including three RLZ versions:

– RLZ-UV, using unsigned 32-bit integers for factor offsets, and vbyte for factor
lengths, as described by Hoobin et al. [5];

– RLZ-PV, using packed log2 |D|-bit integers for factor offsets, and vbyte for factor
lengths; and

– RLZ-ZZ, using ZLIB (the basis of the standard GZip compression utility) version
1.2.8 (http://zlib.net) to represent each of the streams of 32-bit factor offsets
and the stream of 32-bit factor lengths, on a block-by-block basis.

Each of these three methods makes use of a sampled dictionary. We also applied each of
ZLIB and LZ4 (https://github.com/Cyan4973/lz4) to independent blocks, with-
out use of a dictionary, following preliminary experimentation that included BZip2
and xz. The latter two were slower, and gave less interesting trade-offs between access
speed and compression effectiveness. Finally, as a sixth system and a further baseline,
we measured the performance of a COPY mechanism that does no compression at all.

Datasets Our experiments focus on the GOV2 collection, a crawl of the .gov domain
undertaken in early 2004, with documents stored in as-crawled order. This collection
contains around 25 million documents as a mixture of PDF, HTML, text, and other
formats, averaging 18 kiB each, and totaling 426 GiB.2 We use both the full collection
and a 64 GiB prefix of it.

Query Streams We explore three modes of retrieval: FULL, in which the archive is de-
coded sequentially; RANDOM, in which a set of 10,000 random unaligned locations is
accessed and a 16 kiB fragment retrieved from each; and BATCH, in which those same
10,000 locations are accessed, but with the queries sorted by address. The “Sequential”
mode explored by Hoobin et al. [5] most closely matches our FULL mode, in that they
measured retrieval of 100,000 consecutive GOV2 documents. Similarly, their “Query
Log” mode corresponds broadly to our RANDOM mode, but with 100,000 document re-
quests in the query stream, and hence more possibility of caching affecting throughput.

Hoobin et al. [5] also make use of a second URL-sorted GOV2 collection. They
obtain notably different query throughput results for the two orderings, particularly
with regard to decoding speed, differences that we were unable to reproduce with our
implementation. An examination of their code suggests that the differences arise from
a mode in their software that because of compiler optimization inadvertently results
in no decoded output being generated. As a result, we believe that the “Sequential”
retrieval speeds shown in their Table 5 (including decoding rates as high as 80,000
documents per second) should be discounted; and (for other reasons) possibly some of
their other speed results too.3 That is, our work here can be seen in part as representing
re-measurement of the techniques Hoobin et al. [5] describe.

2 http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm, 27 July 2015.
3 Our concerns in this regard have been communicated to the authors of [5].

http://zlib.net
https://github.com/Cyan4973/lz4
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

Dictionary Size and Formation The effectiveness of the RLZ mechanism is heavily
affected by the dictionary size. In their GOV2 experiments Hoobin et al. [5] work with
dictionary sizes between 0.5 GiB and 2 GiB. Here we focus on smaller dictionaries, and
explore the range from 16 MiB to 256 MiB for the 64 GiB test file, and the range 64 MiB
to 1024 MiB for the full GOV2 collection. As described in Section 2, we followed the
“standard” approach of selecting fixed-interval samples from the collection, presum-
ing it to have been concatenated into a single large file. Other dictionary construction
methodologies have been shown to result in small compression effectiveness gains [7];
we also explored a range of other heuristics, but found the simple interval-based sam-
pling approach to be relatively robust. We used samples of length s = 1024 throughout,
matching (when |D|= 1 GiB) some of the experiments carried out by Hoobin et al. [5].
We tested block sizes of 16 kiB, 64 kiB, and 256 kiB. All compression rates include the
cost of storing the dictionary, compressed as a character stream using ZLIB, and the cost
of the index table for block access, also stored using ZLIB.

Hardware Configuration All experiments were run on a server equipped with two
Intel Xeon E5640 CPUs running at 2.67 GHz using 144 MiB RAM, a Western Digital
5 TiB (WD50EFRX-68MYMN1) HDD and a 500 GiB Samsung 850 EVO SSD. Before
each experiment the operating system caches were cleared to minimize caching effects
using echo 3 > /proc/sys/vm/drop caches. We also took care with file placement
on the HDD, noting the effect that fragmentation and track assignment can have on disk-
based experimentation [8]. In some cases this meant deleting and re-copying indexes,
so as to ensure that measurements were made in a fair and consistent manner. The SSD
did not suffer from this variability.

High-Level View Figure 2 presents an overview of the six methods, measured using the
64 GiB file, and shows the gross relative performance across the three querying modes
and two hardware configurations. Each pane plots the relationship between compression
rate, as a percentage of the original file size, on the horizontal axis; and access speed,
measured by the number of 16 kiB blocks accessed per second. Each pane contains 36
plotted points: three RLZ variants, each with three different dictionary sizes and three
different block sizes (27 data points); plus two blocked adaptive methods using the same
three different block sizes (6 data points); plus the COPY method using the three block
sizes. Each color corresponds to a dictionary size, and each point shape corresponds to
a method. Within each method, the larger the dictionary size and/or the larger the block
size, the better the compression. But increased block sizes also correspond to slower
decoding. All six panes show the absolute advantage of using virtually any compression
method, with the COPY approach the slowest in several cases, and never the fastest.
Data compression often pays for itself. Note also that for each method, dictionary, and
block size combination the compression rate is the same across all six panes.

The two left panes confirm that sequential decoding is very fast, with the LZ4, RLZ-
UV and RLZ-PV approaches having a moderate speed advantage over the other mecha-
nisms, but with all of the compressed approaches delivering 10,000+ documents (each a
16 kiB unit in these experiments) per second, or 160 MiB+/second. There is little mea-
surable difference in performance between HDD and SSD. Unsurprisingly, the larger
the dictionary and/or the larger the block size, the better the compression.

FULL BATCH RANDOM

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●
●

●

●●

●

●●
●

●●●
●

●●●
●
●

●●

●

●●

●

●●
●

100

200

500

1 k

2 k

5 k

10 k

20 k

100

200

500

1 k

2 k

5 k

10 k

20 k

H
D

D
S

S
D

20 30 40 50 60 80 100 20 30 40 50 60 80 100 20 30 40 50 60 80 100

Compression Ratio [%]

16
K

iB
 B

lo
ck

s
pe

r
S

ec
on

d

Dict Size [MiB] ● ● ● ●0 4 16 64 Type ● RLZ−ZZ RLZ−PV RLZ−UV ZLIB LZ4 COPY

Fig. 2. Query processing rates measured as 16 kiB units retrieved per second, for three different
processing modes, two types of secondary storage, block sizes of 16 kiB, 64 kiB, and 256 kiB (not
individually identified in the plots), and a 64 GiB prefix of GOV2. In the FULL mode, throughput
rates are for aligned 16 kiB units; for the BATCH and RANDOM modes, for unaligned 16 kiB
units. The COPY, LZ4, and ZLIB methods do not use a dictionary, and are shown as 0 MiB. In
general, larger block sizes lead to better compression effectiveness; together with faster access in
the case of FULL operation, and slower access in the case of BATCH and RANDOM operation.

The BATCH and RANDOM modes are much slower. In the two middle panes, de-
picting BATCH access, there is a clear trend on the HDD for better compression to
correspond to higher query throughput, with query rates of between 100 documents
(unaligned 16 kiB units in this querying mode) and 200 documents per second, and
relatively little differentiation between the compression techniques. On the SSD, much
faster rates of 800–2,000 documents per second result, with throughput more sensitive
to the choice of compression technique. Finally, the right two panes show the further
slowdown arising from RANDOM access. On the HDD, query rates are around 100 doc-
uments/second; and on the SSD querying throughput is the same as for BATCH retrieval.

The SSD RANDOM and BATCH querying rates are around half those predicted by
the model described in Section 2. Measurement of the operating characteristics of the
SSD used in the experiments indicate that its mean latency is higher than is shown in
Table 1, approximately 0.25 millseconds per access, explaining the difference between
predicted and measured querying rates.

RANDOM
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

92.0

95.0

97.5

100.0

102.5

105.0

107.5

110.7

549

700

800

900

1000

1191

H
D

D
S

S
D

9.95 15.00 20.00 25.00 31.17

Compression Ratio [%]

16
K

iB
 B

lo
ck

s
pe

r
S

ec
on

d

Dict Size [MiB] ● ● ● ●0 64 256 1024 Type ● RLZ−ZZ RLZ−PV RLZ−UV ZLIB LZ4

Fig. 3. Query processing rates for the RANDOM processing mode, measured as unaligned 16 kiB
units retrieved per second, for two types of secondary storage, block sizes of 16 kiB, 64 kiB, and
256 kiB (not individually identified in the plots), and the full GOV2 collection. Note that the
upper and lower panes have different vertical scales.

Detailed View – Random Access Figure 3 shows a focused view corresponding to the
two right-hand panes in Figure 2, measured using the full 426 GiB GOV2 collection,
and with the COPY method omitted. It considers only the RANDOM queries, using
correspondingly larger dictionaries of 64 MiB, 256 MiB, and 1 GiB, and unchanged
block sizes of 16 kiB, 64 kiB, and 256 kiB. At the increased scale of these graphs, it is
possible to identify a Pareto frontier for each different dictionary size, and quantify the
tension between compression and throughput that is controlled by block size.

For random access, the raw speed of LZ4 is less of an advantage, and it is part of
the trade-off frontier only when no dictionary can be used, and when the fast data rates
of SSD are available. If dictionary space is not a restriction, then the RLZ-ZZ methods
dominate absolutely for HDD retrieval, and for much of the frontier with SSD retrieval.
The remaining part of the SSD frontier is pinned on the RLZ-PV method, highlighting
that unaligned bit-wise integers can be processed just as efficiently as can the aligned
32-bit integers preferred by Hoobin et al. [5], and give better compression.

Comparing our results with those of Hoobin et al. [5], we have measured very sim-
ilar throughput rates for RANDOM queries, and by adding blocking to the RLZ-ZZ
approach, have slightly improved its compression effectiveness. That small gain, and
the reduction in transfer and decoding time that accompanies it, gives the RLZ-ZZ ap-

Block ZLIB ZLIB′ RLZ-ZZ RLZ-ZZ′

size comp. thrpt. comp. thrpt. comp. thrpt. comp. thrpt.

16 kiB 24.83% 990 22.64% 955 17.56% 1043 17.37% 946
64 kiB 22.29% 840 21.53% 825 16.56% 905 16.47% 866

256 kiB 21.53% 513 21.33% 508 16.26% 599 16.21% 581

Table 2. Use of ZLIB priming with the 64 GiB prefix of GOV2. In the ZLIB′ method, a uni-
form sampled dictionary of 256 MiB is employed. In the RLZ-ZZ′ method, the same 256 MiB
dictionary is used, plus two fixed pre-computed integer sequences of 64 kiB containing factor
lengths and factor offsets respectively. The two values for each combination are the compression
rate, as a percentage of the original collection, and the measured RANDOM-mode throughput, in
documents per second using SSD.

proaches the upper hand, and dictionaries as small as 256 MiB are sufficient to attain
high RANDOM query throughput even compared to RLZ-PV, and also compact storage.
On SSD, the situation is similar, but if query throughput is the primary goal, the RLZ-PV
represent the best combination of attributes.

5 RLZ Extensions

We briefly describe two different ways in which RLZ compression can be enhanced.

Priming in RLZ-ZZ The ZLIB compression library offers the ability to “prime” the
compression process, by providing data that is considered to precede the sequence that
is to be compressed, thereby providing a model to initialize the dictionary. In the same
way that RLZ employs a dictionary, so too can a ZLIB′ approach, in which a uniform
sampled dictionary is created, and then each block of data is ZLIB-compressed using
priming text drawn from the dictionary in the vicinity of the block being compressed. A
similar approach has been demonstrated to be effective when compressing Yahoo email
archives [1]. A primed variant of RLZ-ZZ can also be constructed, using pre-computed
sequences of factor offsets and factor lengths. Table 2 shows that when the block size is
small, priming achieves a worthwhile benefit, but that the gain for larger block sizes is
smaller. Priming causes a small decrease in query throughput rates.

Three Streams Using a full factor – requiring 30+ bits – to represent a literal is ex-
pensive, and it is not actually necessary for literals to be mingled with the stream of
dictionary offsets. If a third stream is added, containing only the sequence of literals, it
can be compressed separately. Once a separate stream is allowed, it also makes sense
to force any short factors in to it too – if the next match in the dictionary is of length
less than some value min literal, then the entire factor is coded as literals. Similar op-
timizations are used in many Lempel-Ziv implementations; see, for example, Fiala and
Greene [3]. The third stream can be coded using any of the mechanisms already dis-
cussed, or any other coding method [6]; here we use of ZLIB for all three.

Table 3 provides a detailed comparison between RLZ-ZZ and RLZ-ZZZ. The gain
in compression is larger with a small dictionary than with a large dictionary, since the

Block RLZ-ZZ RLZ-ZZZ

size 16 MiB 64 MiB 256 MiB 16 MiB 64 MiB 256 MiB thrpt.

16 kiB 22.89% 20.03% 17.56% 22.42% 19.80% 17.47% 1029
64 kiB 21.58% 18.89% 16.57% 20.99% 18.54% 16.39% 896

256 kiB 21.18% 18.54% 16.27% 20.57% 18.17% 16.06% 591

Table 3. Use of a three-way split of streams, using min literal = 4, a 64 GiB prefix of GOV2,
and three different dictionary sizes. Values reported are compression rates, as a percentage of
the original collection. The final column shows the measured RANDOM-mode throughput, as
unaligned 16 kiB accesses per second using SSD secondary storage, for the RLZ-ZZZ method
with a dictionary of 256 MiB, and can be compared with the values in Table 2.

bigger the dictionary, the less likely it is that short factors will get generated. That is,
the use of three streams can be viewed as being a way of making slightly better use of
a small dictionary. Decoding speed is only marginally affected.

6 Summary and Conclusion

We have extended the experimentation of Hoobin et al. [5] to SSD memory, and un-
dertaken a systematic study of blocking effects and access time trade offs in archive
compression. The RLZ-ZZ static-dictionary method provides an outstanding balance be-
tween random access query throughput and compression effectiveness, for both HDD
devices and SSD devices. We have also measured the effect of two simple techniques
that provide small additional compression gains, without any great loss of throughput.

Acknowledgments This work was supported under the Australian Research Council’s
Discovery Projects scheme (project DP140103256). We have had access to the code of
Hoobin et al. while working on this project, and we thank them for making it available.

References
1. Bergman, A., Zohar, E.: Compressing Yahoo mail. In: Proc. DCC. pp. 223–232 (2015)
2. Ferrada, H., Gagie, T., Gog, S., Puglisi, S.J.: Relative Lempel-Ziv with constant-time random

access. In: Proc. SPIRE, pp. 13–17 (2014)
3. Fiala, E.R., Greene, D.H.: Data compression with finite windows. Comm. ACM 32(4), 490–

505 (1989)
4. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play with succinct

data structures. In: Proc. SEA. pp. 326–337 (2014)
5. Hoobin, C., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv factorization for efficient storage and

retrieval of web collections. PVLDB 5(3), 265–273 (2011)
6. Moffat, A., Turpin, A.: Compression and Coding Algorithms. Kluwer, Boston (2002)
7. Tong, J., Wirth, A., Zobel, J.: Principled dictionary pruning for low-memory corpus compres-

sion. In: Proc. SIGIR. pp. 283–292 (2014)
8. Webber, W., Moffat, A.: In search of reliable retrieval experiments. In: Proc. 10th Australasian

Document Computing Symp. pp. 26–33 (2005)
9. Williams, H.E., Zobel, J.: Compressing integers for fast file access. Comp. J. 42(3), 193–201

(1999)

	Access Time Tradeoffs in Archive Compression

