Skip to main content

Algorithms for Context Learning and Information Representation for Multi-Sensor Teams

  • Chapter
  • First Online:
Context-Enhanced Information Fusion

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Sensor measurements of the state of a system are affected by natural and man-made operating conditions that are not accounted for in the definition of system states. It is postulated that these conditions, called contexts, are such that the measurements from individual sensors are independent conditioned on each pair of system state and context. This postulation leads to kernel-based unsupervised learning of a measurement model that defines a common context set for all different sensor modalities and automatically takes into account known and unknown contextual effects. The resulting measurement model is used to develop a context-aware sensor fusion technique for multi-modal sensor teams performing state estimation. Moreover, a symbolic compression technique, which replaces raw measurement data with their low-dimensional features in real time, makes the proposed context learning approach scalable to large amounts of data from heterogeneous sensors. The developed approach is tested with field experiments for multi-modal unattended ground sensors performing human walking style classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Phoha, N. Virani, P. Chattopadhyay, S. Sarkar, B. Smith, A. Ray, Context-aware dynamic data-driven pattern classification. Procedia Comput. Sci. 29, 1324–1333 (2014)

    Article  Google Scholar 

  2. N. Virani, S. Marcks, S. Sarkar, K. Mukherjee, A. Ray, S. Phoha, Dynamic data-driven sensor array fusion for target detection and classification. Procedia Comput. Sci. 18, 2046–2055 (2013)

    Article  Google Scholar 

  3. N. Virani, J.W. Lee, S. Phoha, A. Ray, Dynamic context-aware sensor selection for sequential hypothesis testing, in 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), 2014, pp. 6889–6894

    Google Scholar 

  4. D.K. Wilson, D. Marlin, S. Mackay, Acoustic/seismic signal propagation and sensor performance modeling, in SPIE, vol. 6562, 2007

    Google Scholar 

  5. F. Darema, Dynamic data driven applications systems: new capabilities for application simulations and measurements. In: Computational Science–ICCS 2005, Springer, 2005, pp. 610–615

    Google Scholar 

  6. A. Olivaa, A. Torralba, The role of context in object recognition. Trends Cogn. Sci. 520–527 (2007)

    Google Scholar 

  7. R. Rosenfield, Two decades of statistical language modeling: Where do we go from here? (2000)

    Google Scholar 

  8. B. Schilit, N. Adams, R. Want, Context-aware computing applications, in Mobile Computing Systems and Applications, 1994. WMCSA 1994. First Workshop on, IEEE, 1994, pp. 85–90

    Google Scholar 

  9. H. Frigui, P.D. Gader, A.C.B. Abdallah, A generic framework for context-dependent fusion with application to landmine detection, in SPIE Defense and Security Symposium, International Society for Optics and Photonics, 2008, pp. 69,531F–69,531F

    Google Scholar 

  10. C.R. Ratto, Nonparametric Bayesian context learning for buried threat detection. Ph.D. thesis, Duke University, (2012)

    Google Scholar 

  11. C. Bron, J. Kerbosch, Algorithm 457: Finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)

    Article  MATH  Google Scholar 

  12. E. Tomita, A. Tanaka, H. Takahashi, The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci. 363(1), 28–42 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Newman, Fast algorithm for detecting community structure in networks. Phys. Rev. E. 69 (2003)

    Google Scholar 

  14. N. Virani, J.W. Lee, S. Phoha, A. Ray, Learning context-aware measurement models, in Proceedings of the 2015 American Control Conference, IEEE 2015, pp. 4491–4496

    Google Scholar 

  15. P.R. Kumar, P. Varaiya, Stochastic systems: estimation, identification and adaptive control, Prentice-Hall, Englewood Cliffs, NJ, 1986

    MATH  Google Scholar 

  16. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  17. C.R. Ratto, P.A. Torrione, L.M. Collins Context-dependent feature selection using unsupervised contexts applied to GPR-based landmine detection, in SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, 2010, pp. 76,642I–76,642I

    Google Scholar 

  18. H. Akaike, A new look at statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. C.R. Ratto, K.D. Morton, L.M. Collins, P.A. Torrione Contextual learning in ground-penetrating radar data using dirichlet process priors, in Proceedings of SPIE, the International Society for Optical Engineering, Society of Photo-Optical Instrumentation Engineers, 2011

    Google Scholar 

  21. F. Cucker, S. Smale On the mathematical foundations of learning. Bulletin (New Series) of the Am. Math. Soc. 39(1):1–49 (2001)

    Google Scholar 

  22. B. Schölkopf, C.J.C. Burges, A.J. Smola (eds.), Advances in Kernel Methods: Support Vector Learning (MIT Press, Cambridge, MA, 1999)

    Google Scholar 

  23. J.W. Lee, P.P. Khargonekar, Distribution-free consistency of empirical risk minimization and support vector regression. Math. Control Sig. Syst. 21(2), 111–125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. J.L. Kelley et al., Linear Topological Spaces (Springer, New York, NY, 1976)

    MATH  Google Scholar 

  25. A.J. Smola, B. Schölkopf, A tutorial on support vector regression. Stat. Compu. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  26. V.N. Vapnik, Statistical Learning Theory (Wiley, New York, NY, 1998)

    MATH  Google Scholar 

  27. C.C. Chang, C.J. Lin, Training ν-support vector regression: theory and algorithms. Neural Comput. 14(8), 1959–1977 (2002)

    Article  MATH  Google Scholar 

  28. E. Parzen, On estimation of a probability density function and mode. Ann. Math. Stat. 1065–1076 (1962)

    Google Scholar 

  29. S. Mukherjee, V. Vapnik, Support vector method for multivariate density estimation. Cent Bio. Comput. Learn. Dept Brain and Cogn. Sci., MIT CBCL 170 (1999)

    Google Scholar 

  30. J. Weston, A. Gammerman, M.O. Stitson, V. Vapnik, V. Vovk, C. Watkins, Support vector density estimation. (Advances in kernel methods, MIT Press, 1999), pp. 293–305

    Google Scholar 

  31. L. Rabiner, A tutorial on hidden markov models and selected applications in speech proccessing. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  32. D. Ron, Y. Singer, N. Tishby, On the learnability and usage of acyclic probabilistic finite automata. J. Comput. Syst. Sci. 56(2), 133–152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Rao, A. Ray, S. Sarkar, M. Yasar, Review and comparative evaluation of symbolic dynamic filtering for detection of anomaly patterns. SIViP 3, 101–114 (2009)

    Article  Google Scholar 

  34. S. Bahrampour, A. Ray, S. Sarkar, T. Damarla, N.M. Nasrabadi, Performance comparison of feature extraction algorithms for target detection and classification. Pattern Recogn. Lett. 34, 2126–2134 (2013)

    Article  Google Scholar 

  35. I. Chattopadhyay, A. Ray, Structural transformations of probabilistic finite state machines. Int. J. Control 81(5), 820–835 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. X. Jin, S. Sarkar, A. Ray, S. Gupta, T. Damarla, Target detection and classification using seismic and PIR sensors. IEEE Sens. J. 12(6), 1709–1718 (2012)

    Article  Google Scholar 

  37. S. Gupta, A. Ray, Statistical mechanics of complex systems for pattern identification. J. Stat. Phys. 134(2), 337–364 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Ray, Symbolic dynamic analysis of complex systems for anomaly detection. Sig. Process. 84(7), 1115–1130 (2004)

    Article  MATH  Google Scholar 

  39. P. Adenis, Y. Wen, A. Ray, An inner product space on irreducible and synchronizable probabilistic finite state automata. Math. Control Sig. Syst. 23(4), 281–310 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Wen, S. Sarkar, A. Ray, X. Jin, T. Damarla, A unified framework for supervised learning of semantic models, in Proceedings of the 2012 American Control Conference, pp. 2183–2188, IEEE, (2012)

    Google Scholar 

  41. K. Mukherjee, A. Ray, State splitting and merging in probabilistic finite state automata for signal representation and analysis. Sig. Process. 104, 105–119 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The work reported in this chapter has been supported in part by U.S. Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-12-1-0270 and by the Office of Naval Research (ONR) under Grant No N00014-11-1-0893. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsoring agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Phoha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the USA)

About this chapter

Cite this chapter

Virani, N., Sarkar, S., Lee, JW., Phoha, S., Ray, A. (2016). Algorithms for Context Learning and Information Representation for Multi-Sensor Teams. In: Snidaro, L., García, J., Llinas, J., Blasch, E. (eds) Context-Enhanced Information Fusion. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-28971-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28971-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28969-4

  • Online ISBN: 978-3-319-28971-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics